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A forest-fire model and some thoughts on turbulence
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In the context of a forest-fire model we demonstrate critical scaling behavior in a “turbulent” non-equilibrium system. Energy
is injected uniformly, and dissipated on a fractal. Critical exponents are estimated by means of a Monte Carlo renormalization-

group calculation.

Many extended dissipative systems exhibit spatial
and temporal scaling. In turbulence, for example,
scaling occurs over wide length scales since the co-
herence length is usually much larger than the Kol-
mogorov length (the length scale for energy dissi-
pation). Uniform energy input results in power-law
spatial distribution of energy storage (Kolmogorov
scaling) and fractal energy dissipation [1]. Some
phenomenological models for scaling behaviors have
been proposed [2], in which the fractal set is preas-
sumed. It is, however, essential to understand the
dynamical mechanism which generates the fractal it-
self: How can a uniform energy injection result in a
fractal dissipation?

Motivated by the recent discovery of self-orga-
nized criticality [3] we speculate that fractal energy
dissipation is a manifestation of a critical state. Our
study of fractal energy dissipation is not in the con-
text of turbulent fluids, but as a general phenome-
non. The model we study is a simple “forest-fire”
model, and we focus on the spatial distribution of
dissipation (fire) and its dependence on the driving
force. We show that “‘energy”, when injected uni-
formly (trees grow uniformly), is dissipated (trees
burn) on a fractal. Scaling is checked by means of a
Monte Carlo renormalization-group (MCRG) cal-

culation. Our intention is to demonstrate in a toy
model the emergence of scaling and fractal energy
dissipation. Besides, at the critical points, “univer-
sality” may apply in analogy with equilibrium crit-
ical phenomena, and our study of this simple model
may help to provide a consistent and theoretically
sustainable phenomenological picture of a class of
turbulent phenomena.

Our lattice model is defined in any dimensions,
with the following simple rules:

(1) trees grow with a small probability p from
empty sites at each time step;

(i1) trees on fire will burn down at the next time
step;

(iii) the fire on a site will spread to trees at its
nearest neighbor sites at the next time step.

There is only one parameter in the model, namely
the growth rate of the trees*'. We now briefly sum-

#! Due to the discrete nature of our model the slow uniform
growth (driving) is represented by small growth probability;
the actual growth at each instance is random spatially. How-
ever, this randomness in driving does not affect the long-time
and space behaviors of this mode. A continuously driven de-
terministic version of this model with uniform growth rate has
been studied [4], which appears to exhibit the same scaling
behavior. This indicates that the random noise in the our model
is not important.
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marize the main features of the model: The forest is
characterized by a correlation length &(p)ocp—*; the
critical point is at p=0; thus the system is critical as
long as trees grow slowly. When the correlation length
is larger than the size of the system, the fire will die
out within a time of order the linear size of the sys-
tem; when the correlation length is smaller than the
size of the system, the forest fire is sustained. The
spatial distribution of the fire (i.e. the energy dis-
sipation) is on a fractal for length scales smaller than
& this is a manifestation of a critical point.

We simulate the forest fire on lattices of sizes up
10 256X 256 in 2d and 64X 64X 64 in 3d. Periodic
boundary conditions are chosen. Starting from a ho-
mogeneous distribution of trees and fires, the forest
fire evolves to a stationary state® for p>p.
(p.oc L='%). The spatial distribution of the fires and
trees (dissipation and energy storage ) are the objects
of our investigation. Fig. 1 shows a snapshot of the
forest on fire, taken in the stationary state after an
initial transient period. Note the coherent domains

#2 Because of the finite size of the system the fire can die out
accidentally in long simulations, even when the correlation
length is smaller than the size of the system. A few fires, which
are statistically insignificant, are added when the fire does die
out in long simulations.

Fig. 1. Snapshot of forest fire in a 100X 100 system. (O) Live
trees, (@ ) burning trees.
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of trees separated by a fractal distribution of fires,
indicating that the system is operating near a critical
point. By measuring the number distribution D{(r)
of fire at a distance r from a chosen site on fire
(D(r)ecrP~!), we obtain the fractal dimension:
D=1.0£0.2 in 2d and D=2.5%0.2 in 3d (fig. 2).
This value of D agrees with experimental observa-
tions for turbulence [1]. Of course, this could be ac-
cidental. If one prefers the language from traditional
equilibrium critical phenomena, the fire—fire corre-
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Fig. 2. Number distribution of fires at a distance r from a given
fire site near the center of (a) a 120X 120 system with p=0.015;
(b) a 60X 60X 60 system with p=0.0095. Averages were taken
over twenty thousand time steps.
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lation function G(x)={f(x")f(x'+x)) decays as
G(x)ox |x)3~9"" with y~ 1.0 in 2d and n= —0.5 in
3d.

Given the fractal dimension, a simple energy con-
servation argument leads to a power-law dependence
of £ on p: The total number of trees burned down is
equal to the total number of trees grown, which is
L4, and is also equal to the total number of uncor-
related domains (L/&)? times the number of trees
burned down in a given domain &P, Thus, we have
Ep)xp~?, with v=1/(d-D) (v~1.0 in 2d and
v=2.0 in 3d).

A independent check on the power law depen-
dence of £ on p has been done using a Monte Carlo
RG method. In two dimensions the calculations were
performed for 32X 32 and 64X 64 lattices. We di-
vide the lattice into 2 X 2 square blocks, and monitor
the fire distribution of the blocked lattice. As the
procedure is repeated, a hierarchy of renormalized
fire distributions is obtained. Specifically, we record
the number of boxes which contain fires in each
blocked lattice, and average over the entire simula-
tion. The average numbers n(L, m, p) (m is the
number of blocking iteration) after blocking down
to lattices of size 4 X4 and 2 X 2 are listed in table 1.
The exponent » can be calculated as follows: We find
growth rates p, and p, such that

n(L=645m+17p1)=n(L=327m3p2)' (1)

Because all lengths in the lattice, including the cor-
relation length, are reduced by a factor of 2 from
those of the original lattice after one blocking iter-
ation, we have &(p,)/&(p,)=2=(p,/p,\)". This re-
lation is used to determine v: Given p,=0.030,

Table 1

Values of the average number of boxes containing fires n(L, m,
p) for blocked lattices. The simulations were performed for 5x 10°
time steps on 64X 64 lattices and for 2.5% 10° time steps on
32 32 lattices (errors are statistical only)
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m
3(4%x4) 4(2X2)
n(64, m+1, p;=0.030) 10.00+0.08 3.74£0.04
n(32, m, p,=0.053) 9.06£0.02 3.6710.02
n(32, m, p,=0.057) 9.57+£0.02 3.7310.02
n(32, m, p,=0.060) 9.95+0.02 3.7810.02
n(32, m, p,=0.062) 10.17+0.03 3.83+0.03
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matching is obtained with p,=0.0601 0.003 for m=3
and 4; thus we have »=1.0+0.1, which agrees with
the value determined from the fractal dimension D.
Numerical RG calculations in three dimensions on
32%x32x32 and 16X 16X 16 lattices are not as con-
clusive. The matching on 2X2X 2 blocked lattices
indicates v= 1.4, which is also in rough agreement
with the value determined from the fractal dimen-
sion D.

In real turbulence, the Reynolds number is a com-
bination of the size of the system and the driving
force: R=LV/v. Similarly, we can define, by com-
bining L and p, a “Reynolds number” R for the for-
est: R=Lp?, which uniquely determines the behav-
ior of the forest fire up to an overall scale. The
transition to the steady “turbulent” state of the for-
est fire occurs at R = R, where the critical “Reynolds
number” is R .~ 1.8 in 2d and is R~ 0.6 in 3d. Note
that the transition described here is a finite size
crossover effect; so it is in real turbulence: the crit-
ical driving force goes to zero for infinite L **. The
dependence of the energy dissipation on the “Rey-
nolds number” in the forest fire is also a power law:
E,=pox R® with f=1/v, where the first equation ex-
presses stationarity.

The model may be rather directly applied to
spreading of diseases, propagation of chemical ac-
tivity, such as real fire. We believe that the model is
simple enough to allow for explicit theoretical anal-
ysis, for instance renormalization group theories
based on expansions around the upper critical di-
mension. Our study on a specific dynamical model
shows explicitly that certain principles are viable: (a)
Driven non-equilibrium systems may operate near
critical points, and cannot be identified as low-di-
mensional chaos [6]. (b) Homogeneously injected
energy is dissipated on a fractal. These principles may
serve as important guidelines in studying realistic
models.

This work was supported by the Division of Ma-
terials Science, US Department of Energy, under

¥ Pomeau [5] pointed out that certain transitions to turbulence
are similar to the transition in directed percolation: Criticality
requires fine-tuning of a control parameter. Our picture is en-
tirely different: Criticality applies to the fully developed tur-
bulent state itself, and the “transition™ at finite Reynolds
number is a crossover.
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