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Abstract: Agent-based simulations have become increasingly prominent in various disciplines. This trend is
positive, but it comes with challenges: while there are more and more standards for design, verification, vali-
dation, and presentation of the models, the various meta-theoretical strategies of how the models should be
related to reality o�en remain implicit. Di�erences in the epistemological foundations of models make it how-
ever, di�icult to relate distinct models to each other and to ensure a cumulative expansion of knowledge. Con-
cepts and the analytic language developed by philosophers of science can help to overcome these obstacles.
This paper introduces some of these concepts to the modelling community. It also presents an epistemologi-
cal framework that helps to clarify how one wishes to generate knowledge about reality by the means of one’s
model and that helps to relate models to each other. Since the interpretation of a model is strongly connected
to the activities of model verification and validation, these two activities will be embedded into the framework
and their respective epistemological roles will be clarified. The resulting meta-theoretical framework aligns
well with recently proposed frameworks for model presentation and evaluation.
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“The reciprocal relationship of epistemology and science is of noteworthy kind. They are depen-
dent upon each other. Epistemologywithout contact with science becomes an empty scheme. Sci-
ence without epistemology is – insofar as it is thinkable at all – primitive andmuddled.”
Einstein (1949, p. 683-684).

Introduction

1.1 Agent-based simulations have become increasingly prominent in various disciplines. Like many others, I wel-
come this trend. But with the growth of the field and its growing interdisciplinary nature, the absence of stan-
dards in terms of model presentation and interpretation becomes ever more apparent (Lee et al. 2015; Macal
2016; Schulze et al. 2017). While too strict standards would certainly limit the creativity of the research commu-
nity, some standardization is required to ensure that models can be reasonably compared and related to each
other (see also Müller et al. 2014).

1.2 Researchers have already responded to the need for standards in various practical ways. With regard to the
presentation of agent-based models (ABM), in particular the description of their aim and functioning, Grimm
et al. (2006) suggested the ODD protocol, updated in Grimm et al. (2010). The ODD protocol is meant to provide
a common format for the description of ABMs and aims to facilitate their mutual relation and replicability.1
Müller et al. (2013) extended the ODD protocol to facilitate the description of agent decision making. Similarly,
the MoHuB framework tries to provide “a tool and common language to describe, compare and communicate”
formalmodels of human interaction, particularly in the context of natural resourcemanagement (Schlüter et al.
2017). Another attempt in this direction is the TRACE framework, which was originally suggested in Schmolke
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et al. (2010) and updated by Grimmet al. (2014). It also seeks to increase the transparency and comparability of
simulationmodels, yet it focuses on theway the functioning of themodel is analysed and documented. Finally,
the systematic design of experiments (DOE) o�ers an excellent framework for the study ofmodel behaviour and
the presentation of model results in a transparent and comparable manner (Lorscheid et al. 2011).

1.3 In this paper I will make a di�erent, yet complementary suggestion to increase the transparency and compa-
rability of computational models: I will not focus on the presentation of ABM and their functioning, but on the
ways models are related to reality and thus meant to create knowledge about the system under investigation
(SUI). Models always di�er from the system they are meant to represent and there are di�erent epistemologi-
cal ways of relating one’s model to reality.2 Making di�erences between distinct epistemological strategies ex-
plicit would contribute to better comparability among computational models and thus the cumulative growth
of knowledge in the scientific community.

1.4 Theprocess of relatingone’smodel to reality is related to the intendedpurpose andmodel interpretation, and it
entails two important activities: model verification andmodel validation. A great number of di�erent anduseful
verification and validation techniques exist and the development of new tools is an active and successful area
of research (Fagiolo et al. 2007; Rand & Rust 2011; Lorscheid et al. 2011; Lotzmann & Wimmer 2013; Alden et al.
2013; Lee et al. 2015; ten Broeke et al. 2016; Schulze et al. 2017).

1.5 However, therearenostandardswith regard toverificationandvalidationon twodistinct andequally important
levels. On themore practical level, there is no consensus on the ‘best’ tool for either verification and validation.
This is because the complexity, the structure and the purpose of the model at least partly dictate the choice
of verification and validation techniques (Sun & Müller 2013; Schulze et al. 2017). There is, however, a lively
debate on the adequateness of di�erent tools, and innovative new methods are constantly developed in the
ABM community (Lee et al. 2015; Schulze et al. 2017; Schlüter et al. 2017).

1.6 On the meta-theoretical level, there is no consensus on questions such as (1) “Is it necessary to verify and/or
validate a model?”, (2) “To what extent is the verification and validation of a model even possible?”, or (3) “If
model verification andvalidation areneeded,what kindof verification andvalidation is adequate for themodel
at hand?” These are epistemological questions and they relate to the deeper problem of how a formal model,
an agent-based model in particular, helps us to ‘understand’ a real system under investigation. While being
more abstract, epistemological questions are by no means less important than the more practical questions
raised above. Nevertheless, they usually receive less attention, which is why they are the main concern of the
present paper.

1.7 Discussing the coherence ofmodels and their relation to reality is an important activity for every research com-
munity and it is essential that these discussions can be carried out e�ectively. This is exacerbated however, by
the fact that di�erent researchers o�en comewithdi�erent viewsonhowknowledge canand shouldbe created
about the system they investigate. Furthermore, the accepted criteria for what leads to an understanding of, or
knowledge about the system under investigation can be very di�erent between various scientific communities
(Boero & Squazzoni 2005; Lehtinen &Kuorikoski 2007; Baumgärtner et al. 2008).3 Because of this, scholars also
understand and value model verification and validation di�erently.

1.8 Inovercoming the resultingobstacles to successful cooperation, theanalytical apparatusdevelopedbyphiloso-
phers of science can of great value. Their concepts and vocabulary can be helpful in aligning these di�erent
perceptions to each other and, thus, to facilitate the comparison and relation of ABMs and other formal mod-
els. Moreover, their analytical language can help to structure the debate about the adequate means for model
verification and validation, andmight facilitate the dialogue amongmodellers from di�erent disciplines.

1.9 Unfortunately, the literatureonapplied computationalmodellingandon theepistemologyofmodelling remain
– so far – largely unconnected. Thus, one goal of this article is to introduce some epistemological concepts that
canhelp appliedmodellers to carry out discussions about the application, justification andassessment ofmod-
els more e�ectively. Alongside important analytical concepts of philosophers of sciences, a particular episte-
mological framework that may complement applied frameworks such as ODD+D or TRACE will be introduced.

1.10 Thereby, the paper does not seek to resolve the philosophical controversy among the nature of models and
their relation to reality. Rather, it tries tomake accessible some of the philosophical concepts onmodels to the
applied scientists using computational models.

1.11 To achieve this we will take the following steps: The next section provides a short and concise review of con-
cepts developedbyphilosophers of sciences that are helpful for thedebate in the simulation community. These
ideas will be summarized in a framework that helps clarifying the di�erent strategies to give models epistemic
meaningfulness. Then we will relate model verification and validation to this framework, describe the meta-
theoretical relation between verification and validation, and discuss whether andwhenmodels should be veri-
fied and/or validated. In a subsequent step, we identify some immediate practical implications from the episte-
mological discussionabove. Finally,weconclude thepaperandsummarize the implications for future research.
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Howmodels Generate Knowledge about Reality

2.1 This section introduces some of the key vocabulary and essential concepts developed by philosophers of sci-
ence that are concernedwith the question of howmodels create knowledge. Then it outlines a framework that
accommodates these concepts in a way that is appealing to practising modellers. Initially however, the useful-
ness of referring to epistemology and the philosophy of science will be discussed.

Themerits of an epistemological perspective onmodelling

2.2 Epistemology is “the study of knowledge and justified belief” (Steup 2016). In this field of philosophy one asks
questions such as “What are the necessary and su�icient conditions of knowledge?”, “What are the sources of
knowledge?” or “Howcanwegenerate knowledgeabout the realworld?”. Here Iwill present a couple of reasons
for why epistemological reasoning is important for applied scholars and comment on them one by one:

1. Epistemological arguments are important when choosing and justifying one’s modelling framework.

2. Epistemological reasoning is indispensable for relating results from di�erent models to each other.

3. It helps identifying advantages and disadvantages of di�erent modelling frameworks and suggests prac-
tical ways for combining them.

4. By dealing explicitly with an epistemological framework modellers can reflect upon and improve their
own practices.

5. An epistemological framework can highlight trade-o�s between various modelling desiderata and en-
ables modellers to makemore substantiated design choices.

6. An epistemological framework clarifies (1) the epistemic content of the sometimes vaguely used concepts
of model validation and verification, (2) why and when validation and verification is is important, and (3)
what we can expect from it.

2.3 If askedwhy one is approaching a given research questionwith an agent-basedmodel, the usual answers are of
thekind “Iwant to study the roleof theparticular interaction structure, and inanothermodelling framework it is
di�icult to include this structure explicitly.” or “The heterogeneity of the actors can be represented very directly
in an ABM, and this is important for my research question!”. These answers refer to particular epistemological
statements because they formulate certain preconditions that must be satisfied by a model to be suitable to
answer the research question of the modeller. Here, the implicit epistemological claim is that there are certain
properties of the system under investigation that must be represented in themodel for themodel to be useful.

2.4 Such implicit epistemological claims are o�en discipline-specific and, if not made explicit, a potential obsta-
cle for interdisciplinary work. Economists, for instance, cherish properties that might receive less priority in
other social sciences (Lehtinen & Kuorikoski 2007; Cartwright 2010; Reiss 2011). Rodrik et al. (2004, p. 133), for
example, claim that “Historians and many social scientists prefer nuanced, layered explanations where these
factors interact with human choices andmany other not-so-simple twists and turns of fate. But economists like
parsimony.” This suggests that economists pay less attention to the realistic-ness of particular modelling as-
sumptions, but focus rather on clarity and simplicity of models.4 To elucidate such epistemological di�erences
(and to critically assess them from all viewpoints) is essential when we want to engage in interdisciplinary col-
laboration, and taking an epistemological perspective can help us to do so (Grüne-Yano� 2013).

2.5 More generally, engaging with an explicit epistemological framework can help researchers to reflect upon their
actualmodelling practices since it requires them to be very precise and explicit on how theirmodel is expected
to improve understanding of the target system. Additionally, epistemological frameworks can highlight trade-
o� among di�erent modelling desiderata, such as transparency, generality, or precision. Thereby, they can
help us inmakingmore explicit and grounded design choices, and, in the end, to improve upon our established
modelling practices. The identification of trade-o�s might also suggest ways in which we can complement
our model with other (model-based or non-model-based) perspectives on the target system, whichmight help
remedying the inevitable shortcomings of our model.

2.6 Epistemological reasoning can also help us relating results obtained from di�erent methods to each other. For
example, there is currently a debate among policy makers and economists on the potential welfare and job
e�ectsof a free tradeand investmentagreementbetween theEuropeanUnionand theUnitedStatesofAmerica.
Francois et al. (2013) – and many others – have tackled this question with a Computable General Equilibrium
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(CGE) model, the current standard in economic research practice. The authors conclude that the agreement
would lead to generally favourable results. Capaldo (2014) uses a conventionalmacroeconomicmodel to study
the same question but expects job and welfare losses for Europe. Whichmodel is ’better‘, or, which conclusion
should form the basis for the decision making of policy makers? Some might argue that the assumptions of
Capaldo (2014) are more adequate than those of Francois et al. (2013). Others might trust more in the CGE
model because it relies on economic equilibrium, it is easier and thus more transparent and parsimonious. To
trace di�erent sources for distinctive policy implications, and to prioritize models in terms of the insights they
create, we again need to refer to the epistemological questions posed before. Using explicit frameworks and
precise language facilitates this task.

2.7 The previous argument relates to a more general finding: di�erent modelling frameworks have respective ad-
vantages and disadvantages that are not explicitly reflected upon in disciplinary practice. Taking an epistemo-
logical perspective canhelp to highlight them (Grüne-Yano�2013). For example, agent-based economicmodels
are - generally speaking - quite flexible in their assumptions. General equilibriummodels5 are - again, generally
speaking - more parsimonious and o�en allow for analytical solutions. Choosing the right modelling frame-
work and the rightmodel requires a reflection of their strengths andweaknesses. Sometimes, there is no ‘right’
model at all and itmakes sense tousemultiplemodels and lookat the systemunder investigation fromdi�erent
angles (Aydinonat 2017). In any case, carrying out a balanced choice of methods and a successful model trian-
gulation is particularly important in the context of interdisciplinary work and again, requires epistemological
reasoning (Grüne-Yano� 2013).

2.8 Researchers in the simulation community are o�en concerned with the problem of choosing the right set of
methods for model verification and validation. But the question of when and why verification and validation is
important, and how this relates to the purpose of modelling, receives less attention. To argue why a particular
method for model validation is important means to make a statement on how the link between themodel and
reality should be assessed. This, as any other argument made in this context, is an epistemological argument.

2.9 In all, there are a number of arguments for why epistemology is important. In contrast to the discussion of
the adequate means for model verification and validation, the most important point about epistemological
arguments is that they aremade explicit. Using an explicit framework helps us to comparemodels because the
way they are meant to explain becomes more explicit, transparent, and, thus, comparable.

Models and reality: A short review of key concepts

2.10 The aim of this section is to introduce applied modellers to some of the key concepts developed by philoso-
phers of science. The merit of these concepts is that they allow us to be more precise about how our models
can be used to create knowledge about reality. Of course, the philosophical literature on the epistemology of
models is extensive and it is beyond the scope of this article to provide an exhaustive review. Rather, I will at-
tempt to provide a concise overview over some of the key concepts introduced by philosophers of science that
are particularly useful for the topic of this paper and that can help applied modellers. For a more extensive
review from a philosophy of science perspective see e.g., Grüne-Yano� (2013).

2.11 Before we begin, the scope of this review needs to be clarified. First, there is an extensive body of literature
concerned with the ontological nature of models, i.e., the question: “What are models?”. There are many
suggestions in the literature, ranging from the idea of models asmathematical objects to the idea of models as
fiction. For the present discussion the question on the ontology of models is of secondary importance since all
the arguments below are compatible with most prominent conceptions. For a review of the relevant literature
see e.g., Gelfert (2017).

2.12 Second, there is a literature on the function of models (see e.g. Morgan & Morrison (1999), Peschard (2011)
or Gelfert (2016) for initial overviews). Here, I will focus on contributions that treat models as representations
of a target system that are geared towards a better understanding of this target. There are other purposes for
models, such as entertainment, measurement or further model-construction, but here I focus on models that
are used to represent and understand certain target systems in the real world.

2.13 Third, whenever we wish to represent and explain a target system there are alternatives to models. As ar-
gued in Weisberg (2007), the distinctive feature of modelling is that the system under investigation is studied
indirectly: we build a model, we analyse the model, and then we relate the model to reality. An alternative
procedure, abstract direct representation, lacks the intermediate step of building a model as a surrogate of the
system under investigation: here one describes and studies the target system directly. Yet, for the purpose of
this paper, we will be confined tomodels as means to represent and study reality.
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Key vocabulary

2.14 I will now start introducing some basic vocabulary used by philosophers of science. This not only helps applied
researchers to specify their meta-theoretical considerations more precisely, it also helps them in accessing the
epistemological literature more easily. For a summary of all concepts see Table 1.

2.15 First, models that serve as representations necessarily have a target, i.e., the system that the model is meant
to represent. The target system does not need to be one particular, or even a real system. Schelling’s segre-
gation model, for example, is usually not meant to represent one particular city, but an abstract city such that
the argument applies in many instances. We call such targets generalized targets (see e.g. Weisberg 2013, p.
114�). Other models are meant to represent targets that do not, or even cannot, exist (so called hypothetical
targets, see e.g., Weisberg 2013, p. 121�). For example, there are models in computational biology that repre-
sent populations of three-sex species, something that has never been found in reality. Yet by showing that a
three-sex population comes with enormous costs, such models provide a potential explanation for why there
are no three-sex populations in reality (Fisher 1930; Weisberg 2007).

2.16 Second, although we do not want to concern ourselves too much with the ontology of models, it makes sense
to distinguish three di�erentkinds of structure that can serve asmodels (Weisberg 2013), sometimes referred
as theO-objects, which provide for the ‘material’ of which themodel is built. The first kind are physical models
such as the San Francisco Baymodel (Army Corps of Engineers 1981) or theMonetary National Income Analogue
Computer MONIAC, a hydraulic model of the economy (Bissell 2007). Such models are not very common in
the social sciences and will not be the subject of our following considerations. Second, mathematical models
are mathematical structures such as functions and state spaces. They are very common in the social sciences.
Third, computational models are sets of procedures.

2.17 One might well argue that computational models are in fact a subset of mathematical models because the
procedures can be described mathematically (Epstein 2006). A similar point is made by philosophers who ar-
gue that computational models do not pose any specific philosophical problems and can be treated with the
same tools as mathematical models (Frigg & Reiss 2008). The main argument of treating them as a separate
category is pragmatic and refers to their di�erent use: the way in which results are derived di�ers (Lehtinen
& Kuorikoski 2007, p. 310) and – because they usually do not allow for analytical proofs – involves a certain
“epistemic opaqueness” with regard to the precise derivation of the results (Humphreys 2009). Also, computa-
tional models are o�en generative (Epstein 2006): in contrast to most mathematical models, they generatively
‘grow’ their results from the initial conditions, thereby automatically suggesting concrete mechanisms on how
themodel results could come about in the target.

2.18 This distinction of modelling categories relates to the concept of representational capacities of structures:
not all structures can be used to represent any systembecause some structures are too rigid and not expressive
enough. Here, philosophers distinguish between (1) dynamical su�iciency and (2) mechanistic adequacy.
These concepts are useful if one wishes to justify the choice of the modelling framework one is using. ‘Dynam-
ical su�iciency’ refers to a model’s capacity to reproduce patterns observed in the target, ‘mechanistic ade-
quacy’ refers to its capacity to represent the mechanistic structure of the target. If we consider the claim that
agent-based models are preferable to DSGE models because (1) it is easier to consider the direct interaction of
heterogeneous economic agents in thesemodels, and, (2) they produce better predictions, then (1) means that
ABMare superior toDSGEmodels in termsof theirmechanistic adequacy, and (2) refers to their alleged superior
dynamical su�iciency.

2.19 Many philosophers of sciencemake the distinction betweenmodels andmodel descriptions (see e.g., Weis-
berg 2013, ch. 3).6 As indicated above, we considermodels to bemathematical structures or sets of procedures.
It is important to distinguish between these models and their descriptions (Giere 1990; Weisberg 2013). The
descriptions can consist of equations, computer code, pseudo-code, graphs, pictures and most importantly,
words. The relation between models and model descriptions is many-to-many: the same model can be de-
scribed in very di�erent ways. Schelling’s segregation model, for instance, can be described via source code,
equations, or words, among others. Yet at the same time, descriptions usually do not describe amodel in every
detail and some aspects are frequently omitted. Thus, the same description o�en specifies di�erent models,
and the less precise the description, themoremodels it can specify. In the followingwe focus onmodels, rather
than on their descriptions.

2.20 Manymodern accounts argue that models are not representations by their very nature, but that they are made
representations by the explicit stipulation of the modeller (Peschard 2011, p. 337). In e�ect, this implies that
“models do not have a single, automatically determinable relationship to the world” (Weisberg 2007, p. 218),
but that model users have to specify how they intend to use a model. These intentions underlying any model
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Term/Concept Description

Target of a model The real or fictional system/object that a model intends to represent. There are
particular, general or hypothetical targets.

O-object The fundamental structure (or ‘material’) of the model, determines the type of the
model.

Type of model Weisberg (2013) suggests there are three types, depending on the kind ofO-object
used to construct themodel: physical models (consisting of matter), mathematical
models (consisting of mathematical objects) and computational models
(consisting of procedures).

Representational capacity The degree of ‘expressiveness’ of the structure of a model, i.e., its ability to
represent a target in line with the fidelity criteria provided by the user.

Fidelity criteria The standards used by the model user to evaluate the ability of a model to
represent its target. Can be divided into at least dynamic and representational
fidelity criteria.

Dynamic fidelity criteria The desired degree of similarity between the model output and the target, o�en
specified as acceptable error bands.

Dynamic su�iciency The degree of structural sophistication a model must have to produce an output
reasonably similar to that of its target, i.e., as similar as articulated in the dynamic
fidelity criteria.

Representational fidelity criteria The standards used by the modeller to evaluate the ability of a model to represent
the causal structure/mechanisms of the target.

Mechanistic adequacy The degree of structural sophistication a model must have to mimic the causal of
its target adequately, i.e., as close as articulated in the representational fidelity
criteria.

Model description The description of the model is di�erent to the model itself. The relationship
betweenmodels and descriptions is many-to-many.

Scope Clarification of what what features of the target the model intends to represent.
Assignment Clarification of which part in the model corresponds to (or ‘denotes’) which part in

the target, and which parts of the model are to be ignored.
Denotation A binary relation between amodel and a target; established via the stipulation of

the model user to use the model as a representation of the target.
Full explanation Description of why a certain fact occurred at a particular time in a particular way.

Requires the description of all the causal factors that have produced the fact.
Partial explanation Description of the role of some explanatory factors underlying the occurrence of a

fact. Involves idealization since not all causal factors were considered.
Potential explanation Description of the factors that could have produced a certain fact. Not confined to

actual targets; occurs frequently when general, hypothetical, or theoretical targets
are concerned.

Exemplified properties The relevant properties a models exemplifies under a given interpretation.
Model key A dictionary explaining to what properties in the denoted target the exemplified

model properties shall correspond.
Imputed properties The properties that the model (truly or falsely) imputes on its denoted target.
Mental model The perception of the researcher of her subject of investigation; also contains her

Weltanschaung or ‘pre-analytic Visions’.

Table 1: A table summarizing the concepts introduced in this section.

are summarized as the construal of researchers and include the assignment (or ‘denotation’) and the intended
scope of the model.

2.21 The assignment – or the ‘denotation’ – of a model specifies which part of the model should be mapped on
which part of the target (Weisberg 2013, p. 39-40). Let us consider a macroeconomic model consisting of a few
representative agents as an example. One of the agents is called ‘representative household’ and it should rep-
resent households in the real world. Another agent is called ‘representative firm’ and it should represent firms.
Thus, in total the assignment of themodel specifies which target system is actuallymeant to be represented by
the model as a whole.

2.22 The intendedscopealso refers to thecoordinationof themodel and its target: it specifieswhichparticularparts
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of the target that should be represented by the model (Weisberg 2013, p. 40). For example, the intended scope
of the original Lotka-Volterra model was the relationship between the abundance of predators and prey. Many
aspectsof the relationshipbetweenpredators andpreyareoutside the intendedscopeof themodel, suchas the
spatial distribution of predator and prey populations. Correspondingly, spatial relationships are not modelled
explicitly, so themodel would imply that the spatial distribution of the populations has no e�ect – amore than
questionable statement. By making the intended scope of the model explicit, i.e., to clarify explicitly that the
model is not meant to consider the role of spatial relationships, one makes sure that models are not used for
– or judged on the basis of – questions and applications they were not designed for (and for which they might
not be well suited).

2.23 As emphasized above, di�erent disciplines usually understand ‘explanation’ di�erently (Lehtinen & Kuorikoski
2007). Yet there are some broad categories of explanation that might be useful to distinguish (Grüne-Yano� &
Weirich 2010, p. 37-43):

• Full explanation: A full explanation, also known as ‘how-actual explanation’ shows how a concrete phe-
nomenon has occurred. This entails to describe in detail the causal history preceding the concrete phe-
nomenon and to identify all the relevant causal mechanisms involved. Outside the natural sciences such
explanations are very rare.

• Partial explanation: In the case of partial explanations the model isolates some factors deemed impor-
tant and idealizes away fromothers. Thus, one explicitly does not includeall relevant factors in themodel
(which is impossible for more complex systems anyway). Although partial explanations are much easier
to reach than full explanations, in most applied and social sciences it is still almost impossible to show
that a certain model provides for a partial explanation since one can never be sure to have included all
the relevant factors.

• Potential explanation: The most common type of explanation in the context of computational models
are potential explanations, also known as how-possible explanations. A potential explanation provides
a model that represents mechanisms that could in principle have brought about the phenomenon of in-
terest. The Schelling model, for example, provides a how-possible explanation for segregation in a city
(Ylikoski & Aydinonat 2014). We do not knowwhether the underlying mechanisms have actually brought
about segregation, but the model shows that they could possibly have brought about segregation.7 In
contrast to full or partial explanations, how-possible explanations are not necessarily directed towards
concrete events that have happened in reality, but might also refer to generalized targets (such as ‘seg-
regation’) or theoretical models themselves (e.g., cellular automata), or they might simply illustrate the
functioning of purely theoretical mechanisms (Weisberg 2013; Ylikoski & Aydinonat 2014).

2.24 Finally, there are several answers to the question “What makes a model an epistemic representation of a tar-
get?”, i.e., what are the features of models in virtue of which they represent their target? Here, I will focus
on a particular account of models that answers this question, and is appealing for several other philosophical
arguments: the so called DEKI account as developed in Nguyen (2016) and as introduced by Frigg & Nguyen
(2016).8

When is amodel a representation of a target? The DEKI account of modelling

2.25 TheDEKI account as introducedby Frigg&Nguyen (2016) startswith thenotionof amodelM anda targetT and
then formulates demands this modelmust satisfy to count as a representation of T (the following elaborations
will be summarized in Figure 1). A model within the DEKI framework is a certain structure or object, commonly
referred to as an O-object. As argued above, we will not delve deeper into the ontological status of models.
For us, the O-object corresponds to the type of model and is thus a set of mathematical objects (for the case
of mathematical model) or a set of procedures (for the case of computational models). To count as a model
however, the O-object must come with a certain interpretation that is to be supplied by the model user. We
have already specified two important aspects of the interpretation above: the assignment and the intended
scope.

2.26 Such an interpretation makes the initialO-object to count as a Z-representation. A Z-representation is a one-
place predicate and Z is a place-holder for the kind of the target of the model. For example, a picture p of
a woman is a woman-representation: WOMREP (p). This does not necessarily mean that it represents one
particular woman, it could well be a fictional woman. This is important since some models represent general
(such as cities in general instead of a particular city) or hypothetical (such as a three-sex population) targets.
As an example, consider a computational agent-based model that is meant to represent a national economy.
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If this interpretation is explicit we could stateMACROECON(c), where c stands for a set of algorithms and
MACROECON(c) reads as: the set of algorithms c is interpreted as a macroeconomy-representation. Why
do I not say ‘representation of a macroeconomy?’ Because this could wrongly be interpreted in the sense that
c is meant to represent one particular macroeconomy. We want to be less restrictive in our claims and only say
that c is interpreted (and thus stipulated) as a macroeconomy-representation.

2.27 Now that we have clarified the notion of a modelM as an O−object accompanied by an interpretation that
turns it into aZ-representation, we can specify the four demands that the model must meet to count as a rep-
resentation of its target T :

1. The modelM must denote its target T .

2. The modelM must be aZ-representation exemplifying properties P1, ..., Pn.

3. ThemodelM must comewith a keyK that indicates how the propertiesP1, ..., Pn can be translated into
a set of featuresQ1, ..., Qm.

4. The modeM must impute some features on its target T .

2.28 The first demand is straightforward: amodel usermustmake clear that he uses themodel to represent a target,
and she must specify the target the model is meant to represent. The crucial point here is that the model user
must make clear that he uses the model as a representation of a target. This is important since a set of algo-
rithms constituting the Schelling segregation model does not by its nature represent segregated cities. Only if
the model user makes it explicit that she uses this set of algorithms to represent a city, the set of algorithms
becomes a model of a city.

2.29 The second demand requires that the Z-representation must exemplify certain properties P1, ..., Pn. Exempli-
fication refers to the instantiation of a certain property, P , by directly referring to this property. Instantiation
must not be interpreted literally, which is why the accompanying interpretation of a model is so important: no
agent in an agent-basedmacroeconomicmodel literally has somewealth. Rather, we interpret themodel such
that the agents in themodel instantiate properties such as wealthiness. For a smooth and transparent use of a
model, it is important that these interpretations are carried out as explicitly and clearly as possible.

2.30 The third step is to link the properties of the model, P , to the relevant properties of the target system,Q. How
to translate the properties exemplified by themodel,P , to the properties of the target,Q, must be specified by
a key (or a ‘dictionary’). The simplest example for a key is the legend of a map: it explains how certain points
on the map should be interpreted in the area represented by the map. For instance, a big red dot represents a
capital, and 1 cm of a black line represents 1000 km of a small road.

2.31 Finally, at least one propertyQmust be imputed to the target system. Which properties are imputed depends
on the intended scope of themodel. Such imputations can be false: a model canmake a prediction about how
the target behaves, but it behaves di�erently. A model that makes false predictions about its target does not
stop representing this target, and imputing properties on the target - it justmisrepresents the target because it
imputes the properties wrongly on the target.

2.32 Let us summarizewhat has been said about theDEKI account so far in Figure 1: we startwith anO-object, which
can be a set of algorithms. We supply an interpretation according to which theO-object is aZ-representation,
for example an economy-representation. Wemake clear that the model denotes the target economy. Also, the
model I-exemplifies certain properties P1, ...Pn, e.g. a certain wealth distribution of the so�ware agents (this
means it exemplifies them under the interpretation I). We supply a key thatmaps the properties of themodels
to the properties of the target economy Q1, ..., Qm. We then impute the resulting properties Q1, ..., Qm on
the target economy. This can lead to true or false statements, depending on whether the imputed properties
correspond in their values to the properties of the target.

2.33 A big merit of the DEKI account of Frigg & Nguyen (2016) is that it helps us understand how both very idealized
and general models, such as the Schelling model, and very complex and applied models, such as the disease
model of Eubank et al. (2004), serve as representations.

Adding details: Dynamics, mental and conceptual models

2.34 We now want to add some more specificity to the framework sketched in Figure 1. There are at least three
aspects of the model building process that are still missing from Figure 1: the time dimension of models and
their targets, thementalmodels of the researchers, and the conceptualmodel, which is to be distinguished from
the final computational model.
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Computational model M1

[O-object] + [O-Z-interpretation] → [Z-representation]
A set of procedures implemented in source code, and an interpretation the model in terms of the target.

I-exemplification

{P 0
i } : relevant states of the model.

{Q0
i } : Interpretation of the model states.

The key k

States of the target system

The target system T

Imputation

Figure 1: A visualization of the basic components of the DEKI framework. It explicates how the computational
modelM1 represents its target T .

2.35 First, many computational models are dynamic models and they are related to their target over time. The cur-
rent visualization of the DEKI framework does not consider this. To avoid misunderstandings I will adjust the
figure so that the model exemplifies potentially di�erent properties at di�erent points of time.

2.36 Second, the current visualization does not consider themental models of the researchers. Withmental models
I refer to the representation of reality we construct in our brains. Since reality is too complex to be perceived
in its entirety, we need to reduce its complexity by abstracting from details, thus building a coarse-grained rep-
resentations of reality that our mind can process. Cognitive scientists refer to these representations as ‘mental
models’ (Johnson-Laird 2005). The basic idea has been nicely summarized already by Forrester (1971):

“Every person in his private life and in his business life instinctively uses models for decision mak-
ing. The mental image of the world around you which you carry in your head is a model. One does
not have a city or a government or a country in his head. He has only selected concepts, and rela-
tionships between them, and uses those to represent the real system” (Forrester 1971, p. 112).

2.37 Although mental models are distinct from the models we build within the scientific discourse, they do play a
role in the construction of scientific models. Considering them in our framework helps us to explicitly accom-
modate the Weltanschauungen of the researchers which, at least to some extent, always impact our scientific
practice (see already Weber 1922): “no model could claim absolute objectivity as each is also subject to the
modeller’s subjectivity, view and understanding of theworld, and proneness tomistakes” (Augusiak et al. 2014,
p. 119). Consideringmental models explicitly in our framework highlights this important aspect.9 Note that the
relationshipbetweenmental andcomputationalmodels is not a relationshipof representation. Amentalmodel
does not represent a computational model or vice versa. Rather, a mental model always implicitly pre-dates a
computational model since it allows us to perceive and cognitively process information about the target.

2.38 The final – andmost important – addition to Figure 1 that is necessary in the context of computationalmodels is
that of a conceptualmodel.10 The conceptualmodel is the intermediatemodel that is created before one imple-
ments a computational version of it (Augusiak et al. 2014). It summarizes the aspects of the target considered to
be relevant and important for the final computational model. Thereby, it also is a representation of the target,
although a much cruder one than the computational model. In practice, the people building the conceptual
model are not necessarily the same that build the computationalmodel: a research groupmight consist of the-
orists and programmers, with the former designing the conceptual model, which is then implemented by the
programmers. For our purposes, it is useful to put the conceptual model into our visualization since it will later
help us to accommodate model verification and validation in this figure. Again, there is no relationship of rep-
resentation between the conceptual and the computational model. Rather, both of them represent the target,
and the computational model is a computational implementation of the conceptual model. Alternatively, we
can think of the conceptual model as a coarse-grained description of the computational model.
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Mental Model of the researchers
The Weltanschaung/pre-analytic vision of the researcher.

Conceptual model M0

A computational model described via equations, words and/or graphs

Implicitly impacts upon

Computational model M1

[O-object] + [O-Z-interpretation] → [Z-representation]
A set of procedures implemented in source code, and an interpretation the model in terms of the target.

Computational implementation

I-exemplification

{P 0
i } : relevant states at t = 0.

{Q0
i } : Interpretation of the states.

The key k

The target at t = 0 The target at t = 1‘Real’ mechanisms

{P 1
i } : relevant states at t = 1.

Actual model
mechanisms

{Q1
i } : Interpretation of the states.

Interpretation of
model mechanisms

I-exemplification

The key k

The target system T

Inference of
mechanismsImputation

Imputation/
Inference of states

Figure 2: A complete visualization of theDEKI framework for computationalmodels. Note that there is no repre-
sentational relationship between the computational and the conceptual and/or mental model. Rather, mental
and conceptual models predate computational models. The latter are an explication and implementation of
the former. This figure omits the representational relationship between the conceptual model and the target
system: the former should certainly represent the latter since it provides the basis for the computationalmodel.
Mental models represent the target as well, but o�en implicitly, since they are seldomly expressed explicitly.

Taking stock

2.39 Integrating all the previous considerations into Figure 1 results in themore complex but complete Figure 2. The
concepts introduced so far are summarized in Table 1.

2.40 Formostpractical applications, Figure2 is over-loadedandcontains toomuchdetails. This itwhywewill reduce
it for the furtherdiscussionof verificationandvalidation (seeFigure3a). Also, for applied researchersdescribing
theirmodel using all the concepts introduced in Table 1would probably be toomuchof an issue. Therefore, one
might use a form as the one in Table 3b, which could be provided with the model description as an Appendix,
similar to the ODD protocol.

AligningModelVerificationandValidationWithin theEpistemologicalFrame-
work

3.1 The epistemological framework introduced above allows us to be precise about the role of verification and
validation in themodelling process. While some authors have suggested dismissing the terms because of their
ambiguous and careless use in the literature (see e.g. Augusiak et al. 2014; Schulze et al. 2017), I believe that
precisely defined, they can highlight two important aspects of model evaluation, which are both important,
but conceptually distinct. For the sake of transparency, I relate my terminology to that of Augusiak et al. (2014)
in the appendix of this paper. There, the value-added of the terms ‘verification’ and ‘validation’, which will now
be clarified, is explained in more detail.11

3.2 With verification, I refer to theactof testingwhether themodeldoeswhat it is supposed tobedoing, i.e.,whether
it adequately implements theconceptualmodel andwhether it is freeofbugsorother implicationsnot intended
by themodeller. The verification of amodel takes place a�er themodel has been built (and possibly during the
model building process) and should precede any application and/or validation of the model.
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Conceptual model M0

A computational model described via equations, words and/or graphs

Computational model M1

[O-object] + [O-Z-interpretation] → [Z-representation]
A set of procedures implemented in source code, and an interpretation the model in terms of the target.

Computational implementation

I-exemplification

{P 0
i } : relevant states at t = 0.

{Q0
i } : Interpretation of the states.

The key k
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(a) The DEKI framework in a reduced andmore concise visualization.

Concept Description

Target of the model The real or fictional system/object that the model
intends to represent.

Scope Clarification of what what features of the target the
model intends to represent.

Assignment Clarification of which part in the model corresponds to
which part in the target, and which parts of the model
are to be ignored.

Kind of explanation attempted Which kind of explanation does the model users
attempt here? A full explanation, a partial explanation,
or a potential explanation?

Exemplified properties of the model and the key Themain relevant properties of interest and how they
should correspond to properties of the target.

Imputed properties The properties that themodel (truly or falsely) imputes
on its denoted target.

Attempted dynamic su�iciency The degree of structural sophistication a model must
have to produce an output reasonably similar to that
of its target.

Attemptedmechanistic adequacy The degree of structural sophistication a model must
have to mimic the causal of its target adequately.

(b) A summary of the epistemologicla attributes of a model, which should be clarified by the modellers. A table like
this could be presented alongside a model in an appendix.

Figure 3: The DEKI framework in a more concise visual presentation and a form that helps researchers to be
transparent with regard to how amodel is intended to be used.

3.3 Verification usually involves two steps: (1) study what the model is doing, and (2) compare this to what the
model is supposed be doing. The first step is o�en referred to as model exploration. The second step can be
carried out in a twofold sense, first, one scrutinizes whether the model does what the programmer wants the
model to do. Such scrutiny is mostly concerned with identifying bugs and programming errors. Second, one
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investigates whether themodel adequately implements the underlying conceptualmodel. This is usuallymore
demanding. In case thepeopleprogramming themodel di�er fromthepeople settingup the conceptualmodel,
this step necessarily involves a group e�ort where the programmers explain the functioning of the model and
the theorists (orother stakeholders involved in themodeldesign) assess theadequacyof the implementation. It
isworth noting again that both activities are only concernedwith the computational and the conceptualmodel.
The target system has not yet a role to play.

3.4 Consequently, sensitivity analysiswould also be considered some formofmodel verification since it exclusively
aims at understanding the behaviour of themodel. For more details see e.g. Beck (2002), or Rand & Rust (2011)
for a nice summary and ten Broeke et al. (2016) for a review of di�erent tools for sensitivity analysis.12

3.5 The best method for model exploration is mathematical proof that certain inputs produce a particular output.
For computationalmodels, proofs are usually not a viable option and numerical experiments using a computer
are required. The resulting “epistemic opaqueness” (Humphreys 2009) is one reason why we have followed
Weisberg (2013) in distinguishing betweenmathematical and computationalmodels, although the distinction
collapses on an abstract level (Epstein 2006).

3.6 Model validationmeans to test whether themodel is actually a reasonable representation of the target (Rand &
Rust 2011, p. 187). Because ‘reasonable’ can have di�erentmeanings, there are di�erent forms ofmodel valida-
tion to be discussed below. The correct choice depends on the purpose of the model, the desired mechanistic
adequacy and dynamic su�iciency, and the imputed properties of the model. However, all forms of validation
are distinguished from verification by the fact that they are concernedwith the relationship between themodel
and the target of the model.

3.7 We will now align model verification and validation within the framework developed above. As indicated in
Figure 4a, model verification is concerned with the internal consistency of the computational model and its
fit to the underlying conceptual model. Examples of methods that are used to verify models are unit testing
(i.e. explicit tests for important aspects of the code, e.g., via assertions), code walk-throughs (i.e., an explicit
description of what every line of code does), degeneracy testing (i.e. testing whether the code produces the
desired output for extreme values of input), or the implementation tools ensuring the traceability of model
outcomes (i.e., a clarification of how each step in themodel relates to previous steps and design decisions; see
e.g., Scherer et al. (2015) for a description and an illustration for the case of large-scale policy models).

3.8 Considering thesemethodsandkeeping inmind thato�en“confirming that themodelwascorrectlyprogrammed
was substantially more work than programming the model in the first place” (Axelrod 1997), we might want to
keep thee�ort needed for verificationat aminimumand thus ask thequestion: “What canwedo tomakemodel
verification easy?” Firstly, we should build simplemodels. The simpler the model, the easier verification (ten
Broeke et al. 2016). This is obvious since the simpler the model, the fewer variables and mechanisms one has
to check. In the best case, the model is in a form that makes it even amendable for analytical proofs.

3.9 Secondly, we should build transparentmodels. There are a number of tools developed in the simulation com-
munity to increase model transparency: the systematic DOE (Lorscheid et al. 2011) provides guidance for the
analysis of model behaviour and exploration of the role of key parameters. Troitzsch (2017) describes a way to
reconstruct simulation models along the line of the ‘non-statement view of models’ and explains how such a
reformulation can increase the transparency of the simulations, and the functioning of the models. For more
complexmodels, particularly those geared towards policy evaluation, Scherer et al. (2015) outline a framework
focusing on the implementation of traces, which are designed in a way such that the the output of the model
can be linked to the initial input of stakeholders, the background knowledge and specific model design deci-
sions. This framework is more complex and currently implemented for one particular class of models, yet has
the potential to help not only modellers, but all stakeholders of a model to better understand what the model
does, why it does it, and how this can be justified given the background information available. For similar ex-
positions that seek to make verification more open and inclusive, see also Wimmer et al. (2012) or Lotzmann &
Wimmer (2013).

3.10 Of course, several of the frameworks surveyed in the introduction can also help to make models more trans-
parent. In all, the more transparent the model, the easier verification: a model that is written in simplified
equations, well-documented computer code or a clear language is - ceteris paribus - easier to be verified than
other models.

3.11 We now move to model validation. There are several forms of validation and they partly echo the di�erent
perceptions researchers have in mind when they talk about ‘understanding reality’ (see above). At least the
following four forms of model validation can be distinguished (Tesfatsion 2017):

1. Input validation
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(a) Model verification is concerned with the internal
consistency of the model.

Conceptual model M0

A computational model described via equations, words and/or graphs

Computational model M1

[O-object] + [O-Z-interpretation] → [Z-representation]
A set of procedures implemented in source code, and an interpretation the model in terms of the target.

Computational implementation

I-exemplification

{P 0
i } : relevant states at t = 0.

{Q0
i } : Interpretation of the states.

The key k

The target at t = 0 The target at t = 1‘Real’ mechanisms

{P 1
i } : relevant states at t = 1.

Actual model
mechanisms

{Q1
i } : Interpretation of the states.

Interpretation of
model mechanisms

I-exemplification

The key k

The target system T

Inference of
mechanismsImputation

Imputation/
Inference of states

(b) Input validation concerns the representation of the
target in the model.
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(c) Process validation asseses the representation of
real-world mechanisms within the model.
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(d) Output validation addresses the fit of the model or
its ability predict future states of the target.

Figure 4: The place ofmodel verification and the di�erent forms of validationwithin our epistemological frame-
work.

2. Process validation

3. Descriptive output validation

4. Predictive output validation

3.12 In contrast to verification, these four activities assess the relation of themodel to reality.13 I will discuss the four
formsonebyoneand relate themtoeachother in thenext sub-section. In theAppendix, I relate this terminology
to that of Augusiak et al. (2014).

3.13 Input validation - as illustrated in Figure 4b - assesses the ability of the model at t = 0 to represent certain
aspects of the system under investigation, i.e., to impute many properties correctly on the target. In an ABM
of a financial market, for example, input validation concerns the question of whether the number of traders is
similar in the real market and the ABM, whether their initial wealth distribution is the same, or whether their
decisionmaking procedures match. Some inputs to amodel are easier to validate than others: while the initial
wealth distribution of the trader just mentioned might be inferred from empirical data, their decision making
algorithms might never been identified precisely, yet there are without doubt more and less accurate descrip-
tions of their decision making.

3.14 Generally, it is always easier to validate aspects of amodel that are a direct representation of real-world objects
(Schulze et al. 2017). For example, human beings are boundedly rational and use heuristics and they do not
directly maximize something such as utility (Gigerenzer 2015). So, representing human beings not as locally
constructive and boundedly rational agents, but as utility-maximizers might be a valid and useful modelling
approach, but it makes it muchmore di�icult to validate the model in terms of input-validation (Schlüter et al.
2017). Furthermore, input validation is facilitated if aspectsof reality are representedexplicitly. If inourmodelof
the financialmarket, traders explicitly tradedirectlywith eachother, the interactionnetwork specifying their in-
teraction structure can be validated against real-world data. This requires themodel to be su�iciently complex.
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If we use indirect representations to keep the model simple, e.g., an Walrasian auctioneer14, input validation
becomes more di�icult (Balbi & Giupponi 2009).

3.15 In all, input validation is facilitated by su�iciently complexmodels, which avoid as-if representations and good
data.

3.16 Process validation assesses the credibility of the mechanisms in the model, i.e., the mechanistic adequacy of
a model (see Figure 4c). Process validation is exacerbated by the fact that in reality, “most mechanisms are
concealed, so that they have got to be conjectured” (Bunge 2004, p. 186). Becausemechanisms are not directly
observable, no model will ever be fully process-validated. But there are many reasonable ways to assess the
question of whether the implemented mechanism A is more or less likely to operate in the real world than
mechanismB. These ways include expert and stakeholder validation (also known as ‘participatory validation’
Voinov & Bousquet 2010; Smajgl & Bohensky 2013), process tracing (Steel 2008, ch. 9), face validation (Klügl
2008) and a clever use of experiments (e.g. Bravo et al. 2015).15

3.17 It is indeed one of the main epistemological merits of ABM that they are generative, i.e. necessarily suggest
mechanisms that can - in principle - be tested concerning their plausibility with regard to the target system
(Epstein 2007). This is facilitated by the rise of object-oriented programming, since the distinction between
instances andmethods in themodel facilitates the interpretative relation to real world objects andmechanisms.

3.18 What kindofmodels are easier accessible for process validation? First, themoredirect the representation of the
real objects and the mechanisms, the easier the assessment of the mechanism (Macal 2016). Object-oriented
models tend to be easier to process-validate because instances in the model o�en correspond to objects in
reality, and methods correspond (at least partly) to mechanisms. Second, a modular design also makes it –
ceteris paribus – easier to process-validate a model.

3.19 Next, we turn our attention to descriptive output validation. Here, one asks to what extent the output of the
model can replicate existing data, i.e., about the dynamic su�iciency of themodel (see Figure 4d). Or, referring
to Figure 3a, we test whether the imputed states in t1 are correct. For example, if we have built a model for the
UK economy, we may compare the time series for GDP from the model with real-world data on the GDP of the
UK.

3.20 Although descriptive output validation is maybe the most commonly used form of validation (at least in eco-
nomics), there are some problems with this kind of validation that one has to keep in mind:

1. Empirical risk minimization: in most cases, one is interested in minimizing the prediction risk of models.
Because theprediction riskof amodel is unobservable, oneo�enuses theempirical risk as anapproxima-
tion or estimator for prediction risk. This is amistake because the empirical risk isminimized by choosing
a model with many free parameters, while prediction risk increases with toomany free parameters.

2. Overfitting: this is a direct corollary from the first point. If a model has so many free parameters that it
can be calibrated to existing data very well, it is likely to perform poorly for new data.

3. Equifinality: usually,wecan thinkofmanymechanisms that canbringabout thesameresult; themechanism-
to-function mapping is many-to-one (Gräbner & Kapeller 2015, p. 435). Therefore, if we are interested in
mechanism-based explanation, the calibration of a model to existing time series alone is insu�icient be-
cause it tells us relatively little about what mechanisms were actually at work.

3.21 A good illustration of the limits of descriptive output validation is given by Janssen (2009) who discusses the
famous Anasazi model (Axtell et al. 2002) and shows howmany important questions still remain open, despite
themodel having a very nice fit with historical data (see also Grüne-Yano� 2013). Without additional validation
forms being applied (in this case particularly further process validation), the model can ‘explain’ the dynamics
of the Anasazi only in a limited way.

3.22 What makes a model easy to validate in terms of descriptive output validation? Ceteris paribus, the more com-
plex themodel and themore free parameter it has, themore successful it will be in terms of descriptive output
validation. Grimm (2005) describes the practice of ‘pattern orientedmodelling’ as a less naive form of descrip-
tive output validation. Here, one tests how several model specifications can replicate an observed pattern,
eliminates the unsuccessful one and proceeds with more detailed patterns until all but a very few candidate
models remain.

3.23 Finally, predictive output validation basically asks how well the model can be trained to predict future states
of the system. Its idea is also illustrated in Figure 4d, but in contrast to descriptive output validation, the real
world data is separated into a training set and a test set. This way, one avoids the problem of over-fitting and
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empirical risk minimization. This form of model validation is extremely illuminating, but not always applicable
because of data requirements.

3.24 Furthermore, any form of output validation should be complemented with process validation since being able
predict without knowing why one is able to predict is o�en problematic. To see this, consider the following
example:16 Babylonian astronomers were able to predict solar eclipses and planetary movements with aston-
ishing accuracymore than three thousand years ago. Theybased thesepredictions on extensive and careful ob-
servations and the application of geometry, without having any deeper understanding of the causes for these
movements and the physical relationships between planets, moons, and the sun. Their way of predicting solar
eclipses nevertheless is successful since the periodicity of the movement of celestial bodies does not change.
The periods between two solar eclipses are the same today, as they have been 3000 years ago.

3.25 The preceding example shows that making statements about the ‘validity’ of a model requires meticulous for-
mulation. Fortunately, the kind of validation techniques just reviewed correspond closely to the di�erent types
ofmodel validity as discussed in the philosophical literature (e.g. Grüne-Yano� &Weirich 2010, p. 37-41). Struc-
tural validity demands that a model both predicts the behaviour of its target and adequately represents its
mechanistic structure, i.e., not only are future states predicted correctly, it is also explained how andwhy these
states come about. To show that a model is structurally valid one has to employ all four validation techniques
presented. Predictive validity requires amodel to predict future behaviour of its target. This requires predictive
output validation. And replicative validity requires a model to replicate the observed behaviour of the target.
Consequently, it requires us to employ descriptive output validation.

3.26 Stating that amodel has been validated successfullymust also take into account the fidelity criteria as discussed
in the previous section (see also Table 1). If amodel is intendedonly as a very rough illustration of some isolated
mechanisms, stating that it is not output validated is not a sensible statement. Yet if the samemodel is claimed
to have predictive power, output validation becomes essential. For model developers and users, this means
that they should be very explicit with regard to the fidelity criteria they employed.

Trade o�s in practical modelling design

3.27 What is the relationbetween verification and the various types of validation? Is there amodel design that scores
optimal in all four activities? Unfortunately, for the singlemodel this is usually not the case. There are trade-o�s
in terms of modelling design that make it practically impossible to design the ‘perfect model’.

3.28 Before turning to practical issues, wewill have a short viewon the philosophical literature on trade-o�s inmod-
elling. This literature dates back to Levins (1966) who discusses severalmodelling desiderata in the context of
population modelling. He argued that there are trade-o�s with regard to generality, realism, and precision of
a model. More recently, Matthewson & Weisberg (2008) reconsidered Levin’s arguments and provide a clearer
taxonomy of trade-o�s in the context of model design.

3.29 First, theydistinguishbetween ‘simple’ and ‘complex’ trade-o�s.17 The first correspond topragmatic constraints:
increasing the quality of the model with respect to one desideratummakes it more di�icult to realize another
desideratum. We will be concerned with the simple trade-o�s below when we discuss whether increasing the
validity of a model in one dimension makes it more di�icult to keep or increase the validity in another dimen-
sion.

3.30 ‘Complex trade-o�s’ relate tomore fundamental relationships betweenmodel desiderata that cannot be over-
come by the investment of more time, thought or computational power. In the more formal part of the paper
Matthewson&Weisberg (2008) prove the existence of fundamental trade-o�s between the precision of amodel
description and the generality of themodels picked up by the description. They also argue that the less homo-
geneous and more complex the target, the more profound the trade-o�s, and the smaller the intended scope
of a model, the less severe the trade-o�s.

3.31 The scope and relevance of these results are still debated in philosophical literature, as are their practical im-
plications. The interested reader might refer to the more in-depth contributions of, for example, Odenbaugh
(2003), Matthewson &Weisberg (2008) or Goldsby (2013). In the following, we will treat a successful model val-
idation and verification as model desiderata and ask whether there are (simple or complex) trade-o�s among
them. Thus, we will ask for example, whether models that tend to be easier to verify tend to be more di�icult
to process validate, and so on.

3.32 As illustrated in Figure 5, I believe there are a number of such trade-o�s in terms of model design. Making a
model easily amendable to one kind of verification/validation makes it more cumbersome to validate/verify
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Figure 5: The relationship between verification and the di�erent kinds of validation.

with another kind.

3.33 We first consider the relationship between input validation and verification. Here, researchers o�en face a prac-
tical trade-o� because a successful input validation is facilitated by a direct and detailed representation of the
system under investigation, but verification is easier if themodel is more parsimonious. Also, the ease of verifi-
cation due to model simplicity o�en comes at the expense of generality, since it is not clear to what extent the
model applies to situations for which the (strict) assumptions are not applicable (Cartwright 2007).

3.34 When turning to the relationship between verification and descriptive output validation, we again observe ten-
sion in terms of model design. Descriptive output validation produces the best results for models with many
degrees of freedom, while verification is easiest for simple and parsimonious models. As in the case of verifi-
cation and input validation, there is a trade-o� between a more complex and better validated and a simpler,
better verified model.

3.35 The next relationship to be considered is that between descriptive and predictive output validation. It is very
clear that there is a trade-o� involved because the relationship between the two kinds of validationmimics the
well-known trade-o� between risk-minimization and empirical risk-minimization in inferential statistics. The
more degrees of freedomwe give to ourmodel, the easier it is to calibrate it to the datawe have, but the greater
the risk for over-fitting.

3.36 Finally, we turn to the relationship between predictive output validation andprocess validation, which I believe
tobecomplementary. Thereareacoupleof reasons for this: Firstly, oneargument in favourof representing real-
worldmechanisms explicitly in formal models is that suchmodels are easier to generalize thanmodels that do
not do so, both in terms of time and space. Since training a model could be considered a generalization from
small data sets, models that explain in terms of mechanism should at least not perform worse when it comes
to prediction. Secondly, training a model works through letting the algorithms explore patterns in the data,
and these patterns are likely to be caused by real-world mechanisms. Therefore, a model that performs well in
resembling mechanisms of the target should at least not perform worse in predicting the system’s future be-
haviour as a model that does not capture these mechanism well. Finally, real-world mechanisms are usually
unobservable. And while the techniques of process validation mentioned above are certainly e�ective, pro-
cess validation should always be complemented by other validation techniques. Predictive output validation,
if feasible, certainly seems to be an excellent choice from a practical perspective.

3.37 It is important to note that the trade-o�s presented here are –except the trade-o� between descriptive and
predictive output validation – not formally proven. They are based on personal experience and logical consid-
eration. Studying these trade-o�smore formally and to clarify whether they count as simple of complex trade-
o�s in the sense of Matthewson &Weisberg (2008) is a fruitful area for future research to which both practising
modellers and philosophers have something to contribute.

Validation and the purpose of amodel

3.38 Considering these intricate relationships and trade-o�s between various formsof verification and validationwe
must ask whether there can be a reasonable prioritization among them. If this were true, one should design a
model such that it maximizes its performance in terms of this form of verification and validation and then turn
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to theother formsonebyone, dependingon their respective importance. Unfortunately, suchageneral ranking
is not feasible. Rather, what kind of verification and validation is needed depends on the purpose of a model
(Mäki 2010), and the degree of validation required depends on the fidelity criteria as introduced in Section 2.

3.39 There aremany purposes formodelling one could think of (see e.g. Epstein 2008). Formodels that are primarily
geared towards the provision of adequate predictions, predictive output validation is obviously very important,
yet process and input validation is only indirectly a concern. On the other hand, if a model should explain why
a certain phenomenon in the past has occurred, descriptive output validation and process validation are of
particular importance. In both cases, the adequate validation techniques as well as the practical design of the
models di�er.18

3.40 The key message here is that depending on the purpose of the model, decisions between competing designs
must bemade and the decision in favour of one designmight entail better performance in one kind of verifica-
tion/validation at the cost of a comparatively worse performance in another kind of verification/validation.

3.41 There is no general rule for a concrete prioritization of the respective kinds of verification and/or validation. The
intensity and kind of validation depends on the fidelity criteria and the purpose of the modellers. Yet the com-
parison among di�erent models and their interpretation can nevertheless be facilitated if the design choices
are made as transparent as possible and are explicitly justified and related to the purpose and the construal
of the model. Here, my proposal aligns with existing frameworks for model presentation according to which
the model purpose should be made explicit (e.g., Grimm et al. 2014). If researchers were very specific with re-
gard to the fidelity criteria they had in mind when building a model, much mis- and abuse of models could be
prevented.

3.42 While the claim that validation should follow the purpose of themodel is widely accepted, there are important
exceptions. As argued by Lehtinen & Kuorikoski (2007), di�erent disciplines have di�erent conceptions of what
counts as ‘understanding’. Based on these conceptions, they may not fully subscribe to the claim that ‘valida-
tion should follow the purpose of the model’. Economists, for example, prefer parsimonious models that can
be solved analytically within themaximization-cum-equilibriumapproach. This constrains the set of admissible
methods and validation techniques, and results in a bias towards particular forms of verification and validation
in economics (in particular towards descriptive output validation).19 Using explicit epistemological frameworks
such as the one suggested here,may facilitate identification andovercome such biases via interdisciplinary dis-
cussion and reflection.

Some Immediate Practical Implications

4.1 Two immediate practical implications for applied modelling design follow from what has been claimed in the
previous sections. Firstly, there are somedesign principles that are at least never harmful, but frequently useful
when assessing the relation between a model and reality. These are principles such as a modular modelling
design and the strive for transparency and clarity in the exposition of themodel. Here, the existing frameworks
with regard to the functioning of models, and the epistemological framework as introduced above could be
helpful. Secondly, while it may not be possible to design a model that performs very well in terms of all kinds
of verification and validation, one can sometimes combine the respective strengths and weaknesses of several
models via the practice of sequential modelling.

4.2 Sequential modelling refers to the practice of starting with a very simple and stylized model and then building
more and more complex models that are all verified by aligning them (in the sense of Axtell et al. 1996) with
the previous, simpler model. In the best case, the first and thus simplest, model is amendable to analytical
proofs. Usually, such simple models are purely equation-based. One can then proceed by building an agent-
based model that can be aligned with this simplest model. This way, one can “transfer” some of the rigour of
the simpler model to the more complex model: by showing that the more complex model behaves –for the
relevant parameterization – as a simpler and well-verified model increases our trust in the functioning of this
model. On the other hand, because of its increased complexity it can be validatedmore rigorously (see Gräbner
et al. (2017) for an example and a thorough discussion of the concept). If successful, this practice allows one to
appreciate the advantages of simple models in terms of verification also for the more complex models, which
have their strengths in model validation.

4.3 An example is provided by Henderson & Isaac (2017): The authors start with a general-equilibrium model of
agrarian production that allows for an analytical solution. Themodel however, poorly represents the structure
of modern agrarian production. To preserve the rigour of the original model, Henderson and Isaac develop
an agent-based model that replicates the functioning of the original model. Thanks to its modular structure,
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the agent-basedmodel can thenbe extended to include someessential features ofmodern agrarianproduction
that are beyond the scope of the originalmodel. Finally, the authors have amodel that is a good representation
of the reality the authors are interested in, but that is also verified because of its sequential construction.

4.4 Unfortunately, the practice of sequential modelling is not always applicable. The system under investigation
must be such that a very stylized model can be at least remotely related to this system. This may not always
be the case. Furthermore, when relating the increasingly complexmodels to each other, one faces the problem
of when one model simulates another. This has been discussed more extensively in Axtell et al. (1996) under
the topic of ‘Aligning SimulationModels‘ and subsequent work. Despite its potential di�iculties however, there
are already a couple of examples where the practice of sequential modelling has been very successful, see e.g.,
Axtell et al. (1996), Bednar & Page (2007), Gintis (2007), or Henderson & Isaac (2017).

Conclusion and Outlook

5.1 A number of central concepts and vocabulary from the philosophy of science have been introduced in order to
equip applied modellers with the means to communicate more precisely the epistemological foundations of
their models. Furthermore, the concepts and epistemological framework can be used to illustrate the various
ways models can help us to understand reality. I have argued that using such frameworks is useful since they
help to exemplify the di�erent epistemological foundations of models. This way, we can more transparently
justify the modelling framework we have chosen and compare the results of di�erent models more e�ectively.

5.2 The resulting framework was also used to distinguish and illustrate various forms of model validation and ver-
ification. The distinction between validation and verification is meaningful since not all models are directly
related to reality – yet they can nevertheless be useful in a sequentialmodel building process and should there-
forebeverified. Wehavealso seen that therearedi�erentways to relateamodel to reality (i.e., to validate it) and
that there seem to be trade-o�s with respect tomodel design: some designs facilitate verification/validation in
one sense, butmake itmoredi�icult in another. Which kindof verification andvalidation should receivepriority
depends on the model purpose and its construal, yet there are some design principles that are always useful
and never harmful (e.g., a modular design).

5.3 Basedon theseconsiderations it follows thatdi�erentmodellingapproacheshavedi�erent comparativeadvan-
tages and disadvantages with respect to verification and validation. Agent-based models, for example, seem
to have a comparative advantage in terms of input validation and process validation. A comparative disadvan-
tage of agent-basedmodels is model verification: while a great number of excellent verificationmethods exist,
ABMs usually do not allow for the most successful verification technique. A mathematical proof, which is why
they are characterized by a certain “epistemic opaqueness” (Humphreys 2009). Based on this observation, the
practice of sequentialmodelling has been suggested. Similar to the idea of sequentialmodelling is that of using
a plurality of models (Aydinonat 2017, e.g.).

5.4 Finally, I want to build on our epistemological elaborations to answer two questions mentioned in the begin-
ning: (1) “Is verification and validation necessary?” and (2) “Is verification and validation possible?”. With regard
to the firstquestion, I cannot thinkof anycaseswheremodel verificationshouldnotbegivenhighpriority. There
aremany reasons forwhywe should knowhowourmodelswork, which iswhy everymodel in thisworld should
be properly verified.

5.5 Validation becomes necessary as soon as we want to use a model to make informed statements about the real
world (e.g., Schulze et al. 2017). This is not always the case: there are models that are not meant to be repre-
sentations, or to be used for statements about real or artificial systems. For such models, validation makes no
sense.

5.6 Othermodels are hard to validated because they do notmake direct statements on reality (Ylikoski & Aydinonat
2014). This is the case for ’proof-of-concept‘ models that illustrate an idea, or a causal mechanism scheme
that may later serve as a building block for more complex models (see e.g. Squazzoni & Gandelli 2013; Ylikoski
& Aydinonat 2014). This however, should be clarified by the modellers in specifying carefully the scope and
assignment of the model, as well as its fidelity criteria. Then, validation should take place in accordance with
these specifications: the kind of validation we should seek depends on the particular kind of statement about
the world we want to make. So while validation might then be a rough activity (if no precise statements about
the target are attempted), but is remains necessary as soon as one uses amodel tomake any statements about
the real world.

5.7 In e�ect, verification is always and validation o�en important. What about the feasibility of verification and val-
idation? If we consider our framework as illustrated in Figure 4, verification is only concerned with the internal
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structure of a model. At least for simple mathematical models a nearly complete verification is o�en feasible.
Verbal models can never be verified with certainty, and computational models reside somehow in the middle.
So, while complete verification is possible only for a small subset of models, su�icient verification is a feasible
and attractive desideratum.

5.8 Considering validation, the situation becomes more complex. Firstly, some forms of validation are easier (e.g.,
descriptive output validation) while others (e.g., process validation) are more di�icult. Secondly, a complete
validation will always remain impossible, even if one focuses on one particular form of validation (e.g. input
validation). We simply cannot perceive reality in its entirety such that we could compare the model to this
completedescriptionof the realworld. Even in thecenturyofbigdata (inwhichstillmanydataproblemsprevail,
seeSchulzeet al. 2017), therewill neverbe theperfectly validatedmodel, alsobecauseof the trade-o�sbetween
di�erent validation types.

5.9 Yet, the fact that complete verification and validation is impossible does not release us from theduty to strive for
the best verification and validation that is appropriate for our modelling purpose, and to be transparent with
regard to how we want our models to relate to reality and on how we have assessed this. Frameworks such as
the one presented here hopefully facilitate this task.

Notes

1Its usehasbeenencouragedbyprominent outlays, including JASSS.However, it ismoreprominent in some
disciplines (e.g. ecology), and less frequently used in others (e.g. economics). This illustrates the di�iculty of
introducing commonly accepted standards into a lively research community.

2Some models are not meant to represent anything, and models are not the only way to represent objects
(e.g. Frigg & Nguyen 2017). But as I will justify in more detail below, this paper focuses on models as means to
represent a system under investigation.

3For an excellent illustration of the consequences of di�erent conceptions of ‘understanding’ see Lehtinen
& Kuorikoski (2007) who study the reluctance of economists to use agent-based simulation models.

4 Lehtinen & Kuorikoski (2007) argue that these particular epistemological preferences of economists ex-
plain why ABM are less accepted in the economics community: economists (to a large extent) still adhere to
the idea that scientific understanding “consists of the ability to logically derive conclusions with a small set of
common argumentation patterns” (Lehtinen & Kuorikoski 2007, p. 324), and these “common argumentation
patterns” in economics are individual rationality and optimization, as well as systemic equilibrium. Simulation
models do not have their comparative advantage in this kind of explanation (see below), which is why most
economists – in contrast to many other social and natural scientists – are reluctant to use them. These de-
scriptions of the economicway of theorizing are descriptive, and not an endorsement of this kind of theorizing.
Taking it seriously remindsus to value rigour andparsimony, and toquestionwhether the complexityof amodel
is adequate, yet in general this kind of epistemology, which is most precisely formulated by Kitcher (1989), is
not desirable in a normative sense (see also Squazzoni 2017 for a critical discussion of the policy implications
of the modelling style advocated in economics).

5General equilibriummodels are a standardmodelling approach in economics. One specifies few represen-
tative agents that maximize their utility and imposes an equilibrium restriction on the system as a whole. The
classical introduction is given in Mas-Colell et al. (1995).

6For criticism see e.g. Odenbaugh (2018).
7Ylikoski & Aydinonat (2014) make a further distinction between causal scenarios and causal mechanism

schemes. The former provide a how-possible explanation for an actual fact, the latter provide a more abstract
mechanism that can be used to construct causal mechanism schemes.

8In the final exposition below this accountwill be enriched by concepts developed by other philosophers, in
particularMichaelWeisberg andUskaliMäki. Note, however, that the framework and the arguments to bemade
below are compatible with many other accounts of modelling. Discussing all potential accounts of modelling
would be beyond the scope of this paper. The interested reader might refer to Frigg & Nguyen (2017) for an
excellent review of the most influential accounts of models as representations in the philosophy of science
literature.

9Even in case the target systemof a scientificmodel is hypothetical (such as the three-sex populationsmen-
tioned above), the model is still informed by the mental models of the researchers: even if a three-sex popula-
tion does not exist in reality, themodel is informed by the perceptions the research has about real populations.
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10I am grateful to one of the reviewers for pointing out the importance of explicitly distinguishing between
the conceptual and the computational model.

11See Reiss (2011, p. 251) for a similar distinction made from amore philosophical perspective. He compares
the epistemology of simulations to that of experiments and argues - rightfully, I believe - that they are the same.
For an experiment one also has to check first whether the data created tells one enough about the functioning
of the model/experiment. Then, in a next step, one tests whether the model relates well to the real system one
seeks to investigate.

12There is also a philosophical literature on the topic of sensitivity or ‘robustness’ analysis, which suggests
that the systematic study of the robustness of model results with regard to changes in certain parameters and
assumptions is an adequate description of howcertain sciences organize their discovery process. See e.g. Weis-
berg (2006), Kuorikoski et al. (2010), or Lisciandra (2016). These authors take a broader perspective on robust-
ness analysis than much of the applied modellers do. For a clarification of the di�erent meanings of the term
see e.g. Woodward (2006). This also relates to the philosophical problem of how people learn using multiple
models (e.g. Goldsby 2013).

13When comparing the model and reality one inevitable finds aspects in the target that are not keyed to any
part of the model. But one also finds elements of the model, that are there for practical or simplifying reasons,
and do not have any counterpart in the target. Stachowiak (1973) summarizes the first set of elements under
the heading ‘preterition class’ and the second class under the heading ‘abundancy class’. I am grateful to one
of the reviewers for this reference.

14The Walrasian auctioneer is a fictitious entity that is used to rationalize the existence and relevance of an
equilibrium in general equilibriummodels: every buyer and seller communicates a price to the auctioneer and
no trade takes place before this fictitious entity announces the set of prices forwhich therewould be an equilib-
rium between supply and demand. As one might have expected, the decision problem for this fictitious entity
is very hard (Axtell 2005).

15While process validation is obviously tedious, the merits of models that explain via the provision of mech-
anism is increasingly acknowledged and the validation of models in terms of mechanisms becomes more and
more a desideratum (Steel 2004; Deaton 2010; Reiss 2011; Grüne-Yano� 2015).

16I am grateful to one of the reviewers for suggesting this example at this point.
17The philosophically more correct vocabulary refers to trade-o�s as relationships of attenuation that hold

between two or moremodel desiderata. Correspondingly, Matthewson &Weisberg (2008) speak of simple and
complex attenuation.

18Moreover, there is a class of simple and stylized models that simply illustrate the functioning and e�ect of
a few simple mechanisms in a system, without claiming explanatory power for the system as a whole. Squaz-
zoni & Gandelli (2013), for example, discuss the e�ects of di�erent ways of peer-reviewing, thereby highlighting
important subtleties of the process, without claiming to provide a serious model of the scientific publishing
process. Suchmodels are nevertheless important because they provide causalmechanisms schemes, they can
be reasonable steps on the way tomore complexmodels, and they serve as a consistency check for arguments
made within a theoretical discourse. See Grüne-Yano� (2008) and Ylikoski & Aydinonat (2014) for a philosophi-
cally more thorough treatment of suchmodels.

19This claim is illustrated by the unwillingness of some economists who do not want to validate rational ex-
pectationmodels via rigorous statistical tests, but rather prefer to calibrate them since “these tests were reject-
ing toomany goodmodels” (Thomas Sargent in Evans & Honkapohja 2005).
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Appendix: Relating the framework with the ‘evaludation’ framework of
Augusiak et al. (2014)

Augusiak et al. (2014) argue that the terms ‘validation’ and ‘verification’ should be eradicated because of their
ambiguity. Instead they propose the general term ‘evaludation’. I believe that – properly defined – the terms
‘verification’ and ‘validation’ are useful and highlight the di�erence of studying a model itself and the relation
between a model and reality. The term ‘evaludation’ blurs this distinction for the sake of generality. Never-
theless, I believe the framework and the terminology of Augusiak et al. (2014) to be extremely useful for model
analysis, particularly because it is well adjusted to the natural modelling cycle. But I think it would be useful to
complement it by an explicit, epistemological framework as presented in this paper.

To facilitate this task, Table 2 relates the terminologies frommy framework to that of Augusiak et al. (2014).

Term from
Augusiak et al.

Relation to
verif/valid
terms

Comment on the relationship

Data evaluation NA Augusiak et al. (2014) rightfully highlight this step an
essential part of the modelling cycle, but it does not need
to be part of an epistemological framework.

Conceptual model
evaluation

Verification /
Input validation

Augusiak et al. (2014, p. 125) consider this as the
“assessment of the simplifying assumptions underlying a
model’s design [...] including an assessment of whether
the structure, [...] form a logically consistent model.” This
step has elements of model verification (e.g. the test of all
assumptions are logically consistent), and validation (e.g.
the assessment of the assumptions capture the essence of
the real system).

Implementation
verification

Verification Augusiak et al. (2014, p. 125) use this step to ensure that
the modelling formalism is accurate and that the
computational model does what it is supposed to do. This
corresponds to verification in the sense I use the term.

Model output
verification

Input validation Augusiak et al. (2014, p. 125) define the aim of this step as
“to ensure that the individuals and populations
represented in the model respond to habitat features and
environmental conditions in a su�iciently similar way as
their real counterparts.” This step involves some aspects
of verification, but mostly corresponds to input validation.

Model analysis Verification Here, Augusiak et al. (2014) are concerned with testing the
sensitivity of the model to changes in the model
parameters, and the understanding of how the model
results have emerged. This step is clearly about verifying
the model since no link to reality is investigated.

Model output
corroboration

Predictive
output
validation

In their final evaludation step, Augusiak et al. (2014, p. 125)
seek to compare “model predictions with independent
data and patterns that were not used, and preferably not
even known, while the model was developed,
parameterised, and verified.” This is basically the
definition of predictive output validation.

Table 2: A clarification of the relationship between the terms used by Augusiak et al. (2014) and the verifica-
tion/validation terminology of the epistemological framework introduced before.

There are twoaspects regarding the relationship that areworthmentioning: Firstly, Augusiak et al. (2014) donot
mention all forms of validation that are possible. I believe that what they term “Model output corroboration”
might be interpreted more broadly to capture both descriptive output validation and process validations.
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Figure 6: One possiblity to include epistemological considerations into the evaluadation framework. Where
necessary one should explicitly refer to the framework outlined in Figure 3a.

Secondly, the framework of Augusiak et al. (2014) is by nomeans incompatible withmy epistemological frame-
work. This is not surprising given the fact that both frameworks have di�erent, yet complementary aims. From
a pragmatic viewpoint, it seems to me that if both frameworks are used jointly, every step in the evaluadation
procedure should explicitly distinguish between activities concerned with the model, and activities assessing
the link of the model with reality, and be explicit about how the latter could be established. In Figure 6 I sug-
gest a way to accommodate explicit epistemological considerations into the evaluadation framework (thereby
slightly altering the terminology of Augusiak et al. (2014)), but other ways to relate the frameworks are certainly
possible.
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