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ABSTRACT: In this paper we describe the use of the Bayesian statistical methodology for making 
inferences in composed error stochastic frontier models for panel data or individual cross-sections. We 
argue that one of modern Monte Carlo methods known as Gibbs sampling can greatly reduce the 
computational difficulties involved in analysing such models. We use the Bayesian approach to estimate 
a short-run cost frontier for N=58 branches of one of Polish commercial banks.  
 

1. Introduction 

 

 The stochastic frontier or composed error framework was first introduced in Meeusen and van 

den Broeck (1977) and Aigner, Lovell and Schmidt (1977) and has been used in many empirical 

applications. In particular, stochastic frontier models have recently been used in many studies of 

production and cost efficiency in the banking sector; see Bauer, Hancock (1993)  and Cebenoyan, 

Cooperman, Register and Hudgins (1993), Ferrier and Lovell (1990), Kaparakis, Miller and Noulas 

(1994), Mester (1993). All these empirical studies used  the sampling-theory (classical) methods of  

inference. 

 Van den Broeck, Koop, Osiewalski and Steel (1994), hereafter BKOS, Koop, Steel and 

Osiewalski (1995), and Koop, Osiewalski and Steel, hereafter KOS (1994, 1997a, 1997b, 1997c) used 

Bayesian methods to analyse stochastic frontier models and argued that such methods had several 

advantages over their classical counterparts in the treatment of these models. Most importantly, the 

Bayesian methods enable to provide exact finite sample results for any feature of interest and to take 

fully into account parameter uncertainty. The Bayesian approach has been successfully applied in 

various empirical problems, ranging from hospital efficiencies [KOS (1997c)] to analyses of the growth 

of countries in KOS (1997a,b). In this paper we review the Bayesian stochastic frontier approach to 
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efficiency analysis and apply it to measurement of cost efficiency of bank branches. 

2. Stochastic cost frontiers 

 

 The basic stochastic frontier long-run cost model assumes that a firm’s observed total cost will 

deviate from the theoretical microeconomic cost function because of random noise and possible 

inefficiency. That is, for N firms in the sample (each observed over T periods), 
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where TCti denotes observed total cost for firm i at time t, wti,1,...,wti,J are factor prices, Qti,1,...,Qt1,G are 

observed quantities of G products of the analysed industry (in our case, the banking sector), vti is a 

symmetric disturbance capturing the random nature of the frontier itself (due to, e.g., measurement 

error); zti is a nonnegative disturbance capturing the level of inefficiency of firm i at time t, and β is a 

vector of unknown parameters of the cost function. Following the standard  microeconomic theory of the 

firm, the cost frontier C(.) in (1) imposes homogeneity in factor prices; other regularity conditions (like 

monotonicity with respect to quantities and prices) should be ensured through parametric restrictions. 

These restrictions can be either global (for all possible levels of exogenous variables) or local (for the 

values observed in the sample). The most popular functional form of the cost frontier is translog, which 

is a second order local approximation and thus is called a (locally) flexible functional form, but simpler, 

non-flexible forms (like Cobb-Douglas) are still in use. An alternative functional form is based on the 

Müntz-Szatz expansion and is called the Asympotically Ideal Model (AIM) by Barnett, Geweke and 

Wolfe (1991). The AIM cost function is globally flexible and can be made locally regular by imposing 

appropriate restrictions, but its estimation is nontrivial, as shown by Barnett, Geweke and Wolfe (1991) 

and KOS (1994).  

 In cases where some inputs cannot be easily changed (are considered fixed) a short-run cost 

model is employed. If we assume that only one input is fixed, and we denote it by K, the following 

stochastic cost frontier model can be specified: 
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where VC denotes total variable cost and K is the input of the first of J factors of production. 

Throughout the methodological part of the paper, we shall label the individual units as "firms", but the 
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same models can, of course, be used in other contexts. 

3. The Sampling Model and Prior Distribution 

 

 The basic stochastic frontier sampling model considered here can be written as: 

where yti is the negative of the natural logarithm of cost for firm i at time t (i=1,..,N; t=1,...,T); xti is a row 

vector of exogenous variables; h, a known measurable function, and β, a vector of k unknown 

parameters, define the deterministic part of the frontier; and vti and zti are random terms, one symmetric 

about zero and  the other nonnegative. We assume that zti and vti are independent of each other and 

across firms and time. Thus, we do not allow for autocorrelated errors. Generally, efficiency will be 

measured as rti=exp(-zti), which is an easily interpretable quantity in (0,1]. In the case of a cost function, 

zti captures the overall cost inefficiency, reflecting cost increases due to both technical and allocative 

inefficiency of the firm i at time t. For the translog cost function, Kumbhakar (1997) derives the exact 

relationship between allocative inefficiency in the cost share equations and in the cost function, which 

indicates that ztis in (3) cannot be independent of the exogenous variables and the parameters in the cost 

function. However, this independence assumption will usually be maintained as a crude approximation 

because it leads to simpler posterior analysis.  

 Note that our framework is suitable for panel data, but the case of just one cross-section is easily 

covered as it corresponds to T=1. Here we make the assumption that zti is independent (conditionally 

upon whatever parameters are necessary to describe its sampling distribution) over both i and t, as in 

KOS (1997a,b); see also Pitt and Lee (1981, Model II). KOS (1997c) follow an alternative modeling 

strategy and assume that the inefficiency level is an individual (firm) effect, i.e. zti=zi (t=1,...,T); see also 

Pitt and Lee (1981, Model I) and Schmidt and Sickles (1984). 

 In general, a fully parametric Bayesian analysis requires specifying  

(i) a sampling distribution parameterized by a finite-dimensional vector (say, θ ∈ Θ), 

(ii) a prior distribution for that θ. 

In order to satisfy (i) and obtain the likelihood function we assume that vti is N(0,σ2), i.e. Normal with 

zero mean and constant variance σ2, and zti is Exponential with mean (and standard deviation) λti which 

can depend on some (say, m-1) exogenous variables explaining possible systematic differences in 

efficiency levels. In particular, we assume 

 ti ti ti tiy = h(x , ) + v - z ,β  (3) 
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where φj>0 are unknown parameters and wti1=1. If m>1, the distribution of zti can differ for different t or 

i or both and thus in KOS(1997c) this case is called the Varying Efficiency Distribution (VED) model. If 

m=1, then λti=φ1
-1 and all inefficiency terms constitute independent draws from the same distribution. 

This case is called the Common Efficiency Distribution (CED) model. Note that the sampling density of 

the observable yti given xti, wti=(wti1,...,wtim) and θ=(β', σ-2,φ1,...,φm)' is a location mixture of Normals with 

the Exponential density of the inefficiency term as the mixing density: 

where fG(.a,b) indicates the Gamma density with mean a/b and variance a/b2, and a=1 corresponds to an 

Exponential distribution. Alternatively, the sampling density can be represented as  

where 

Φ(.) denotes the distribution function of N(0,1), and λti is given by (4). See Greene (1990) and BKOS for 

similar expressions. The likelihood function, L(θ|data), is the product of the densities (6) over t and i. As 

a result of integrating out the inefficiency terms zti, the form of (6) is quite complicated indeed, and even 

the numerical evaluation of the ensueing likelihood function is nontrivial, as shown in BKOS. 

 An important aspect of any efficiency analysis is making inferences on individual efficiencies of 

observed firms. It is easy to show that, conditionally on the parameters and the data, the unobserved 

inefficiency term zti of an observed yti has a truncated Normal distribution with density  

see Greene (1990) and BKOS. In (7), I(.) denotes the indicator function.  

 In principle, the prior distribution of θ can be any distribution, but it is usually preferred not to 

introduce too much subjective information about the parameters. Therefore, we use the following prior 

structure 

 ti
j=1

m

j
-w= tijλ φ∏  (4) 
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which reflects lack of prior knowledge about the frontier parameters β, possibly except for regularity 

conditions imposed by economic theory. That is, we assume f(β)≡1 if there are no regularity constraints, 

and, if such conditions are imposed, f(β)=1 for all β satisfying them and f(β)=0 for all other β. 

Alternatively, we could use a proper prior distribution on β, possibly truncated to the region of 

regularity. Typically, we shall choose the prior hyperparameters n0>0 and s0>0 so as to represent very 

weak prior information on the precision of the stochastic frontier. Note that we cannot take as the prior 

density for σ-2 the kernel of the limiting case where s0=0, because this would result in the lack of 

existence of the posterior distribution [see Fernández, Osiewalski and Steel (1997)]. Thus, the use of the 

usual Jeffreys type prior for σ-2 (which corresponds to the Gamma kernel with n0=s0=0) is precluded, 

unless we put some panel structure on the inefficiency terms by assuming that, e.g., they are time-

invariant individual effects as in KOS (1997c). For the m parameters of the efficiency distribution we 

take proper, independent Exponential priors in order to avoid the pathology described by Ritter (1993) 

and discussed in more general terms by Fernández, Osiewalski and Steel (1997). Following KOS 

(1997b, 1997c), we use gj=1 for j>1 and g1=-ln(r*), where r*∈(0, 1) is the hyperparameter to be elicited. 

In the CED model (m=1), r* can be interpreted as the prior median efficiency, because it is exactly the 

median of the  marginal prior distribution of firm efficiency rti=exp(-zti); see BKOS. In the VED case 

(m>1) our prior for φ=(φ1,...,φm)' is quite noninformative and centered over the prior for the CED model. 

Note that the prior on φ, a parameter which is common to all firms, induces prior links between the firm-

specific inefficiency terms. 

4. Bayesian Inference Using Gibbs Sampling  

 

 The Bayesian approach combines all the information about the model parameters in their 

posterior density  

As this is a multivariate density, the crucial task of any applied Bayesian study is "to calculate relevant 

summaries of the posterior distribution, to express the posterior information in a usable form, and to 

serve as formal inferences if appropriate. It is in the task of summarizing that computation is typically 

needed." [O'Hagan (1994), p.205]. 

 Using g(θ;data) as a generic notation for any function of interest, we can represent our Bayesian 

 p( ) = p( )p( )p( ,..., ) f ( |n
2

,s
2

)f( ) f g-2
1 m G

-2 0 0

j=1

m

G j j( | , ),θ σ β φ φ σ β φ∝ ∏ 1  (8) 

 p( |data) p( )L( |data).θ θ θ∝     (9)  
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inference problem as the ratio of integrals  

The main numerical difficulty amounts to evaluating this ratio. In the case of the stochastic frontier 

model, the likelihood is too complex to analytically calculate any such posterior summary. Numerical 

integration methods are unavoidable. Most quantities of interest such as moments of the parameters or of 

functions of the parameters, probabilities of certain regions for the parameters, etc. can be expressed as 

expectations of some g(.;.) in (10). The integrating constant of the posterior exactly corresponds to the 

integral in the denominator of (10).  

 Note that traditional quadratures, like Cartesian product rules, are not helpful because they are 

feasible only when the dimension of θ, equal to k+m+1, is very small. However, our model is inherently 

"non-standard" and the dimension of θ is already 5 in the simplest case of the CED model (m=1) with a 

Cobb-Douglas frontier depending on β=(β1 β2 β3)' (k=3), and will be much higher for more complicated 

models. This effectively renders these type of numerical integration procedures quite useless. Thus we 

resort to a  popular modern Monte Carlo integration method, known as Gibbs sampling. 

 Gibbs sampling is a technique for obtaining a sample from a joint distribution of a random 

vector α by taking random draws from only full conditional distributions. A detailed description of the 

technique can be found in e.g. Casella and George (1992), and Tierney (1994). 

 Suppose we are able to partition α into (α1',...,αp')' in such a way that sampling from each of the 

conditional distributions (of αi given the remaining subvectors; i=1,...,p) is relatively easy. Then the 

Gibbs sampler consists of drawing from these distributions in a cyclical way. That is, given the qth draw, 

α(q), the next draw, α(q+1), is obtained in the following pass through the sampler: 

 α1
(q+1) is drawn from   p(α1|α2=α2

(q),...,αp=αp
(q)), 

 α2
(q+1) is drawn from   p(α2|α1=α1

(q+1),α3=α3
(q),...,αp=αp

(q)), 

 ...  

 αp
(q+1) is drawn from   p(αp|α1=α1

(q+1),...,αp-1=αp-1
(q+1)).  

Note that each pass consists of p steps, i.e. drawings of the p subvectors of α. The starting point, α(0), is 

arbitrary. Under certain general conditions [irreducibility and aperiodicity as described in e.g. Tierney 

(1994)], the distribution of α(q) converges to the joint distribution, p(α), as q tends to infinity. Thus, we 

draw a sample directly from the joint distribution in an asymptotic sense. In practical applications we 

have to discard a (large) number of passes before convergence is reached. As the drawings in Gibbs 

sampling are (asymptotically) from the actual posterior distribution, which is properly normalized, there 

is no need to evaluate the integrating constant in the denominator of (10) separately. So we do not 

 E[g( ;data)|data) =

g( ;data)p( )L( |data)d

p( )L( |data)d
.θ

θ θ θ θ

θ θ θ
] Θ

Θ

∫

∫
 (10) 
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require the evaluation of a ratio of integrals as in (10) in order to "normalize" our estimates of g(θ;data). 

 In order to efficiently use Gibbs sampling to make posterior inferences on both the parameters 

and firm efficiencies, we have to consider the joint posterior density of θ and z, p(θ,z|data), where z is a 

TNx1 vector of all the ztis. Now, instead of integrating out z, which was shown to lead to a very 

nonstandard likelihood function in Section 3, we shall consider θ given z and the data, which is quite 

easy to deal with. On the other hand, this implies that we also need to include z in the Gibbs sampler. 

Note that the dimension is then NT+k+m+1, greater than the number of observations. Despite this high 

dimensionality, the steps involved in the Gibbs are very easy to implement, and the resulting sampler is 

found in Koop, Steel and Osiewalski (1995) to have very good numerical properties, and to be far 

preferable to Monte Carlo with Importance Sampling in the particular application used. The conditional 

posterior density p(z|data,θ) is the product of the TN independent truncated Normal densities given by 

(7), so we can very easily draw ztis given the data and the parameters. These draws are immediately 

transformed into efficiency indicators defined as rti=exp(-zti). Thus, this NT-dimensional step of each 

pass of our Gibbs sampler is quite simple. It is worth stressing at this stage that the Gibbs sampler, unlike 

the Monte Carlo approach outlined in BKOS, yields a draw of the whole vector z at each pass, and that 

for this reason, the efficiency measures for all N firms and all T periods are obtained as a by-product of 

our Gibbs sampling methodology.  

 However, the main difference with respect to Monte Carlo - Importance Sampling used in 

BKOS is in drawing θ. Now, the unwieldy form of the marginal posterior, p(θ|data), is not used at all, 

and we focus instead on the conditional posterior densities of subvectors of θ given the remaining 

parameters and z. Given z, the frontier parameters (β,σ-2) are independent of φ and can be treated as the 

parameters of the (linear or nonlinear) Normal regression model in (3). Thus we obtain the following full 

conditionals for σ-2 and β: 

 

 

 

The full conditional posterior densities of φj (j=1,...,m) have the general form  

 
p( |data,z, ) =f ( |n

+ TN

2
,
1

2
{s + [y + z - h(x , ) ] }),-2

G
-2 0

0
t,i

ti ti ti
2σ β σ β∑

 (11) 

 
p( |data,z, ) f( ) [-

1

2
(y + z - h(x , )) ].-2 -2

t,i
ti ti ti

2β σ β σ β∝ ∑exp
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where 

for r=1,...,m (Dti1=1 when m=1) and φ(-j) denotes φ without its jth element. Since wti1=1, the full 

conditional of φ1 is just Gamma with parameters 1+NT and g1+z11D111+... +zTNDTN1. Of  course, the full 

conditionals for the zti’s are given by (7). 

 Depending on the form of the frontier and on the values of wtijs for j>2, the full conditionals for 

β and for φj (j=2,...,m) can be quite easy or very difficult to draw from. Drawing from nonstandard 

conditional densities within the Gibbs sampler requires special techniques, like rejection methods or the 

Metropolis-Hastings algorithm [see e.g. Tierney (1994) or O'Hagan (1994)]. These procedures imply a 

substantial added complexity in the numerical integration and require additional input from the user. 

Therefore, we stress two important special cases where considerable simplifications are possible: 

(i) linearity of the frontier, 

(ii) 0-1 dummies for wtij (j=2,...,m).  

 If h(xti,β)=xtiβ then (12) is a k-variate Normal density, possibly truncated due to regularity 

conditions. That is, we have  

where 

and y and X denote a NTx1 vector of ytis and a NTxk matrix with xtis as rows, respectively.  

Cobb-Douglas or translog frontiers serve as examples of linearity in β; see Koop, Steel and Osiewalski 

(1995) and KOS (1997a,1997c).  

 The dichotomous (0-1) character of the variables explaining efficiency differences (wtij; 

j=2,...,m) greatly simplifies (13) which simply becomes a Gamma density: 

From the purely numerical perspective, it pays to dichotomize these original variables in wti which are 

not 0-1 dummies.  

 The above discussion confirms that the stochastic frontier cost models considered in this paper 

 p( |data,z, ) f ( | + w , g ) ( z D ),j (-j) G j
t,i

tij j 1
t,i

ti ti1-φ φ φ φ∝ ∑ ∑1 exp  (13) 

 
tir

j r
j
wD = tij

≠
∏φ

  

 p( |data,z, ) f( )f ( | , (X X ) ),-2
N
k 2 -1β σ β β β σ∝ ′$

 (14) 

 
$β = (X X ) X (y + z),-1′ ′   

 p( |data,z, ) =f ( | + w g w z D ),j (-j) G j
t,i

tij j
t,i

tij ti tij, +φ φ φ 1 ∑ ∑  (15) 
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can be analyzed using Gibbs sampling methods. That is, even though the marginal posteriors of θ and the 

ztis are unwieldy, the conditionals for a suitable partition of the set of parameters should be much easier 

to work with. By taking a long enough sequence of successive draws from the conditional posterior 

densities, each conditional on previous draws from the other conditional densities, we can create a 

sample which can be treated as coming from the joint posterior distribution. The posterior expectation of 

any arbitrary function of interest, g(θ,z;data), can be approximated by its sample mean, g*, based on M 

passes.  

5. An Empirical Application: Cost Effciency of Bank Branches 

 

 We illustrate the Bayesian stochastic frontier analysis using the data from N=58 branches of one 

of Polish commercial banks. We use only cross-sectional data (T=1; first quarter of 1997) and thus the 

time subscript t will be omitted. Our model is 
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where the following notation is adopted: 

VC = cost of labor (personnel expenses) + cost of  computers, software and other goods and services 

purchased from outside suppliers + cost of financial capital, 

wLab = price of labor = (personnel expenses)/(number of full-time equivalent employees), 

wDep = price of deposits = (interest expense on deposits)/(volume of deposits), 

wBor = price of money "borrowed" from other branches, 

wCom = average price of computers, software and other goods and services purchased by the bank from 

outside suppliers, 

K = book value of buildings, 

Q = aggregate volume of different loans + the excess of deposits over loans (if positive).  

 In the specification given above, we follow the microeconomic analysis of Sealey and Lindley 

(1977) who view the bank as using labor, physical capital, and deposits to produce earning assets. Thus 

we use deposits and other borrowed money as inputs (financial capital), and income generating  money 

as the aggregate product of the bank. This approach (often called the intermediation approach) has been 

adopted in many empirical studies, using econometric as well as mathematical programming tools; see 

Akhaiven, Swamy, Taubman and Singamsetti (1997), Berger (1993), Berger and Humphrey (1991), 

Cebenoyan, Cooperman, Register and Hudgins (1993), Dietsch (1993), English, Grosskopf, Hayes 

and Yaiswarng (1993), Grabowski, Ragan and Rezvanian (1993), Hughes and Mester (1993), 
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Humphrey (1993), Kaparakis, Miller and Noulas (1994), Mester (1993), Muldur and Sassenou (1993). 

 As a consequence of the approach we follow, the total variable cost VC includes both 

operating and interest costs. Our product variable Q comprises loans to individuals, commercial and 

industrial loans, and the excess of deposits over loans (if positive). The latter component of our 

aggregate product reflects the fact that the branches operate within the bank, and their excessive deposits 

can be used by those branches which lack funds for potential loans. In fact, branches tend to specialize 

either in the acquisition of financial capital from depositors or in loaning funds. Branches from the first 

group ("depository" branches) provide funds, which are used by branches from the other group. These 

funds are provided at a constant price, fixed by the bank and only used to correct the calculation of the 

operating profit of a branch. Thus, for a "depository" branch, the volume of its excess funds can be 

treated as a product, because it increases the calculated profit of that branch. On the other hand, this 

money is an input for the branches which lack funds for loans;  its price (wBor) is constant over branches. 

Also, the price of computers, software and other goods and services purchased by the bank from outside 

suppliers (wCom) can be treated as constant over branches as main purchases are decided on the level of 

the bank which chooses the supplier (of  e.g. hardware or software); this input price is negociated by the 

management of the bank and is the same for all branches.  

 In (16) we assume that some part of physical capital (represented by buildings) is a fixed input, 

which enters our cost frontier directly (and not through its price). Hence (16) is a short-run specification 

which tends to explain the variable cost (VC) of a branch. Since two input prices (wCom) i (wBor) are 

constant over units (branches), the estimated form of our stochastic frontier model is 

( ) ( ) ( ) ( ) ( ) ( )ln ln ln ln ln ln ,

, , ,

, ,VC w w K Q Q v z

i N

i i Dep i Lab i i i i i= + + + + + − +

=

β β β β β β1 2 3 4 5 6
2

1 K
 (17) 

where: 

βj = αj  for j=2,…,6;   β1 = α0 + α1ln(wCom) + [1-(α1 + α2 + α3)]ln(wBor). 

 The functional form in (16) was suggested by Nerlove (1963) and used by Christensen and 

Greene (1976) in modeling costs of  electric utility companies in the US in 1970. It is based on the Cobb-

Douglas specification, but permits returns to scale to vary with Q. The returns to scale coefficient can be 

calculated from (17) as  

( )( )RTS Q i Ni i i= = + =− −
ε β β1

5 6

1
2 1ln , , ,K       (18) 

and it relates to scale changes caused by proportional increases in variable inputs alone. We also tried the 

full translog form (with 15 free coefficients) instead of  the specification in (17), but we faced serious 

identification problems due to the limited number of observations (N=58).  

 As regards the economic regularity conditions, homogeneity in factor prices is imposed in (16) 

and thus is assured in (17); monotonicity in prices would require α1, α2, α3 >0 and α1+α2+ α3 <1 in (16), 

which leads to β2, β3 >0 and β2+β3 <1 in (17). Given Q and factor prices, an increase in the amount of K, 
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the fixed input, should be compensated by a decrease in other inputs, leading to a smaller variable cost; 

thus we expect β4<0. Obviously, we also require that RTSi>0 for all i, but this condition is always met in 

practice. We impose all these regularity conditions through the prior density for β= (β1 …β6)’. That is, 

we assume the prior structure in (8), where f(β) is the indicator function of the restrictions on β. 

 The first model we estimate corresponds to the assumption that all branches have the same prior 

distribution of inefficiency, i.e. we have the CED specification (m=1, no exogenously modelled 

differences in cost efficiency). We take r*=0.7 as the prior median of efficiency. As regards the prior 

hyperparameters for precision, we assume n0=s0=10-6 which leads to a very diffuse Gamma distribution 

(with mean 1 and variance 2*106) reflecting little prior knowledge about this parameter.  

 The final posterior results for our 66-dimensional vector of unknown parameters and efficiencies 

were obtained using 2*106 Gibbs passes; the sampler converged quickly and was very stable, indicating 

that the results could have been based on a much shorter run. Table 1 presents the posterior means and 

standard deviations of the parameters of the cost frontier. As regards factor prices, the interest rate on 

deposits (i.e. the price of financial capital) exerts the strongest influence on variable cost. The role of the 

price of labor is less evident because of the much smaller posterior mean and the significantly larger 

standard deviation. We can indirectly estimate the sum of the elasticities with respect to the other two 

factor prices (which are constant over branches) as 1-(β2+β3); the posterior mean and standard deviation 

of this parameter is 0.205 and 0.110, respectively. Figure 1 shows the marginal posterior densities of the 

elasticities with respect to factor prices.  

 The regularity restrictions imposed through the prior distribution were binding for β3 and, 

especially, for β4. The role of the fixed factor (buildings) in explaining the variable cost is very small (if 

any). When β4 was left unrestricted, its posterior mean was positive, but this had almost no consequence 

for our inference on other quantities of interest.  

 Our specification permits the elasticity of variable cost with respect to Q, εi, to vary with Q. 

Table 2 presents the posterior means and standard deviations of εi = ( )β β5 62+ ln Qi and of efficiency 

indicators ri = exp(-zi) for all branches ordered by increasing production. In addition, Table 2 provides 

the information whether a given branch had more deposits than loans (wi,2=0) or not.  

 Our returns to scale measure (18), evaluated at the posterior means of β5 and β6, is plotted in 

Figure 2 against the values of our aggregate product in the range covering the sample points. 1% increase 

of variable cost is associated with about 1.23 % increase of production for the smallest branch, 1.08 % 

increase of production for the two medium branches, and about 0.98 % increase for the largest branch. 

For almost all branches, our estimates of RTSi are greater than one.  

 We assumed that, a priori, there is about 50% chance that  cost efficiency of any given branch is 

below 0.7. Our data set points at much higher efficiency and leads to the average posterior mean of ri 

equal 0.924 with 0.044 as the average posterior standard deviation. However, the individual posterior 
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means are quite spread, ranging from 0.694 to 0.972. Figure 3 presents the marginal posterior densities 

p(ri|data) for the branches with the maximum, minimum and average posterior means of ri. The densities 

are a bit diffuse as our inference is based an individual cross-section and, in a sense, we have only one 

observation for each estimated efficiency. This shows one of advantages of our Bayesian approach 

which gives us a direct and easily understandable evaluation of uncertainty in terms of marginal 

posterior densities. Using just one cross section also means  that our inference on individual efficiency 

levels is somewhat sensitive to our prior assumptions. Taking r*=0.95 (instead of 0.70) leads to much 

more uniformly spread posterior means, ranging from 0.809 to 0.975, but with almost the same average 

(0.933) and the same ranking of branches as for r*=0.70. 

  A closer look at Table 2 reveals that "depository" branches tend to be more efficient than the 

others. This suggests that wi,2 may be an important variable for explaining systematic differences in cost 

efficiency. We used the methodology outlined in Sections 3 and 4 to estimate the VED specification 

with m=2, wi,1≡1 and wi,2 as in Table 2. The most probable values of the parameter capturing systematic 

differences in efficiency, φ2 (see (4)), lie below 1. The posterior mean and standard deviation of ln(φ2) is 

-1.17 and 0.32, respectively, indicating that "depository" branches are significantly more efficient. The 

results for our VED case are very similar to the ones presented above for the CED model, except that the 

VED specification shows more variability in efficiency levels and much less in the RTSi’s. Our 

empirical conclusions should be treated with caution as we base them on only one cross section of 58 

units. We expect  to gain insight into the complicated issues of  measuring cost efficiency of bank 

branches by using panel data and a more sophisticated frontier model.  

6. Conclusion 

 

 In this paper, we have reviewed a Bayesian analysis of stochastic frontier models, arguing that 

Gibbs sampling can be used to greatly reduce the computational burden inherent to this analysis. 

Following KOS (1994, 1997a, 1997b, 1997c), we have shown how the posterior conditional densities 

can be used to set up a Gibbs sampler. The structure of the Gibbs sampler follows naturally from 

viewing the inefficiency terms as additional parameters in a regression model, see Fernández, Osiewalski 

and Steel (1997). In important special cases all conditionals are either truncated Normal, Normal or 

Gamma distributions which leads to enormous computational gains. 

 We have applied the Bayesian methodology to make posterior inference on the technology and 

cost efficiency of 58 branches of one of Polish banks. Our preliminary results, based on one cross-

section and a relatively simple cost frontier, indicate increasing returns to scale (varying with the branch 

output level) and systematic differences in efficiency, explained by the relation between the volume of 
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loans and the financial capital input. 

 The statistical rigour and empirical flexibility of our Bayesian approach encourage us to 

consider a much more complicated cost frontier model and to estimate it using panel data. 
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Table 1. The posterior means and standards deviation of the parameters of model (17). 

Parameter E(.|data) D(.|data) 
β1 4.034 8.713 
β2 0.632 0.062 
β3 0.163 0.103 
β4 -0.006 0.005 
β5 -0.057 0.946 
β6 0.027 0.026 

Var(vi)= σ2 0.0103 0.0044 
E(zi)=λi=φ1

-1 0.121 0.031 
 

 

Table 2. The posterior means and standards deviation of branch-specific characteristics. 

i wi2 E(εi |data) D(εi |data) E(ri |data) D(ri |data) 
1 1 0.813 0.113 0.794 0.114 
2 1 0.824 0.103 0.894 0.081 
3 1 0.862 0.068 0.958 0.038 
4 1 0.863 0.067 0.811 0.089 
5 0 0.869 0.062 0.939 0.048 
6 0 0.872 0.059 0.945 0.045 
7 0 0.875 0.057 0.942 0.047 
8 0 0.877 0.055 0.937 0.050 
9 1 0.877 0.055 0.790 0.090 
10 0 0.883 0.050 0.900 0.066 
11 0 0.884 0.049 0.935 0.050 
12 1 0.892 0.043 0.843 0.081 
13 1 0.892 0.043 0.970 0.029 
14 0 0.893 0.042 0.944 0.045 
15 0 0.894 0.042 0.953 0.040 
16 0 0.898 0.038 0.906 0.063 
17 0 0.899 0.038 0.940 0.047 
18 1 0.899 0.037 0.891 0.070 
19 0 0.902 0.036 0.948 0.043 
20 1 0.908 0.032 0.942 0.046 
21 0 0.912 0.030 0.906 0.063 
22 0 0.913 0.029 0.949 0.042 
23 0 0.916 0.028 0.945 0.045 
24 1 0.916 0.028 0.834 0.082 
25 1 0.918 0.028 0.904 0.064 
26 0 0.918 0.027 0.945 0.044 
27 1 0.922 0.026 0.905 0.064 
28 1 0.922 0.026 0.694 0.090 
29 1 0.923 0.026 0.799 0.087 
30 1 0.923 0.026 0.895 0.066 
31 1 0.924 0.026 0.852 0.078 
32 0 0.925 0.026 0.948 0.043 
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i wi2 E(εi |data) D(εi |data) E(ri |data) D(ri |data) 
33 0 0.926 0.026 0.936 0.049 
34 0 0.929 0.026 0.917 0.058 
35 0 0.936 0.027 0.943 0.046 
36 1 0.936 0.027 0.820 0.085 
37 1 0.936 0.027 0.731 0.090 
38 0 0.938 0.028 0.926 0.054 
39 1 0.940 0.029 0.779 0.089 
40 0 0.944 0.030 0.940 0.048 
41 0 0.948 0.032 0.952 0.041 
42 0 0.949 0.033 0.916 0.059 
43 1 0.951 0.034 0.877 0.074 
44 0 0.954 0.036 0.894 0.068 
45 0 0.955 0.037 0.918 0.058 
46 0 0.960 0.040 0.832 0.088 
47 0 0.961 0.042 0.925 0.055 
48 1 0.962 0.042 0.860 0.078 
49 0 0.967 0.046 0.945 0.045 
50 0 0.970 0.048 0.917 0.059 
51 1 0.975 0.052 0.764 0.091 
52 0 0.977 0.054 0.972 0.027 
53 0 0.979 0.056 0.927 0.055 
54 0 0.985 0.061 0.929 0.054 
55 1 0.988 0.063 0.932 0.052 
56 0 0.997 0.072 0.925 0.057 
57 0 1.009 0.083 0.954 0.041 
58 1 1.019 0.092 0.815 0.098 

 

 

Figure 1. The marginal posterior densities of the price elasticities. 
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Figure 2. The returns to scale estimate as  a fuction of the output level. 
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Figure 3. The marginal posterior densities of cost efficiency ri. 
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