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ABSTRACT: In this paper we describe the use of Bagresian statistical methodology for making
inferences in composed error stochastic frontiedetwofor panel data or individual cross-sectiong. W
argue that one of modern Monte Carlo methods knagnrGibbs sampling can greatly reduce the
computational difficulties involved in analysingcbumodels. We use the Bayesian approach to estimate
a short-run cost frontier for N=58 branches of ohBolish commercial banks.

1. Introduction

The stochastic frontier or composed error framé&weais first introduced in Meeusen and van
den Broeck (1977) and Aigner, Lovell and Schmidd7@) and has been used in many empirical
applications. In particular, stochastic frontier dals have recently been used in many studies of
production and cost efficiency in the banking sectee Bauer, Hancock (1993) and Cebenoyan,
Cooperman, Register and Hudgins (1993), Ferrier lametll (1990), Kaparakis, Miller and Noulas
(1994), Mester (1993). All these empirical studised the sampling-theory (classical) methods of
inference.

Van den Broeck, Koop, Osiewalski and Steel (19%&reafter BKOS, Koop, Steel and
Osiewalski (1995), and Koop, Osiewalski and Steeteafter KOS (1994, 1997a, 1997b, 1997c) used
Bayesian methods to analyse stochastic frontieretaodnd argued that such methods had several
advantages over their classical counterparts intretment of these models. Most importantly, the
Bayesian methods enable to provide exact finiteptamesults for any feature of interest and to take
fully into account parameter uncertainty. The B@ymesapproach has been successfully applied in
various empirical problems, ranging from hospitéitencies [KOS (1997c¢)] to analyses of the growth

of countries in KOS (1997a,b). In this paper weieevthe Bayesian stochastic frontier approach to
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efficiency analysis and apply it to measuremermtost efficiency of bank branches.

2. Stochastic cost frontiers

The basic stochastic frontier long-run cost ma@dslumes that a firm's observed total cost will
deviate from the theoretical microeconomic costctiam because of random noise and possible
inefficiency. That is, for N firms in the samplea¢h observed over T periods),

In(ﬂJ — |n(C(Wti'1 ,Wti,2 K ’Wti,J—l ,QtinK thi 5 ,[3)] -V, t7Z,

i) Wis Wiy Wii s

@
I=1K ,N, t=1K T,
where TG denotes observed total cost for firm i at timevds,...,w;; are factor prices, Q,...,Q. ¢ are
observed quantities of G products of the analysedstry (in our case, the banking sectoy)jsva
symmetric disturbance capturing the random natdirthe frontier itself (due to, e.g., measurement
error); z is a nonnegative disturbance capturing the lek@edficiency of firm i at time t, an@ is a
vector of unknown parameters of the cost functiilowing the standard microeconomic theory of the
firm, the cost frontier C) in (1) imposes homogeneity in factor prices; ottegularity conditions (like
monotonicity with respect to quantities and pricglspuld be ensured through parametric restrictions.
These restrictions can be either global (for aligilde levels of exogenous variables) or local {fer
values observed in the sample). The most poputatiftnal form of the cost frontier is translog, i
is a second order local approximation and thuslied a (locally) flexible functional form, but spier,
non-flexible forms (like Cobb-Douglas) are still uise. An alternative functional form is based am th
Muntz-Szatz expansion and is called the Asympdyiddeal Model (AIM) by Barnett, Geweke and
Wolfe (1991). The AIM cost function is globally Hible and can be made locally regular by imposing
appropriate restrictions, but its estimation istngial, as shown by Barnett, Geweke and Wolfe ()99
and KOS (1994).

In cases where some inputs cannot be easily ctigiage considered fixed) a short-run cost
model is employed. If we assume that only one inputxed, and we denote it by K, the following

stochastic cost frontier model can be specified:

|n(vcﬂj = 'n(CVa’(K’va K i Qi K Qg :B)j “Vit 7z,

ti,J ti,J th J

2
i=1K ,N, t=1K T,
where VC denotes total variable cost and K is tguti of the first of J factors of production.

Throughout the methodological part of the papershel label the individual units as "firms", bhet

015-11).
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same models can, of course, be used in other ¢entex

3. The Sampling Model and Prior Distribution

The basic stochastic frontier sampling model atersid here can be written as:

Y = h(xi,B) + vi - zi )

where Y is the negative of the natural logarithm of costfirm i at time t (i=1,..,N; t=1,...,T);{s a row
vector of exogenous variables; h, a known measaréohction, andp, a vector of k unknown
parameters, define the deterministic part of tbatfer; and y and z are random terms, one symmetric
about zero and the other nonnegative. We assuategtiand y are independent of each other and
across firms and time. Thus, we do not allow faioeorrelated errors. Generally, efficiency will be
measured as¥exp(-z), which is an easily interpretable quantity inl{OJn the case of a cost function,
Z; captures the overall cost inefficiency, reflectomgt increases due to both technical and allazativ
inefficiency of the firm i at time t. For the trdog cost function, Kumbhakar (1997) derives thecexa
relationship between allocative inefficiency in #@st share equations and in the cost functionghwhi
indicates that® in (3) cannot be independent of the exogenouahblas and the parameters in the cost
function. However, this independence assumptiohusilially be maintained as a crude approximation
because it leads to simpler posterior analysis.

Note that our framework is suitable for panel dbtd the case of just one cross-section is easily
covered as it corresponds to T=1. Here we maketkamption that;zs independent (conditionally
upon whatever parameters are necessary to dedsrisempling distribution) over both i and t, as in
KOS (1997a,b); see also Pitt and Lee (1981, MdjleKIOS (1997c) follow an alternative modeling
strategy and assume that the inefficiency levahisndividual (firm) effect, i.e.szz (t=1,...,T); see also
Pitt and Lee (1981, Model 1) and Schmidt and Skk84).

In general, a fully parametric Bayesian analystgiires specifying
(i) a sampling distribution parameterized by atéirdimensional vector (sa§,[] ©),

(i) a prior distribution for tha®.

In order to satisfy (i) and obtain the likelihoashttion we assume that is N(0g?), i.e. Normal with
zero mean and constant variaméeand g is Exponential with mean (and standard deviatignyhich
can depend on some (say, m-1) exogenous varialfgaireng possible systematic differences in

efficiency levels. In particular, we assume
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where@>0 are unknown parameters angd=t. If m>1, the distribution of;zcan differ for different t or

i or both and thus in KOS(1997c¢) this case is dale Varying Efficiency Distribution (VED) modéf.
m=1, then\;=@,* and all inefficiency terms constitute independerstws from the same distribution.
This case is called the Common Efficiency Distiidmut( CED) model. Note that the sampling density of
the observablegygiven %, Wi=(Way,...,Wim) ande=(p', a%@.,...@,)" is a location mixture of Normals with

the Exponential density of the inefficiency ternttas mixing density:

p(yti |Xti y Whi ,9) = '[f%\l (yﬁ | h(Xti ,B) = Zii ,0'2 )fG (Zti |1|_| ‘,-N“j )Qm ’
0 =1 (5)
where §(.00a,b) indicates the Gamma density with mean a/bvaridnce a/f and a=1 corresponds to an

Exponential distribution. Alternatively, the sanmglidensity can be represented as

1
P(Y, Ixi - Wi »8) = Aiexd- A (my + EOZMil)]q)( ma/ 0), ©)

where

my = h(Xti !B) - yti - 02/ )\ti )

®(.) denotes the distribution function of N(0,1)daw is given by (4). See Greene (1990) and BKOS for
similar expressions. The likelihood functionf|data), is the product of the densities (6) ovrd i. As
a result of integrating out the inefficiency teregsthe form of (6) is quite complicated indeed, andn
the numerical evaluation of the ensueing likelih@atttion is nontrivial, as shown in BKOS.

An important aspect of any efficiency analysimaking inferences on individual efficiencies of
observed firms. It is easy to show that, conditiignan the parameters and the data, the unobserved

inefficiency term z of an observedshas a truncated Normal distribution with density

P(zi Yy » X » Wi ,0) = [P(my / G)]_lf%\l (zilmi,09)1(zs 2 0), @)

see Greene (1990) and BKOS. In (7), I(.) denotesntthicator function.
In principle, the prior distribution d@ can be any distribution, but it is usually preéermnot to
introduce too much subjective information about paeameters. Therefore, we use the following prior

structure
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p®) = p@2)PR)PE, .-,y )0 fe(o'zl%%)f(ﬁ) ” to(ofLg), (8)

which reflects lack of prior knowledge about thenfiier parameterf, possibly except for regularity
conditions imposed by economic theory. That isassume f§)=1 if there are no regularity constraints,
and, if such conditions are imposedd)¥1 for all B satisfying them and B)=0 for all otherf.
Alternatively, we could use a proper prior disttibn on 3, possibly truncated to the region of
regularity. Typically, we shall choose the priompbyparametersyp0 and 0 so as to represent very
weak prior information on the precision of the biastic frontier. Note that we cannot take as thar pr
density foro? the kernel of the limiting case wherg=8, because this would result in the lack of
existence of the posterior distribution [see FedeanOsiewalski and Steel (1997)]. Thus, the ugbeof
usual Jeffreys type prior far? (which corresponds to the Gamma kernel wighss¥0) is precluded,
unless we put some panel structure on the ingffigigerms by assuming that, e.g., they are time-
invariant individual effects as in KOS (1997c). Fbe m parameters of the efficiency distribution we
take proper, independent Exponential priors in iotdeavoid the pathology described by Ritter (1993)
and discussed in more general terms by Fernandsew@lski and Steel (1997). Following KOS
(1997b, 1997c), we use=g for j>1 and g=-In(r), where (0, 1) is the hyperparameter to be elicited.
In the CED model (m=1), tan be interpreted as the prior median efficiebegause it is exactly the
median of the marginal prior distribution of firefficiency =exp(-z); see BKOS. In the VED case
(m>1) our prior forp=(q,...@n)" is quite noninformative and centered over thergdor the CED model.
Note that the prior o, a parameter which is common to all firms, indyzésr links between the firm-

specific inefficiency terms.

4.  Bayesian Inference Using Gibbs Sampling

The Bayesian approach combines all the informatibout the model parameters in their
posterior density
p(6|data)d] pd )LO |data). ©)
As this is a multivariate density, the crucial tadkany applied Bayesian study is "to calculateveht
summaries of the posterior distribution, to expribs posterior information in a usable form, and to
serve as formal inferences if appropriate. It ishie task of summarizing that computation is tyiyca
needed."” [O'Hagan (1994), p.205].

Using gP;data) as a generic notation for any function ténest, we can represent our Bayesian
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inference problem as the ratio of integrals

 9(©: data)pf )L |data)
E[g(6;data)|datd) =

[ p@)L(BIdata)® (10)

The main numerical difficulty amounts to evaluatings ratio. In the case of the stochastic frontier
model, the likelihood is too complex to analytigatlalculate any such posterior summary. Numerical
integration methods are unavoidable. Most quastdfdnterest such as moments of the parameterfs or
functions of the parameters, probabilities of dertagions for the parameters, etc. can be explesse
expectations of some g(.;.) in (10). The integmtionstant of the posterior exactly correspondsdo
integral in the denominator of (10).

Note that traditional quadratures, like Cartegiemduct rules, are not helpful because they are
feasible only when the dimension@&fequal to k+m+1, is very small. However, our mddehherently
"non-standard" and the dimensionois already 5 in the simplest case of the CED m(dell) with a
Cobb-Douglas frontier depending Br(B1 B2 Bs)' (k=3), and will be much higher for more comptaxh
models. This effectively renders these type of migakintegration procedures quite useless. Thus we
resort to a popular modern Monte Carlo integrati@thod, known as Gibbs sampling.

Gibbs sampling is a technique for obtaining a danfiwm a joint distribution of a random
vectora by taking random draws from only full conditiordistributions. A detailed description of the
technique can be found in e.g. Casella and Ge&ff2], and Tierney (1994).

Suppose we are able to partit@mnto @1',...0,)" in such a way that sampling from each of the
conditional distributions (ofi; given the remaining subvectors; i=1,...,p) is treddy easy. Then the
Gibbs sampler consists of drawing from these thstions in a cyclical way. That is, given the gthw,

a@, the next draw @, is obtained in the following pass through the jsiam
a,"Vis drawn from  pfo=0,?,... a=a,?),

a,"Vis drawn from  pfzlo=0," a5=a59,... o =0, @),

a,"Vis drawn from  pfplo=0,"Y,... 0 1=0t, &),
Note that each pass consists of p steps, i.e. dgavdf the p subvectors af The starting point©, is
arbitrary. Under certain general conditions [irreifility and aperiodicity as described in e.g. Tiey
(1994)], the distribution ofi” converges to the joint distribution,o)( as q tends to infinity. Thus, we
draw a sample directly from the joint distributioman asymptotic sense. In practical applicatioes w
have to discard a (large) number of passes befomeecgence is reached. As the drawings in Gibbs
sampling are (asymptotically) from the actual pastedistribution, which is properly normalized etie

is no need to evaluate the integrating constarthéndenominator of (10) separately. So we do not
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require the evaluation of a ratio of integralsragli0) in order to "normalize" our estimates d;data).

In order to efficiently use Gibbs sampling to makesterior inferences on both the parameters
and firm efficiencies, we have to consider thetjpiosterior density d® and z, p,z|data), where z is a
TNx1 vector of all the . Now, instead of integrating out z, which wasvaido lead to a very
nonstandard likelihood function in Section 3, walkhonsider9 given z and the data, which is quite
easy to deal with. On the other hand, this implet we also need to include z in the Gibbs sampler
Note that the dimension is then NT+k+m+1, gredtantthe number of observations. Despite this high
dimensionality, the steps involved in the Gibbs\ag easy to implement, and the resulting sanipler
found in Koop, Steel and Osiewalski (1995) to haeey good numerical properties, and to be far
preferable to Monte Carlo with Importance Samplimghe particular application used. The conditional
posterior density p(z|da@},is the product of the TN independent truncatedniNd densities given by
(7), so we can very easily drawszgiven the data and the parameters. These dranisnarediately
transformed into efficiency indicators defined gsexp(-z). Thus, this NT-dimensional step of each
pass of our Gibbs sampler is quite simple. It istivetressing at this stage that the Gibbs samjoidike
the Monte Carlo approach outlined in BKOS, yielddraw of the whole vector z at each pass, and that
for this reason, the efficiency measures for afiris and all T periods are obtained as a by-prodfic
our Gibbs sampling methodology.

However, the main difference with respect to Mo@&rlo - Importance Sampling used in
BKOS is in drawingd. Now, the unwieldy form of the marginal posterip@|data), is not used at all,
and we focus instead on the conditional posteramsiies of subvectors & given the remaining
parameters and z. Given z, the frontier paraméfiers) are independent @f and can be treated as the
parameters of the (linear or nonlinear) Normalesgion model in (3). Thus we obtain the followinty

conditionals foro andp:

Plo?ldata, B ) Fe (0™ et Tl + 20~ PI,
¥ (11)
o(@|data, zg Y1 & pxp [%o-zz(yﬁ+zﬁ-h<xﬂ,B))2].
X (12)

The full conditional posterior densities@f(j=1,...,m) have the general form
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p((p] |data! Z(P(_j) )j fG ((pJ | 1 + Z Wtij ’ g]) exd- (Plz Zti Dtil)) (13)
t,i t,i
where

= Wi
Dir D @

for r=1,...m (x=1 when m=1) andp; denotesp without its jth element. Since 1, the full
conditional ofe, is just Gamma with parameters 1+NT anptizgD11.+... +zyDvi. Of course, the full
conditionals for thez are given by (7).

Depending on the form of the frontier and on takies of ws for j>2, the full conditionals for
B and forq (j=2,...,m) can be quite easy or very difficultdoaw from. Drawing from nonstandard
conditional densities within the Gibbs sampler ieggispecial technigues, like rejection methodher
Metropolis-Hastings algorithm [see e.g. Tierney9dPor O'Hagan (1994)]. These procedures imply a
substantial added complexity in the numerical irdégn and require additional input from the user.
Therefore, we stress two important special casesemonsiderable simplifications are possible:
(i) linearity of the frontier,
(i) 0-1 dummies for y (j=2,...,m).

If h(xyB)=xiB then (12) is a k-variate Normal density, possitilyncated due to regularity

conditions. That is, we have

p(Bldata, z5* Y1 1 ¥ BIf.0* (X)), (14)

where

B=(X'X)"X'(y +2),

and y and X denote a NTx1 vector gfwand a NTxk matrix withgg as rows, respectively.
Cobb-Douglas or translog frontiers serve as exasnpldinearity in3; see Koop, Steel and Osiewalski
(1995) and KOS (1997a,1997c¢).

The dichotomous (0-1) character of the variablgplagning efficiency differences v

i=2,...,m) greatly simplifies (13) which simply lmoes a Gamma density:
p(p,|data, zg) ) Fa(@l1+> wa, 9T D wazi Dy), (15)
t,i t,i

From the purely numerical perspective, it paysith@omize these original variables iR which are
not 0-1 dummies.

The above discussion confirms that the stochéstitier cost models considered in this paper
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can be analyzed using Gibbs sampling methods.ihaten though the marginal posterior® aind the

Z;s are unwieldy, the conditionals for a suitabldipan of the set of parameters should be mucheeasi
to work with. By taking a long enough sequence wfcsssive draws from the conditional posterior
densities, each conditional on previous draws fthe other conditional densities, we can create a
sample which can be treated as coming from the paisterior distribution. The posterior expectatidén
any arbitrary function of interest, @j¢:data), can be approximated by its sample meabaged on M

passes.

5. An Empirical Application: Cost Effciency of Bank Branches

We illustrate the Bayesian stochastic frontiedysiga using the data from N=58 branches of one
of Polish commercial banks. We use only cross-@eatidata (T=1; first quarter of 1997) and thus the

time subscript t will be omitted. Our model is

VC, Wi om Wi €| Wi al
In( o j :O(O+0(1In(—"C j+azln( £ p}ﬂxsln(—’”j

Wi,Bor Wi,Bor Wi,Bor Wi,Bor (16)
+a, In(K,)+0sIn(Q,) +aIn*(Q)-v +z, i=1K ,N,

where the following notation is adopted:
VC = cost of labor (personnel expenses) + costomputers, software and other goods and services
purchased from outside suppliers + cost of findruzpital,
Wiap= price of labor = (personnel expenses)/(humbdulbfime equivalent employees),
Wpep = price of deposits = (interest expense on degpgsiblume of deposits),
Wgor = price of money "borrowed" from other branches,
Wcom = average price of computers, software and othedg and services purchased by the bank from
outside suppliers,
K = book value of buildings,
Q = aggregate volume of different loans + the exoésleposits over loans (if positive).

In the specification given above, we follow thecraeconomic analysis of Sealey and Lindley
(1977) who view the bank as using labor, physiegital, and deposits to produce earning assets Thu
we use deposits and other borrowed money as iffinascial capital), and income generating money
as the aggregate product of the bank. This apprdtEn called the intermediation approach) hasbee
adopted in many empirical studies, using economasiwell as mathematical programming tools; see
Akhaiven, Swamy, Taubman and Singamsetti (1997)gd&e(1993), Berger and Humphrey (1991),
Cebenoyan, Cooperman, Register and Hudgins (1®¥8jsch (1993), English, Grosskopf, Hayes
and Yaiswarng (1993), Grabowski, Ragan and Rezmai®93), Hughes and Mester (1993),
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Humphrey (1993), Kaparakis, Miller and Noulas (19Mester (1993), Muldur and Sassenou (1993).

As a consequence of the approach we follow, thal teariable cost VC includes both
operating and interest costs. Our product vari@bleomprises loans to individuals, commercial and
industrial loans, and the excess of deposits ovend (if positive). The latter component of our
aggregate product reflects the fact that the biemoperate within the bank, and their excessivesitp
can be used by those branches which lack fundgdiantial loans. In fact, branches tend to speeali
either in the acquisition of financial capital fraepositors or in loaning funds. Branches fromfitst
group ("depository" branches) provide funds, whack used by branches from the other group. These
funds are provided at a constant price, fixed leylnk and only used to correct the calculatiothef
operating profit of a branch. Thus, for a "depasgitdoranch, the volume of its excess funds can be
treated as a product, because it increases thelatalt profit of that branch. On the other hand th
money is an input for the branches which lack fuied$oans; its price (w) is constant over branches.
Also, the price of computers, software and oth@mdgoand services purchased by the bank from outside
suppliers (Wo,n) can be treated as constant over branches aspuainases are decided on the level of
the bank which chooses the supplier (of e.g. harehar software); this input price is negociatedhsy
management of the bank and is the same for althesn

In (16) we assume that some part of physical abfigpresented by buildings) is a fixed input,
which enters our cost frontier directly (and nabtigh its price). Hence (16) is a short-run speaiifon
which tends to explain the variable cost (VC) dfranch. Since two input prices dy) i (Wgo) are

constant over units (branches), the estimated &drour stochastic frontier model is

IN(VC,) =B, +B, (W, pep ) +BsIn(W, ) +BLIN(K ) +BIn(Q,) +B4IN%(Q ) - v, +
i=LK,N,

4 (17)

where:
B =a; forj=2,...,6; B1=00+adn(Weon) + [1-(01 + O3 + O3)]IN(Weqr).

The functional form in (16) was suggested by Nexl§1963) and used by Christensen and
Greene (1976) in modeling costs of electric yttidbmpanies in the US in 1970. It is based on thiebC
Douglas specification, but permits returns to staleary with Q. The returns to scale coefficiean de

calculated from (17) as

RTS =& = (B, +28,In(Q)) " i=1K , N, (18)
and it relates to scale changes caused by propakiitcreases in variable inputs alone. We alsal e
full translog form (with 15 free coefficients) iestd of the specification in (17), but we facedoser
identification problems due to the limited numbgobservations (N=58).

As regards the economic regularity conditions, bgemeity in factor prices is imposed in (16)
and thus is assured in (17); monotonicity in priwesild requiren, o5, 03 >0 anda;+a,+ az <1 in (16),

which leads t@,, Bz >0 andB,+{3; <1 in (17). Given Q and factor prices, an incraaghe amount of K,

10
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the fixed input, should be compensated by a deer@asther inputs, leading to a smaller variablst,co
thus we expedd,<0. Obviously, we also require that R¥&for all i, but this condition is always met in
practice. We impose all these regularity condititmeugh the prior density f@= (B, ...Be)’. That is,
we assume the prior structure in (8), whep? & the indicator function of the restrictions pn

The first model we estimate corresponds to theragson that all branches have the same prior
distribution of inefficiency, i.e. we have the CEfpecification (m=1, no exogenously modelled
differences in cost efficiency). We take®.7 as the prior median of efficiency. As regaitus prior
hyperparameters for precision, we assug¥sn10° which leads to a very diffuse Gamma distribution
(with mean 1 and variance 2*)@eflecting little prior knowledge about this pareter.

The final posterior results for our 66-dimensioredtor of unknown parameters and efficiencies
were obtained using 2*1@ibbs passes; the sampler converged quickly asdvesy stable, indicating
that the results could have been based on a mucteshun. Table 1 presents the posterior means and
standard deviations of the parameters of the costiér. As regards factor prices, the interest at
deposits (i.e. the price of financial capital) eésd¢he strongest influence on variable cost. Theabthe
price of labor is less evident because of the nmamhller posterior mean and the significantly larger
standard deviation. We can indirectly estimatedin@ of the elasticities with respect to the other t
factor prices (which are constant over branched)@s+33); the posterior mean and standard deviation
of this parameter is 0.205 and 0.110, respectivature 1 shows the marginal posterior densitiegh®f
elasticities with respect to factor prices.

The regularity restrictions imposed through thérpdistribution were binding fof3; and,
especially, fof3;. The role of the fixed factor (buildings) in exipliag the variable cost is very small (if
any). Wher3, was left unrestricted, its posterior mean wastp@sibut this had almost no consequence
for our inference on other quantities of interest.

Our specification permits the elasticity of vat@lsost with respect to @;, to vary with Q.

Table 2 presents the posterior means and standaratidns ofe; =3 + 23 In(Qi)and of efficiency

indicators = exp(-2) for all branches ordered by increasing productioraddition, Table 2 provides
the information whether a given branch had moresiépthan loans (w=0) or not.

Our returns to scale measure (18), evaluatedeapdisterior means ¢ and g, is plotted in
Figure 2 against the values of our aggregate ptoddlse range covering the sample points. 1% asze
of variable cost is associated with about 1.23 éteiase of production for the smallest branch, %08
increase of production for the two medium brancles, about 0.98 % increase for the largest branch.
For almost all branches, our estimates of RiF& greater than one.

We assumed that, a priori, there is about 50%aeghtrat cost efficiency of any given branch is
below 0.7. Our data set points at much higher iefity and leads to the average posterior mean of r

equal 0.924 with 0.044 as the average posteriodatd deviation. However, the individual posterior

11
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means are quite spread, ranging from 0.694 to ORigRre 3 presents the marginal posterior dessitie
p(r|data) for the branches with the maximum, minimunth average posterior means ofTihe densities
are a bit diffuse as our inference is based awiihail cross-section and, in a sense, we have iy
observation for each estimated efficiency. Thiswsh@ne of advantages of our Bayesian approach
which gives us a direct and easily understandatsduation of uncertainty in terms of marginal
posterior densities. Using just one cross sectiem means that our inference on individual efficig
levels is somewhat sensitive to our prior assumptid@aking =0.95 (instead of 0.70) leads to much
more uniformly spread posterior means, ranging foo8®9 to 0.975, but with almost the same average
(0.933) and the same ranking of branches as=£0r70.

A closer look at Table 2 reveals that "depositdmanches tend to be more efficient than the
others. This suggests that;wnay be an important variable for explaining systgerdifferences in cost
efficiency. We used the methodology outlined intees 3 and 4 to estimate the VED specification
with m=2, w;=1 and w, as in Table 2. The most probable values of tharpater capturing systematic
differences in efficiencyg, (see (4)), lie below 1. The posterior mean anddsted deviation of Ing) is
-1.17 and 0.32, respectively, indicating that "dsooy" branches are significantly more efficiefihe
results for our VED case are very similar to thesopresented above for the CED model, excepthbat t
VED specification shows more variability in effioigy levels and much less in the RESOur
empirical conclusions should be treated with cautie we base them on only one cross section of 58
units. We expect to gain insight into the compéicdaissues of measuring cost efficiency of bank

branches by using panel data and a more sophéstiG@intier model.

0. Conclusion

In this paper, we have reviewed a Bayesian arsabfsstochastic frontier models, arguing that
Gibbs sampling can be used to greatly reduce timepgtational burden inherent to this analysis.
Following KOS (1994, 1997a, 1997b, 1997c), we hstvewn how the posterior conditional densities
can be used to set up a Gibbs sampler. The steucfuthe Gibbs sampler follows naturally from
viewing the inefficiency terms as additional parterein a regression model, see Fernandez, Osléwals
and Steel (1997). In important special cases altitionals are either truncated Normal, Normal or
Gamma distributions which leads to enormous contiputa gains.

We have applied the Bayesian methodology to mak&egor inference on the technology and
cost efficiency of 58 branches of one of PolishksarOur preliminary results, based on one cross-
section and a relatively simple cost frontier, @adé increasing returns to scale (varying withitfach

output level) and systematic differences in efficig explained by the relation between the volufne o
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loans and the financial capital input.

The statistical rigour and empirical flexibilityf @ur Bayesian approach encourage us to

consider a much more complicated cost frontier hade to estimate it using panel data.
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Table 1. The posterior means and standards deviatithe parameters of model (17).

Parameter E(.|data) D(data)
B: 4.034 8.713

B, 0.632 0.062

Bs 0.163 0.103

B. -0.006 0.005

Bs -0.057 0.946

Be 0.027 0.026
Var(v)= o 0.0103 0.0044
E(z)=A=q" 0.121 0.031

Table 2. The posterior means and standards deviatioranch-specific characteristics.

| Wi E(g;|data) D¢ |data) E(r |data) D(r|data)
1 1 0.813 0.113 0.794 0.114
2 1 0.824 0.103 0.894 0.081
3 1 0.862 0.068 0.958 0.038
4 1 0.863 0.067 0.811 0.089
5 0 0.869 0.062 0.939 0.048
6 0 0.872 0.059 0.945 0.045
7 0 0.875 0.057 0.942 0.047
8 0 0.877 0.055 0.937 0.050
9 1 0.877 0.055 0.790 0.090
10 0 0.883 0.050 0.900 0.066
11 0 0.884 0.049 0.935 0.050
12 1 0.892 0.043 0.843 0.081
13 1 0.892 0.043 0.970 0.029
14 0 0.893 0.042 0.944 0.045
15 0 0.894 0.042 0.953 0.040
16 0 0.898 0.038 0.906 0.063
17 0 0.899 0.038 0.940 0.047
18 1 0.899 0.037 0.891 0.070
19 0 0.902 0.036 0.948 0.043
20 1 0.908 0.032 0.942 0.046
21 0 0.912 0.030 0.906 0.063
22 0 0.913 0.029 0.949 0.042
23 0 0.916 0.028 0.945 0.045
24 1 0.916 0.028 0.834 0.082
25 1 0.918 0.028 0.904 0.064
26 0 0.918 0.027 0.945 0.044
27 1 0.922 0.026 0.905 0.064
28 1 0.922 0.026 0.694 0.090
29 1 0.923 0.026 0.799 0.087
30 1 0.923 0.026 0.895 0.066
31 1 0.924 0.026 0.852 0.078
32 0 0.925 0.026 0.948 0.043
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R E(g;|data) D¢ |data) E(r; |data) D(r|data)
33 0 0.926 0.026 0.936 0.049
34 0 0.929 0.026 0.917 0.058
35 0 0.936 0.027 0.943 0.046
36 1 0.936 0.027 0.820 0.085
37 1 0.936 0.027 0.731 0.090
38 0 0.938 0.028 0.926 0.054
39 1 0.940 0.029 0.779 0.089
40 0 0.944 0.030 0.940 0.048
41 0 0.948 0.032 0.952 0.041
42 0 0.949 0.033 0.916 0.059
43 1 0.951 0.034 0.877 0.074
44 0 0.954 0.036 0.894 0.068
45 0 0.955 0.037 0.918 0.058
46 0 0.960 0.040 0.832 0.088
47 0 0.961 0.042 0.925 0.055
48 1 0.962 0.042 0.860 0.078
49 0 0.967 0.046 0.945 0.045
50 0 0.970 0.048 0.917 0.059
51 1 0.975 0.052 0.764 0.091
52 0 0.977 0.054 0.972 0.027
53 0 0.979 0.056 0.927 0.055
54 0 0.985 0.061 0.929 0.054
55 1 0.988 0.063 0.932 0.052
56 0 0.997 0.072 0.925 0.057
57 0 1.009 0.083 0.954 0.041
58 1 1.019 0.092 0.815 0.098

Figure 1. The marginal posterior densities of theegpelasticities.
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Figure 2. The returns to scale estimate as afudi the output level.
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Figure 3. The marginal posterior densities of edigtiency f.
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