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1. Introduction

Agent-based modelling and simulation (ABMS) is a relatively

new approach to modelling complex systems composed of

interacting, autonomous ‘agents’. Agents have behaviours,

often described by simple rules, and interactions with other

agents, which in turn influence their behaviours. By mode-

lling agents individually, the full effects of the diversity that

exists among agents in their attributes and behaviours can be

observed as it gives rise to the behaviour of the system as a

whole. By modelling systems from the ‘ground up’—agent-

by-agent and interaction-by-interaction—self-organization

can often be observed in such models. Patterns, structures,

and behaviours emerge that were not explicitly programmed

into the models, but arise through the agent interactions. The

emphasis on modelling the heterogeneity of agents across a

population and the emergence of self-organization are two of

the distinguishing features of agent-based simulation as

compared to other simulation techniques such as discrete-

event simulation and system dynamics. Agent-based model-

ling offers a way to model social systems that are composed

of agents who interact with and influence each other, learn

from their experiences, and adapt their behaviours so they

are better suited to their environment.

Applications of agent-based modelling span a broad range

of areas and disciplines. Applications range from modelling

agent behaviour in the stock market (Arthur et al, 1997) and

supply chains (Macal, 2004a) to predicting the spread of

epidemics (Bagni et al, 2002) and the threat of bio-warfare

(Carley et al, 2006), from modelling the adaptive immune

system (Folcik et al, 2007) to understanding consumer pur-

chasing behaviour (North et al, 2009), from understanding

the fall of ancient civilizations (Kohler et al, 2005) to model-

ling the engagement of forces on the battlefield (Moffat et al,

2006) or at sea (Hill et al, 2006), and many others. Some of

these applications are small but elegant models, which

include only the essential details of a system, and are aimed

at developing insights into a social process or behaviour.

Other agent-based models are large scale in nature, in which

a system is modelled in great detail, meaning detailed data

are used, the models have been validated, and the results are

intended to inform policies and decision making. These

applications have been made possible by advances in the

development of specialized agent-based modelling software,

new approaches to agent-based model development, the

availability of data at increasing levels of granularity, and

advancements in computer performance.

Several indicators of the growing interest in agent-based

modelling include the number of conferences and work-

shops devoted entirely to or having tracks on agent-based

modelling, the growing number of peer-reviewed publi-

cations in discipline-specific academic journals across a wide

range of application areas as well as in modelling and

simulation journals, the growing number of openings for

people specializing in agent-based modelling, and interest on

the part of funding agencies in supporting programmes that

require agent-based models. For example, a perusal of the

programme for a recent Winter Simulation Conference

revealed that 27 papers had the word ‘agent’ in the title or

abstract (see http://www.wintersim.org/pastprog.htm).

This article provides a brief introduction to ABMS. We

illustrate the main concepts of agent-based modelling
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(Section 2), discuss some recent applications across a variety

of disciplines (Section 3), and identify methods and toolkits

for developing agent models (Section 4).

2. Agent-based modelling

2.1. Agent-based modelling and complexity

ABMS can be traced to investigations into complex systems

(Weisbuch, 1991), complex adaptive systems (Kauffman,

1993; Holland, 1995), and artificial life (Langton, 1989),

known as ALife (see Macal (2009) for a review of the influ-

ences of investigations into artificial life on the development

of agent-based modelling and the article by Heath and Hill

in this issue for a review of other early influences). Complex

systems consist of interacting, autonomous components;

complex adaptive systems have the additional capability

for agents to adapt at the individual or population levels.

These collective investigations into complex systems sought

to identify universal principles of such systems, such as

the basis for self-organization, emergent phenomenon, and

the origins of adaptation in nature. ABMS began largely

as the set of ideas, techniques, and tools for implementing

computational models of complex adaptive systems. Many

of the early agent-based models were developed using

the Swarm modelling software designed by Langton and

others to model ALife (Minar et al, 1996). Initially, agent

behaviours were modelled using exceedingly simple rules

that still led to exceedingly complex emergent behaviours.

In the past 10 years or so, available agent-based model-

ling software tools and development environments have

expanded considerably in both numbers and capabilities.

Following the conventional definition of simulation,

we use the term ABMS in this article to refer to both

agent-based simulation, in which a dynamic and time-

dependent process is modelled, and more general kinds of

agent-based modelling that includes models designed to do

optimization (see, eg, Olariu and Zomaya, 2006) or search

(see, eg, Hill et al, 2006). For example, particle swarm

optimization and ant optimization algorithms are both

inspired by agent-based modelling approaches and are used

to achieve an end (optimal) state rather than to investigate a

dynamic process, as in a simulation.

2.2. Structure of an agent-based model

A typical agent-based model has three elements:

1. A set of agents, their attributes and behaviours.

2. A set of agent relationships and methods of interaction:

An underlying topology of connectedness defines how

and with whom agents interact.

3. The agents’ environment: Agents interact with their

environment in addition to other agents.

A model developer must identify, model, and program these

elements to create an agent-based model. The structure of a

typical agent-based model is shown in Figure 1. Each of the

components in Figure 1 is discussed in this section. A

computational engine for simulating agent behaviours and

agent interactions is then needed to make the model run. An

agent-based modelling toolkit, programming language or

other implementation provides this capability. To run an

agent-based model is to have agents repeatedly execute their

behaviours and interactions. This process often does, but is

not necessarily modelled to, operate over a timeline, as in

time-stepped, activity-based, or discrete-event simulation

structures.

Figure 1 The structure of a typical agent-based model, as in Sugarscape (Epstein and Axtell, 1996).
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2.3. Autonomous agents

The single most important defining characteristic of an agent

is its capability to act autonomously, that is, to act on its

own without external direction in response to situations it

encounters. Agents are endowed with behaviours that allow

them to make independent decisions. Typically, agents are

active, initiating their actions to achieve their internal goals,

rather than merely passive, reactively responding to other

agents and the environment.

There is no universal agreement in the literature on the

precise definition of an agent beyond the essential property

of autonomy. Jennings (2000) provides a computer science

definition of agent that emphasizes the essential character-

istic of autonomous behaviour. Some authors consider any

type of independent component (software, model, indi-

vidual, etc) to be an agent (Bonabeau, 2001). In this view, a

component’s behaviour can range from simplistic and

reactive ‘if-then’ rules to complex behaviours modelled by

adaptive artificial intelligence techniques. Other authors

insist that a component’s behaviour must be adaptive, able

to learn and change its behaviours in response to its

experiences, to be called an agent. Casti (1997) argues that

agents should contain both base-level rules for behaviour

and higher-level rules that are in effect ‘rules to change the

rules’. The base-level rules provide more passive responses to

the environment, whereas the ‘rules to change the rules’

provide more active, adaptive capabilities.

From a practical modelling standpoint, based on how

and why agent-models are actually built and described in

applications, we consider agents to have certain essential

characteristics:

� An agent is a self-contained, modular, and uniquely

identifiable individual. The modularity requirement im-

plies that an agent has a boundary. One can easily

determine whether something is part of an agent, is not

part of an agent, or is a shared attribute. Agents have

attributes that allow the agents to be distinguished from

and recognized by other agents.

� An agent is autonomous and self-directed. An agent can

function independently in its environment and in its

interactions with other agents, at least over a limited range

of situations that are of interest in the model. An agent

has behaviours that relate information sensed by the agent

to its decisions and actions. An agent’s information comes

through interactions with other agents and with the

environment. An agent’s behaviour can be specified by

anything from simple rules to abstract models, such as

neural networks or genetic programs that relate agent

inputs to outputs through adaptive mechanisms.

� An agent has a state that varies over time. Just as a system

has a state consisting of the collection of its state

variables, an agent also has a state that represents the

essential variables associated with its current situation. An

agent’s state consists of a set or subset of its attributes.

The state of an agent-based model is the collective states

of all the agents along with the state of the environment.

An agent’s behaviours are conditioned on its state. As

such, the richer the set of an agent’s possible states, the

richer the set of behaviours that an agent can have. In an

agent-based simulation, the state at any time is all the

information needed to move the system from that point

forward.

� An agent is social having dynamic interactions with other

agents that influence its behaviour. Agents have protocols

for interaction with other agents, such as for communica-

tion, movement and contention for space, the capability

to respond to the environment, and others. Agents

have the ability to recognize and distinguish the traits of

other agents.

Agents may also have other useful characteristics:

� An agent may be adaptive, for example, by having rules

or more abstract mechanisms that modify its behaviours.

An agent may have the ability to learn and adapt its

behaviours based on its accumulated experiences. Learn-

ing requires some form of memory. In addition to

adaptation at the individual level, populations of agents

may be adaptive through the process of selection, as

individuals better suited to the environment proportio-

nately increase in numbers.

� An agent may be goal-directed, having goals to achieve

(not necessarily objectives to maximize) with respect to its

behaviours. This allows an agent to compare the out-

come of its behaviours relative to its goals and adjust its

responses and behaviours in future interactions.

� Agents may be heterogeneous. Unlike particle simulation

that considers relatively homogeneous particles, such as

idealized gas particles, or molecular dynamics simulations

that model individual molecules and their interactions,

agent simulations often consider the full range of agent

diversity across a population. Agent characteristics and

behaviours may vary in their extent and sophistication,

how much information is considered in the agent’s deci-

sions, the agent’s internal models of the external world,

the agent’s view of the possible reactions of other agents

in response to its actions, and the extent of memory of

past events the agent retains and uses in making its

decisions. Agents may also be endowed with different

amounts of resources or accumulate different levels of

resources as a result of agent interactions, further differen-

tiating agents.

A typical agent structure is illustrated in Figure 2. In an

agent-based model, everything associated with an agent

is either an agent attribute or an agent method that operates

on the agent. Agent attributes can be static, not change-

able during the simulation, or dynamic, changeable as the
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simulation progresses. For example, a static attribute is an

agent’s name; a dynamic attribute is an agent’s memory of

past interactions. Agent methods include behaviours, such as

rules or more abstract representations such as neural net-

works, which link the agent’s situation with its action or set

of potential actions. An example is the method that an agent

uses to identify its neighbours.

A theory of agent behaviour for the situations or contexts

the agent encounters in the model is needed to model agent

behaviour. One may begin with a normative model in which

agents attempt to optimize profits, utility, etc, as a starting

point for developing a simpler, more descriptive, but

realistic, heuristic model of behaviour. One may also begin

with a behavioural model if there is available behavioural

theory and empirical data to support the application. For

example, numerous theories and empirically based heuristics

exist for modelling consumer shopping behaviour. These

could be implemented and compared in an agent-based

model. Cognitive science and related disciplines focus on

agents and their social behaviours (Sun, 2006). Behavioural

modelling frameworks such as BDI (Belief-Desire-Intent)

combine modal and temporal logics as the basis for reactive

planning and agent action selection (Wooldridge, 2000).

In agent-based modelling applications in which learning

is important, theories of learning by individual agents or

collectives of agents become important. The field of machine

learning is another source of learning algorithms for

recognizing patterns in data (such as data mining) through

techniques such as supervised learning, unsupervised learn-

ing, and reinforcement learning (Alpaydỳn, 2004; Bishop,

2007). Genetic algorithms (Goldberg, 1989) and related

techniques such as learning classifier systems (Holland et al,

2000) are also commonly used in agent-based models.

2.4. Interacting agents

Agent-based modelling concerns itself with modelling agent

relationships and interactions as much as it does modelling

agent behaviours. The two primary issues of modelling agent

interactions are specifying who is, or could be, connected

to who, and the mechanisms of the dynamics of the

interactions. Both aspects must be addressed in developing

agent-based models.

One of the tenets of complex systems and agent-based

modelling is that only local information is available to an

agent. Agent-based systems are decentralized systems. There

is no central authority that either pushes out globally

available information to all agents or controls their beha-

viour in an effort to optimize system performance. Agents

interact with other agents, but not all agents interact directly

with all the other agents all the time, just as in real-world

systems. Agents typically interact with a subset of other

agents, termed the agent’s neighbours. Local information is

obtained from interactions with an agent’s neighbours (not

any agent or all agents) and from its localized environment

(not from any part of the entire environment). Generally, an

agent’s set of neighbours changes rapidly as a simulation

proceeds and agents move through space.

How agents are connected to each other is generally

termed an agent-based model’s topology or connectedness.

Typical topologies include a spatial grid or network of nodes

(agents) and links (relationships). A topology describes who

transfers information to whom. In some applications, agents

interact according to multiple topologies. For example, a

recent agent-based pandemic model has agents interacting

over a spatial grid to model physical contact as agents go

through daily activities and possibly pass on infections.

Agents also are members of social networks that model the

likelihood of contact with relatives and friends.

An agent’s neighbourhood is a general concept applicable

to whatever agent spaces are defined in the model. For

example, an agent could interact only with its neighbours

located close-by in physical (or geographical) space as well

as neighbour agents located close-by in its social space as

specified by the agent’s social network.

Originally, spatial agent-based models were implemented

in the form of cellular automata (CA). Conway’s Game of

Life (Gardner, 1970) is a good example. CA represent agent

interaction patterns and available local information by using

a grid or lattice environment. The cells immediately

surrounding an agent are its neighbourhood. Each cell can

be interpreted as an agent that interacts with a fixed set of

neighbouring cells. The cell (agent) state is either ‘on’ or ‘off’

at any time. Most early spatial agent-based models had the

form of a CA. Epstein and Axtell’s Sugarscape model is an

example (Epstein and Axtell, 1996). In Sugarscape, the

topology was more complex than in a simple CA. Agents

were mobile and able to move from cell to cell. The grid

essentially became the agents’ environment. Agents were

Figure 2 A typical agent.
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able to acquire resources from the environment that were

distributed spatially across the grid.

Other agent interaction topologies are now commonly

used for modelling agent interactions (Figure 3). In the

CA model, agents move from cell to cell on a grid and

no more than a single agent occupies a cell at one time. The

von Neumann ‘5-neighbour’ neighbourhood is shown in

Figure 3a; the ‘9-neighbour’ Moore neighbourhood is also

common. In the Euclidean space model, agents roam in two,

three or higher dimensional spaces (Figure 3b). Networks

allow an agent’s neighbourhood to be defined more generally.

For the network topology, networks may be static or dyna-

mic (Figure 3c). In static networks, links are pre-specified

and do not change. For dynamic networks, links, and

possibly nodes, are determined endogenously according

to the mechanisms programmed in the model. In the

geographic information system (GIS) topology, agents move

from patch to patch over a realistic geo-spatial landscape

(Figure 3d). In the ‘soup’, or aspatial model, agents have no

location because it is not important (Figure 3e); pairs of

agents are randomly selected for interaction and then

returned to the soup as candidates for future selection.

Many agent-based models include agents interacting in

multiple topologies.

2.5. Agent environment

Agents interact with their environment and with other

agents. The environment may simply be used to provide

information on the spatial location of an agent relative to

other agents or it may provide a rich set of geographic

information, as in a GIS. An agent’s location, included

as a dynamic attribute, is sometimes needed to track

agents as they move across a landscape, contend for space,

acquire resources, and encounter other situations. Complex

environmental models can be used to model the agents’

environment. For example, hydrology or atmospheric

dispersion models can provide point location-specific data

on groundwater levels or atmospheric pollutants, respec-

tively, which are accessible by agents. The environment may

thus constrain agent actions. For example, the environment

in an agent-based transportation model would include the

infrastructure and capacities of the nodes and links of the

road network. These capacities would create congestion

effects (reduced travel speeds) and limit the number of

agents moving through the transportation network at any

given time.

3. Agent-based modelling applications

3.1. The nature of agent-based model applications

Agent-based modelling has been used in an enormous

variety of applications spanning the physical, biological,

social, and management sciences. Applications range from

modelling ancient civilizations that have been gone for

hundreds of years to modelling how to design new markets

that do not currently exist. Several agent-based modelling

applications are summarized in this section, but the list

is only a small sampling. Several of the papers covered

Figure 3 Topologies for agent relationships and social interaction.
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here make the case that agent-based modelling, versus other

modelling techniques is necessary because agent-based models

can explicitly model the complexity arising from individual

actions and interactions that exist in the real world.

Agent-based model structure spans a continuum, from

elegant, minimalist academic models to large-scale decision

support systems. Minimalist models are based on a set of

idealized assumptions, designed to capture only the most

salient features of a system. Decision support models tend to

serve large-scale applications, are designed to answer real-

world policy questions, include real data, and have passed

appropriate validation tests to establish credibility.

3.2. Applications overview

Troisi et al (2005) applied agent-based simulation to model

molecular self-assembly. Agents consist of individual mole-

cules, and agent behaviours consist of the physical laws

of molecular interaction. Such agent-based modelling

approaches have found use in investigating pattern forma-

tion in the self-assembly of nano-materials, in explaining

self-organized patterns formed in granular materials, and

other areas.

In the biological sciences, agent-based modelling is used to

model cell behaviour and interaction, the workings of

the immune system, tissue growth, and disease processes.

Generally, authors contend that agent-based modelling

offers benefits beyond traditional modelling approaches for

the problems studied and use the models as electronic labo-

ratories as an adjunct to traditional laboratories. Cellular

automata are a natural application for modelling cellu-

lar systems (Alber et al, 2003). One approach uses the

cellular automata grid to model structures of stationary cells

comprising a tissue matrix. Mobile cells consisting of

pathogens and antibodies are agents that diffuse through

and interact with tissue and other co-located mobile cells.

The Basic Immune Simulator is built on a general agent-

based framework to model the interactions between the cells

of the innate and adaptive immune system (Folcik et al,

2007). Approaches for modelling the immune system have

inspired several agent-based models of intrusion detection

for computer networks (Azzedine et al, 2007) and modelling

the development and spread of cancer (Preziosi, 2003).

Emonet et al (2005) developed an agent-based simulator

AgentCell for modelling the chemotaxis processes for motile

behaviour of the E. Coli bacteria. In this multi-scale

simulation, agents are modelled as individual molecules as

well as whole cells. The model is used to study how the range

of natural cell diversity at the molecular level is responsible

for the observed range of cell movement behaviours.

In ecology, agent-based modelling is used to model diverse

populations of individuals and their interactions. Mock and

Testa (2007) develop an agent-based model of predator-prey

relationships between transient killer whales and threatened

marine mammal species (sea lions and sea otters) in Alaska.

The authors state that until now only simplistic, static

models of killer whale consumption had been constructed

because of the fact that the interactions between transient

killer whales and their marine mammal prey are poorly

suited to classical predator-prey modelling approaches.

Agent-based epidemic and pandemic models incorporate

spatial and network topologies to model people’s realistic

activity and contact patterns (Carley et al, 2006; Epstein

et al, 2007). The focus is on understanding tipping point

conditions that might lead to an epidemic and identifying

possible mitigation measures. These models explicitly con-

sider the role of people’s behaviour and interactions through

social networks as they affect the spread of infectious

diseases.

Computational social science is an emerging field that

combines modelling and simulation with the social science

disciplines (Sallach and Macal, 2001). Agent-based models

have been developed in the fields of economics, socio-

logy, anthropology, and cognitive science. Various social

phenomena have been investigated using agent-based models

that are not easily modelled using other approaches (Macy

and Willer, 2002; Gilbert and Troitzsch, 2005). Theoretical

applications include social emergence (Sawyer, 2005), the

emergence of cooperation (Axelrod, 1997), the generation of

social instability (Epstein, 2002), and the collective beha-

viour of people in crowds (Pan et al, 2007). Sakoda (1971)

formulated one of the first social agent-based models, the

Checkerboard Model, which relied on a cellular automaton.

Using a similar approach, Schelling developed a model of

housing segregation in which agents represent homeowners

and neighbours, and agent interactions represent agents’

perceptions of their neighbours (Schelling, 1978). Schelling

showed that housing segregation patterns can emerge that

are not necessarily implied or consistent with the objectives

of the individual agents. Epstein and Axtell (1996) extended

the notion of modelling people to growing entire artificial

societies through agent-based simulation in the grid-based

Sugarscapemodel. Sugarscape agents emerged with a variety

of characteristics and behaviours, highly suggestive of a

realistic, although rudimentary and abstract, society. These

early grid-based models with limited numbers of social

agents are now being extended to large-scale simulations

over realistic social spaces such as social networks and

geographies through real-time linkages with GIS.

In many economic models based on standard micro-

economic theory, simplifying assumptions are made for ana-

lytical tractability. These assumptions include (1) economic

agents are rational, which implies that agents have well-

defined objectives and are able to optimize their behaviour,

(2) economic agents are homogeneous, that is, agents have

identical characteristics and rules of behaviour, (3) the

system experiences primarily decreasing returns to scale from

economic processes (decreasing marginal utility, decreasing

marginal productivity, etc), and (4) the long-run equilibrium

state of the system is the primary information of interest.
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Agent-based modelling allows relaxing the standard assump-

tions of classical economics (Arthur et al, 1997) so the

transient states that are encountered along the way to

equilibrium can be investigated (Axtell, 2000). This interest

has spawned the field of Agent-based Computational

Economics (Tesfatsion, 2002; Tesfatsion and Judd, 2006).

Much applicable work is being done on understanding

how people make decisions in actual situations in such

fields as behavioural economics and neuro-economics. This

work offers promise in building better empirically based

models of agent behaviours that consider rational factors

and emotion.

Agent-based models are being used to analyse markets,

both existing and hypothetical. Charania et al (2006) use

agent-based simulation to model possible futures for a

market in sub-orbital space tourism. Each agent is a repre-

sentation of an entity within the space industry. Tourism

companies seek to maximize profits while they compete with

other companies for sales. Customers evaluate the products

offered by the companies according to their individual tastes

and preferences. López-Sánchez et al (2005) developed a

multi-agent based simulation of news digital markets

adapting traditional business models to investigate market

dynamics. Yin (2007) developed an agent-based model of

RockyMountain tourism applied to the town of Breckenridge,

Colorado; the model was used to explore how homeowners’

investment and reinvestment decisions are influenced by

the level of investment and amenities available in their

neighbourhoods. Tonmukayakul (2007) developed an agent-

based computational economics model to study market

mechanisms for the secondary use of the radio spectrum.

Using transaction cost economics as the theoretical frame-

work, the model was used to identify the condi-

tions for when and why the secondary use market could

emerge and what form it might take.

Archaeology and anthropology are making use of large-

scale agent-based modelling by providing an experimental

virtual laboratory for long-vanished civilizations. Kohler

et al (2005) employed large-scale agent-based simulations

based on archaeological evidence to understand the social

and cultural factors responsible for the disappearance of the

ancient Pueblo in some parts of the south-western USA.

Wilkinson et al (2007) used agent-based modelling to

understand the growth and decline of ancient Mesopota-

mians.

Agent-based models of many real-world systems tend to

consist of a mix of physical components (modelled as agents)

and social agents, termed ‘socio-technic’ systems. Examples

of such systems for which large-scale agent-based models

have been developed include traffic, air traffic control,

military command and control and net-centric operations,

physical infrastructures and markets, such as electric power

and integrated energy markets. For example, Cirillo et al

(2006) used an agent-based approach to model the Illinois

electric power markets under conditions of deregulation in

an effort to anticipate likely effects on electricity prices and

reliability.

This special issue adds to the growing list of agent-based

model applications. Qu et al use their model of egg plant

growth to promote understanding of the interactions

between plant architecture and physiological processes.

Chen and Hardoon use their model to examine cell division

and migration in the colonic crypt to better understand the

mechanisms of tumorigenesis.

4. Methods for agent-based modelling

4.1. Agent model design

When developing an agent-based model, it is useful to ask a

series of questions, the answers to which will lead to an

initial model design:

1. What specific problem should be solved by the model?

What specific questions should the model answer? What

value-added would agent-based modelling bring to the

problem that other modelling approaches cannot bring?

2. What should the agents be in the model? Who are the

decision makers in the system? What are the entities that

have behaviours? What data on agents are simply

descriptive (static attributes)? What agent attributes

would be calculated endogenously by the model and

updated in the agents (dynamic attributes)?

3. What is the agents’ environment? How do the agents

interact with the environment? Is an agent’s mobility

through space an important consideration?

4. What agent behaviours are of interest? What decisions do

the agents make? What behaviours are being acted upon?

What actions are being taken by the agents?

5. How do the agents interact with each other? With the

environment? How expansive or focused are agent

interactions?

6. Where might the data come from, especially on agent

behaviours, for such a model?

7. How might you validate the model, especially the agent

behaviours?

Answering these questions is an essential part of the

agent-based model design process. There are a variety of

approaches to designing and implementing agent-based

models. North and Macal (2007) discuss both design metho-

dologies and selected implementation environments in

depth. Marsh and Hill (2008) offer an initial methodology

for defining agent behaviours in an application for

unmanned autonomous vehicles. Overall, bottom-up, highly

iterative design methodologies seem to be the most effective

for practical model development. Modern software (and

model) development practices dictate that model design be

independent of model implementation. That is, a good
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software (model) design should be able to be implemented in

whatever computer language or coding scheme is selected.

The communication of a model, its design assumptions,

and detailed elements is essential if models are to be under-

stood and reused by others than their original developers.

Grimm et al (2006) present a proposed standard protocol for

describing agent-based and related models as a first step for

establishing a more detailed common format.

4.2. Agent model implementation

Agent-based modelling can be done using general, all-purpose

software or programming languages, or it can be done using

specially designed software and toolkits that address the

special requirements of agent modelling. Agent modelling

can be done in the small, on the desktop, or in the large,

using large-scale computing cluster, or it can be done at any

scale in-between these extremes. Projects often begin small,

using one of the desktop ABMS tools, and then grow in

stages into the larger-scale ABMS toolkits. Often one begins

developing their first agent model using the approach that

one is most familiar with, or the approach that one finds

easiest to learn given their background and experience.

We can distinguish implementation alternatives to build-

ing agent-based models on the basis of the software used.

Spreadsheets, such as Microsoft Excel, in many ways offer

the simplest approach to modelling. It is easier to develop

models with spreadsheets than with many of the other tools,

but the resulting models generally allow limited agent

diversity, restrict agent behaviours, and have poor scalability

compared to the other approaches. Some macro-level

programming is also needed using the VBA language.

General computational mathematics systems such as

MATLAB and Mathematica, which many people may be

already familiar with, can also be used quite successfully;

however, these systems provide no specific capabilities for

modelling agents. General programming languages such as

Python, Java, and C++, and C also can be used, but

development from scratch can be prohibitively expensive

given that this would require the development of many of

the available services already provided by specialized

agent modelling tools. Most large-scale agent-based models

use specialized tools, toolkits, or development environ-

ments based on reasons having to do with usability, ease of

learning, cross-platform compatibility, and the need for

sophisticated capabilities to connect to databases, graphical

user interfaces and GIS.

4.3. Agent modelling services

Regardless of the specific design methodology that is

selected, a range of services is commonly required for

implementing large-scale models that include real data and

geo-spatial environments, which are becoming more pre-

valent. Some of the more common capabilities include

project specification services; agent specification services;

input data specification and storage services; model execu-

tion services; results storage and analysis services; and model

packaging and distribution services.

Project specification services provide a way for modellers

to identify which sets of resources (eg files) constitute each

model. There are three common approaches, depending on

how much support the implementation environment pro-

vides for the modeller: (1) the library-oriented approach, (2)

the integrated development environment (IDE) approach,

and (3) the hybrid approach.

In the library-oriented approach to project specification,

the agent modelling tool consists of a library of routines

organized into an application programming interface (API).

Modellers create models by making a series of calls to the

various functions within the modelling toolkit. It is the

responsibility of modellers to ensure that the correct call

sequences are used and that all of the required files are

present. In exchange, modellers have great flexibility in the

way that they define their models. Examples include the Java

archives (JAR) used by Repast for Java (North et al, 2006;

ROAD, 2009) or MASON (GMU, 2009); the binary

libraries used by Swarm (SDG, 2009); and the Microsoft

.NET assemblies used by Repast for the Microsoft.NET

framework (North et al, 2006; ROAD, 2009).

The IDE approach to project specification uses a code or

model editing program to organize model construction.

IDE’s also provide a built-in mechanism to compile or

interpret and then execute models. There are several options

including combined ‘one file’ IDEs, factored multiple-file

IDEs, and hybrid approaches. Combined ‘one file’ IDEs use

a single file to describe each model. An example is NetLogo

(Wilensky, 1999; NetLogo, 2009). These systems are often

quite easy to initially learn and use, but do not always scale

well to larger and more complex models as compared to the

other project specification approaches. The scalability issues

include difficulties supporting team development, difficulties

with editing increasingly large model files, and difficul-

ties in organizing and reorganizing model code as it grows.

Factored multiple-file IDEs use a set of files to describe each

model. They usually include some type of built-in file

manager along with the editor. Factored multiple-file IDEs

can use either custom development environments which are

specially built for a given agent platform; standards-based

environments such as Eclipse (Eclipse Foundation, 2009), or

a mixture of custom and standards-based environments.

Support for features like team development (ie two or more

modellers simultaneously creating a model), version control

(ie automated tracking of code changes), and refactoring (ie

automated tools for reorganizing code) helps to make these

environments more powerful than typical combined ‘one file’

IDEs. In many cases, these environments require more

knowledge to use than ‘one file’ IDEs but they also tend to

scale more effectively. However, they may be less flexible
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than hybrid systems in the more extreme cases of model size

and complexity.

The hybrid approach to project specification allows

modellers to use the environment as either a stand-alone

library or a factored multiple-file IDE. Examples include

Repast Simphony (North et al, 2007; ROAD, 2009) and

AnyLogic (XJ Technologies, 2009). In exchange for this

added flexibility, these environments may require more

knowledge to use than other types of IDEs but they also

tend to scale the most effectively.

Agent specification services provide a means for modellers

to define the attributes and behaviours of agents. These

services can use general purpose languages such as Cþþ or

Java; textual domain-specific languages (DSLs) such as

Mathematica or MATLAB (Macal, 2004b); or visual DSLs

such as the Repast Simphony flowchart shown in Figure 4.

Along with or included in the language features, some

implementation environments provide special support

for features such as adaptation and learning (eg neural

networks); optimization (eg genetic algorithms); social net-

works; geographical information systems (GIS); and systems

dynamics.

Input data specification and storage services allow users to

setup and save data that defines model runs. Input data

setup can be done visually by pointing and clicking to

create agents, by using custom programs to create agents in

specified patterns, or by using external input data files

in customized or standardized file formats. The standard

storage formats can include extensible markup language

(XML) files, spreadsheets, databases, or GIS files. Some

Figure 4 A Repast Simphony agent behaviour flowchart.
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systems also allow ‘checkpointing’, which is saving and

restoring the current state of a model at any time during

execution.

Model execution services provide a means for model users

to run and interact with simulations. Interactive execution

can include viewing and modifying the attributes of agents

(ie agent ‘probing’); displaying agents in two and three

dimensions; and running models without visual displays to

quickly generate data (ie ‘batch execution’). Batch execution

can include the execution of multiple model runs on one

local computer or on clusters of computers.

Results storage and analysis services allow model users to

conveniently examine the results of individual model runs or

sets of runs. Major analysis mechanisms include visualiza-

tion, data mining, statistics, and report generation. Most

implementation environments allow modellers to produce

output text or binary files during execution, primarily using

programming. These output files can then be manually read

into separate external analysis tools. Some implementation

environments such as Repast Simphony (North et al, 2007;

ROAD, 2009) and AnyLogic (XJ Technologies, 2009)

include either built-in analysis tools or point-and-click

mechanisms to create output files and directly invoke

external analysis tools.

Model packaging and distribution services allow mod-

ellers to disseminate completed models to end users. There

are a range of methods for packaging models including

embedded-platform packaging, IDE-based packaging,

and stand-alone packaging. Once models are packaged there

are several ways to distribute the results including file-based

distribution, installer-based distribution, and web-based

execution. In principle, any of the distribution options

can be used with any of the packaging approaches.

Embedded-platform packaging places models within larger

surrounding software systems. This kind of packaging

is often used for models that are built using the library

project specification approach. This approach usually

requires substantial software development knowledge.

IDE-based packaging occurs when a model is developed

using the IDE project specification approach and is then

disseminated by distributing copies of the IDE with

the model inside. This approach usually allows users to

examine and change the model when they receive it. It

also sometimes requires greater skill on the user’s part

compared to the other packaging approaches since IDEs

can be somewhat complex. Stand-alone packaging binds a

model into a program separate from the development

environment that was used to create it. This new program,

commonly called the ‘runtime version’ of the model, can

be distributed to end users. This approach is usually the

simplest for users who want to execute the model but not

examine or change the code.

File-based distribution places the files that constitute the

model in a user accessible location such as a CD, DVD, file

server, or website. These files can be individually accessed

or distributed in a compressed or uncompressed archive.

Installer-based distribution uses a custom program which

copies the model onto the user’s computer and then

configures it for execution. Installers usually have graphical

wizard-based interfaces that make installation more reliable

than for the other distribution approaches because of the

ability of the installation software to automatically fix

common configuration issues. Web-based execution embeds

a packaged model into a web page for execution from within

a browser. Web-based execution is differentiated from

simply making raw files or an installer available from a

website in that it requires models to execute from within a

browser or browser plug-in rather than simply being

downloaded and installed from an online source. Web-

based execution is often the easiest and fastest distribution

method for users. However, reliability can suffer because of

the varying functionality of the wide range of browsers and

browser plug-ins that are in common use today.

This section shows that there is a wide range of ways to

implement agent-based models. When evaluating agent

modelling tools, it should be noted that no one approach

is universally better for all situations. Rather, different kinds

of implementation approaches and environments have

various strengths and weakness depending on the modelling

questions of interest. Furthermore, it is common to use

different tools during different stages of model development.

For example, a modeller might start with a combined ‘one

file’ IDE for initial model prototyping and then later

transition to a factored multiple-file IDE as the model scales

up in size and complexity. Therefore, the existing range of

tools can best be thought of as a portfolio of options from

which good selections can be made for each modelling

question and stage.

5. Summary and conclusions

ABMS is a new approach to modelling systems comprised of

autonomous, interacting agents. There are a growing num-

ber of agent-based applications in a variety of fields and

disciplines. ABMS is particularly applicable when agent

adaptation and emergence are important considerations.

Many agent-based software and toolkits have been devel-

oped and are widely used. A combination of several syner-

gistic factors is moving ABMS forward rapidly. These

factors include the continuing development of specialized

agent-based modelling methods and toolkits, the widespread

application of agent-based modelling, the mounting collec-

tive experience of the agent-based modelling community, the

recognition that behaviour is an important missing element

in existing models, the increasing availability of micro-data

to support agent-based models, and advances in computer

performance. Taken together, these factors suggest that

ABMS promises to have far-reaching effects into the future

on how businesses use computers to support decision-
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making, government uses models to make and support

policy, and researchers use electronic laboratories to further

their research.
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