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Abstract: Scientists and engineers seek to understand how real-world systems work
and could work better. Any modeling approach devised for such purposes must sim-
plify reality. Ideally, however, the modeling approach should be flexible as well
as logically rigorous; it should permit model simplifications to be appropriately
tailored for the specific purpose at hand. Flexibility and logical rigor have been
the two key goals motivating the development of Agent-based Computational Eco-
nomics (ACE), a completely agent-based modeling approach adhering to seven spe-
cific modeling principles. This perspective provides an overview of ACE, a brief
history of its development, and its role within a broader spectrum of experiment-
based modeling approaches.

Key Words: Agent-based computational economics (ACE), Complete agent-based
modeling (c-ABM), Modeling principles

JEL Codes: C6, C7, D9, E7
Economics Working Paper #21004
https://lib.dr.iastate.edu/econ workingpapers/126
Iowa State University Digital Repository
0riginal Release Date: 29 March 2021

Latest Revision: 22 January 2022

1 Introduction

The term Agent-Based Modeling (ABM) refers to a class of modeling approaches
designed for the study of systems whose dynamics are driven by successive inter-
actions among heterogeneous entities. Such systems range from the particle sys-
tems studied in physics to the coupled human and natural systems studied in socio-
ecology. Consequently, the pathways leading to the development of ABM cannot
be depicted as a tree, or even as a gnarly bush, but instead must be envisioned as a
forest of diverse trees supported by a complex interconnected network of roots.

Many previous authors have ably explored the various origins and meanings of
ABM; see, for example, Arthur [1], Axtell and Farmer [3], Chen [5, 6, 7], Ep-
stein [12], Epstein and Axtell [13], Gallegati [14], Kirman [18], Railsback and
Grimm [21], and Wilensky and Rand [45]. The purpose of this perspective is much
more modest in scope: namely, to discuss the origin and development of one partic-
ular variant of ABM called Agent-based Computational Economics (ACE) [36].
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I chose the name “ACE” in Ames, Iowa, in August 1996, following my participa-
tion in a satellite meeting held at the end of the Second International Conference on
Computing in Economics and Finance (CEF1996, Geneva, Switzerland, June 26-28,
1996). A key purpose of this satellite meeting was to discuss how ABM could be
promoted within the economics profession. I came away from this meeting deter-
mined to develop a website devoted to this objective, and I needed a website name
that would clearly convey to other economists that this modeling approach differed
in essential regards from then-standard economic modeling approaches.

Through the years, however, I have come to realize that my conception of ACE
modeling also differs in essential regards from other variants of ABM. For ex-
ample, I have always considered an ACE agent to be a software entity within a
computationally-constructed world, characterized at each instant by its current state
(data, attributes, and/or methods). Moreover, in keeping with the standard dictio-
nary definition for agent, I have always required an ACE agent to be capable of
affecting the trajectory of outcomes for its world. Subject to these conditions, I have
permitted ACE agents to represent a broad range of entities: e.g., individual life-
forms, social groupings, institutions, and/or physical phenomena. However, I have
always insisted that the resulting ACE model be completely agent-based in the fol-
lowing sense: Given initial modeler-specified agent states, all model dynamics are
driven by agent interactions.

Although I have consistently viewed these modeling principles to be necessary
underpinnings for any ACE model, clearly these principles are not specific to eco-
nomic systems. Rather, together with additional supporting principles, they char-
acterize a completely agent-based variant of ABM that I now refer to as complete
Agent-Based Modeling (c-ABM) [35].

Section 2 of this perspective2 provides an axiomatic characterization of c-ABM,
expressed in terms of seven specific modeling principles. The potential usefulness
of c-ABM for the study of general real-world systems is considered in Section 3.
ACE is defined in Section 4 to be the specialization of c-ABM to economic systems.
The ability of ACE agents to embody wide ranges of rationality and different forms
of stochasticity is addressed in Sections 5 and 6; and four current ACE research
directions, delineated by objective, are described in Section 7. The history of ACE
is briefly outlined in Section 8, documented in part by archived copies of ACE news
notes [37] that I distributed from 1997 through 2017.

Finally, the concluding Section 9 considers two intriguing directions for fu-
ture research. First, the actions undertaken by the constituent agents of a c-ABM-
modeled world can be based on non-constructive beliefs (“leaps of faith”) as well as
on constructive beliefs resulting from directly observed or experienced world events.
This capability could facilitate the study of real-world systems that are complex
blends of physical and social processes. Second, human-subject studies and c-ABM
constitute the two polar end-points for a promising spectrum of hybrid human/agent
experiment-based modeling methods in need of more systematic exploration.

2 Sections 2–7 of this perspective are based in part on [32, 35, 36].
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2 Complete Agent-Based Modeling (c-ABM)

Roughly defined, complete Agent-Based Modeling (c-ABM) is the computational
modeling of processes as open-ended dynamic systems of interacting agents. Here
an “agent” for a system is broadly construed (in a traditional dictionary sense) to be
any entity capable of affecting the trajectory of outcomes for this system. Agents can
thus range from sophisticated strategic decision-making entities (e.g., “humans”) to
physical phenomena with no cognitive function (e.g., “weather”).

An axiomatic characterization of c-ABM is given below in terms of seven mod-
eling principles. These principles are not strictly independent of each other. How-
ever, each principle stresses a distinct c-ABM feature, as indicated by its caption.
Together, these seven modeling principles reflect the primary goal of many agent-
based modelers: namely, to be able to study real-world dynamic systems as histori-
cally unfolding events, driven by agent interactions.

(MP1) Agent Definition: An agent is a software entity within a computationally-
constructed world, characterized at each instant by its current state (data, at-
tributes, and/or methods), that is capable of affecting world outcomes through
expressed actions.
(MP2) Agent Scope: Agents can represent a broad range of entities, e.g., indi-
vidual life-forms, social groupings, institutions, and/or physical phenomena.
(MP3) Agent Local Constructivity: An intended action of an agent at any given
instant is determined by the agent’s state at this instant.
(MP4) Agent Autonomy: All agent interactions (expressed agent actions) at
any given instant are determined by the ensemble of agent states at this instant.
(MP5) System Constructivity: The state of the world at any given instant is
determined by the ensemble of agent states at this instant.
(MP6) System Historicity: Given an initial ensemble of agent states, any subse-
quent world event (change in agent states) is induced by prior and/or concurrent
agent interactions.
(MP7) Modeler as Culture-Dish Experimenter: The role of the modeler is
limited to the configuration and setting of initial agent states, and to the non-
perturbational observation, analysis, and reporting of world outcomes.

The first six modeling principles (MP1)–(MP6) characterize an agent-based
model in initial-value state-space form.3 More precisely, they specify how an ensem-
ble of agent states dynamically evolves, starting from an initially given ensemble of
agent states, where each agent state consists of data, attributes, and/or methods.
This dynamic evolution is required to exhibit four essential real-world properties:
namely, agent local constructivity, agent autonomy, system constructivity, and sys-
tem historicity. The seventh modeling principle (MP7) limits the role of the modeler
in the modeling process to the configuration and setting of initial agent states.

3 An initial-value state-space model is a state-space model for a dynamic system S that runs for-
ward through time, commencing at some specified start-time to, with all boundary conditions tak-
ing the form of constraints on the state of S at the start-time to.
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Considered as a whole, the seven modeling principles (MP1)–(MP7) thus char-
acterize a complete agent-based model as a computational laboratory permitting
the exploration of a computationally-constructed world. This exploration process is
analogous to biological experimentation with cultures in Petri dishes. The modeler
configures and sets initial conditions for the world. The modeler then steps back,
assuming the role of pure observer, as subsequent world events are driven solely by
the interactions of the world’s constituent entities.

3 c-ABM: A Mathematics for the Real World?

Modeling flexibility and logical rigor have been the two key goals motivating my
development of the seven c-ABM modeling principles (MP1)–(MP7) presented in
Section 2. First, having entered into economics at the graduate level, following an
undergraduate degree in history, I wanted to be able to model and study real-world
economic systems as historical processes whose “human” participants were able to
“breathe.” Second, as a mathematical economist trained at the University of Min-
nesota, I wanted this mode of economic modeling to be clearly delineated as a rig-
orous flexible alternative to the highly constrained modes of economic modeling I
had been encountering in economic textbooks and journals.

Refs. [32, 35] provide careful justification and illustrative support for the con-
tention that c-ABM provides a flexible and rigorous modeling approach for the study
of real-world economic systems involving complex intertwined social and physical
processes. An interesting speculative question is the extent to which c-ABM pro-
vides a useful modeling approach for the study of real-world systems in general.

Any system modeled in accordance with (MP1)–(MP7) is an open-ended dy-
namic system of interacting agents, each characterized by its own state (data, at-
tributes, and/or methods). These agents can represent any entity capable of affect-
ing the trajectory of system outcomes: e.g., individual life-forms, social groupings,
institutions, and/or physical phenomena. The interactions of these agents induce all
dynamics (state changes) for the modeled system, starting from initial agent states
configured and set by the modeler. As a result of these interactions:

• each agent experiences “time” locally, as an unfolding sequence of events;
• the dimension and content of agent states can change;
• agents can subsume other agents as components;
• agents can break apart into smaller component agents;
• new agents can be created;
• existing agents can be destroyed.

Examples of state-changes for real-world agents include: changes in sensed
surroundings; changes in recorded observations; changes in physical attributes;
changes in beliefs; and belief-induced changes in action rules. Examples of real-
world agent subsumption include: the formation of molecules through atomic bond-
ing; the transition from prokaryotic to eukaryotic forms of organisms; the parasitism
of one organism by another; the hiring of employees by corporate firms; the acqui-
sition of new members by existing organizations; and the merger of organizations.



5

Examples of real-world agent creation and destruction include: volcanic erup-
tions; natural birth and death; the invention and obsolescence of products; and the
establishment and disbanding of organizations. Creation and destruction events for
populations of agents can be computationally modeled by means of evolutionary
algorithms taking various forms.

Note, in particular, that models adhering to (MP1)–(MP7) permit the study of
real-world systems that evolve from initial conditions with:

• no fixed “space” apart from persistent spatial agents (if any) that modelers ini-
tially configure;

• no fixed “time process” apart from persistent event-scheduler agents (if any) that
modelers initially configure;

• no fixed “physical laws” apart from persistent agent methods (if any) that mod-
elers initially configure.

The ability to model real-world systems without having to presuppose a fixed exter-
nally given “space” or “time process” permits the study of open perplexing questions
in physics regarding the existence (or not) of these concepts as fundamental fixed
aspects of the physical universe.

Persistent agent methods that a researcher might want to initially configure for
a modeled real-world system include methods that support self-organization and
natural selection processes. These types of processes appear to be a basic driver of
real-world agent interactions at all levels of agent encapsulation that humans can
currently perceive. An interesting question is whether they also drive agent interac-
tions at levels beyond current human perception, such as at a quantum level.

Finally, c-ABM permits the “thickly constructive” modeling of real-world sys-
tems in the following sense: Given initial agent states, to an external observer the
model might appear to consist of successive changes in agent states constructively
determined by successive agent interactions. In actuality, these successive agent in-
teractions are determined by successive agent states whose evolution can entail non-
constructive “leaps of faith.”

A more precise characterization of c-ABM as a thickly-constructive modeling
method is as follows. By agent definition, the state of an agent at any given instant
consists of data, attributes, and/or methods. By agent local constructivity and au-
tonomy, all agent interactions at a given instant are determined by the ensemble of
agent states at this instant. By system historicity, any world event (change in agent
states) at a given instant is induced by prior or concurrent agent interactions. How-
ever, an agent’s state at a given instant can include acquired or evolved attributes
taking the form of non-constructive beliefs, i.e., beliefs that assign truth values to
propositions that are not constructively decidable. Consequently, non-constructive
agent beliefs (“leaps of faith”) at any given instant can affect future world events.

Models satisfying the seven c-ABM modeling principles (MP1)–(MP7) thus per-
mit non-constructive agent beliefs to function as possible causal referents for Carlo
Rovelli’s “world...of events, not things” [23, Ch. 6], Gilbert Ryle’s “ghost in the
machine” [24, pp. 11-24], and Lee Smolin’s “seers” [26, Part IV.18].
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4 Agent-Based Computational Economics

Agent-based Computational Economics (ACE) is the specialization of complete
Agent-Based Modeling (c-ABM) to economic systems. More precisely, ACE is the
modeling of economic systems in accordance with the seven c-ABM modeling prin-
ciples (MP1)–(MP7) presented in Section 2.

Each ACE model must therefore be an initial-value state-space economic model
satisfying the agent definition (MP1), the agent scope requirement (MP2), and
the five additional requirements (MP3)–(MP7): namely, agent local constructivity;
agent autonomy; system constructivity; system historicity; and modeler as culture-
dish experimenter. As detailed in [32], ACE thus permits economists to study real-
world economies as open-ended locally-constructive sequential games:

Modern economic theory also relies heavily on state-space models. However,
these models typically incorporate modeler-imposed rationality, optimality, and/or
equilibrium conditions that could not (or would not) be met by locally-constructive
and autonomous agents interacting within economic systems that satisfy system
constructivity and system historicity. For example, strong-form rational expecta-
tions assumptions require the ex ante expectations of decision-makers to be con-
sistent with ex post model outcomes. The determination of a rational expectations
solution is therefore a global fixed-point problem that requires the simultaneous
consideration of all modeled decision periods without regard for local constructiv-
ity, autonomy, and historical process constraints.

In contrast, ACE permits the open-ended dynamic modeling of economic sys-
tems without external imposition of rationality, optimality, or equilibrium condi-
tions. ACE models can therefore be used to conduct systematic investigations of
these conditions as testable prior hypotheses. This capability fundamentally distin-
guishes ACE from all currently standard dynamic economic modeling approaches.

Finally, the requirement that ACE models satisfy the seven c-ABM modeling
principles (MP1)–(MP7) permits ACE to be distinguished more clearly and care-
fully from other variants of agent-based modeling [7, Chs. 1-2], and from important
related modeling approaches such as microsimulation [22], system dynamics [20],
and econophysics [8].

5 ACE Agent Rationality

For ACE researchers, as for economists in general, the modeling of decision-makers
is a primary concern. Consequently, it is important to correct a major misconception
still being expressed by some economic commentators uninformed about the power-
ful capabilities of modern software: namely, the misconception that ACE decision-
making agents cannot be as rational (or irrational) as real-world decision-makers.

To the contrary, the constraints on agent decision-making implied by the seven
c-ABM modeling principles (MP1)–(MP7) are constraints inherent in every real-
world dynamic system. As demonstrated concretely in [25], the methods used by
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ACE decision-making agents can range from simple behavioral rules to sophisti-
cated anticipatory learning algorithms for the approximate achievement of intertem-
poral objectives.

Extensive annotated pointers to introductory materials on the implementation of
learning and decision methods for ACE agents can be accessed at the ACE learning
research repository [40]. The learning methods covered in these materials include:

• Reactive reinforcement learning. Roth-Erev reactive reinforcement learning, ... ;
• Belief-based learning. Fictitious play, Camerer/Ho EWA algorithm, ... ;
• Anticipatory learning. Q-learning, adaptive dynamic programmming, ... ;
• Evolutionary learning. Genetic algorithms, genetic programming, ... ;
• Connectionist learning. Associative memory learning, artificial neural network

(ANN) learning, deep learning using ANNs with multiple hidden layers, ... .

6 ACE Agent Stochasticity

Stochastic aspects can easily be represented within ACE models. ACE agent data
can include past or run-time realizations for real-world random events, ACE agent
attributes can include beliefs based on probabilistic assessments, and ACE agent
methods can include Pseudo-Random Number Generators (PRNGs).

A PRNG is a deterministic algorithm A, initialized by a seed value s, able to
generate a sequence A(s) of numbers with the following property: Over some fi-
nite initial length L(s), the sequence A(s) closely mimics the properties of a random
number sequence. The typical length of L(s) calculated across admissible seed val-
ues s is a key metric used to evaluate the performance quality of a PRNG A.

PRNGs can be included among the methods of ACE decision-making agents,
thus permitting these agents to “randomize” their behaviors. For example, an ACE
decision-making agent can use PRNGs to choose among equally preferred actions
or action delays, to construct mixed strategies in game situations to avoid exploitable
predictability, and/or to induce perturbations in action routines in order to explore
new action possibilities.

PRNGs can also be included among the methods of other types of ACE agents,
such as ACE physical or biological agents, in order to model stochastic phenomena
external to ACE decision-making agents. For example, an ACE weather agent can
use a PRNG to generate a weather pattern for its computational world during a sim-
ulated time-interval T that affects the actions expressed by ACE decision-making
agents during T .

An additional important point is that ACE agents are encapsulated in the follow-
ing sense: The internal data, attributes, and/or methods of each ACE agent A can be
partially or completely hidden from any other ACE agent B, either by the deliber-
ate choice of agent A, or by initial modeler specification. Thus, ACE agents can be
unpredictable to one another even if they make no use of random event realizations,
probabilistic assessments, or PRNGs.
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Finally, the seven c-ABM modeling principles (MP1)–(MP7), considered as a
whole, require ACE models to be stochastically complete in the following sense:
If an ACE modeler desires to include a simulated stochastic shock process within
their computationally-constructed world, the source (originating point) and sinks
(impact points) for this shock process must be explicitly represented as agents that
reside and interact within this world. Stochastic completeness thus encourages ACE
modelers to think carefully about the intended empirical referents for any simulated
stochastic shock processes. This, in turn, should help to reduce or eliminate reliance
on ad hoc external shock terms as the sources of dynamic persistence and the drivers
of dynamic interactions.

7 ACE Research Objectives

Current ACE research divides roughly into four branches, each corresponding to a
different objective.

One primary objective is understanding the appearance and persistence of
empirical regularities. Examples include adherence to social norms, socially ac-
cepted monies, widely instituted market protocols, business cycles, persistent wealth
inequality, and the common adoption and use of technological innovations.

An ACE model capable of generating an empirical regularity based on empirically-
credible agent specifications provides a candidate explanation for this regularity. As
discussed more carefully by LeBaron and Tesfatsion [19] and Tesfatsion [32, 39],
the empirical validation of agent specifications should ideally encompass four dis-
tinct aspects: (i) Input Validation: Validation of initially specified agent data and at-
tributes; (ii) Process Validation: Validation of initially specified agent methods; (iii)
Descriptive Output Validation: In-sample model fitting; and (iv) Predictive Output
Validation: Out-of-sample model forecasting.

A second primary objective is normative design. How can ACE models facil-
itate the design of structures, institutions, policies, and/or regulations intended to
improve the performance of economic systems? The ACE approach to normative de-
sign is akin to filling a bucket with water to determine if it leaks. An ACE researcher
computationally constructs a world capturing salient aspects of an economic system
operating under a proposed design. The researcher identifies a range of initial agent
state specifications of interest, including seed values for agent PRNG methods. For
each such specification the researcher permits the world to develop forward, driven
solely by agent interactions. Recorded world outcomes are then used to evaluate
design performance.

A critical issue for ACE normative design studies is the extent to which outcomes
resulting under a tested design are efficient, fair, and orderly, despite possible at-
tempts by ACE decision-making agents to game the design for personal advantage.
A related issue is a cautionary concern for adverse unintended consequences. Opti-
mal design might not be achievable, especially for large complex systems; but ACE
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modeling can facilitate robust design for increased system reliability and resiliency,
a goal that is both feasible and highly desirable.

A third primary objective is qualitative insight and theory generation. How
can ACE modeling be used to study the potential future behavior of an economic
system? A quintessential example of this line of research is an old but still unre-
solved concern of economists such as Adam Smith (1723-1790), Ludwig von Mises
(1881-1973), John Maynard Keynes (1883-1946), Joseph Schumpeter (1883-1950),
and Friedrich von Hayek (1899-1992): namely, what are the self-organizing capa-
bilities of decentralized market economies?

Ideally, what is needed for this objective is the phase portrait of the economic
system, i.e., a representation of the system’s potential state trajectories starting from
each possible initial system state. This phase portrait would help to clarify which re-
gions of the system’s state space are credibly reachable, hence of empirical interest,
and which are not. It would also reveal the possible existence of equilibrium state
trajectories E, however “equilibrium” is defined. Finally, it would reveal the basin
of attraction for any such E, that is, the (possibly empty) subset of system states
which, if reached, would result in progression to E.

An ACE modeling of an economic system permits the modeler to conduct
batched model runs, starting from multiple initial agent-state specifications. The
modeler can thus generate a rough approximation of the system’s phase portrait.

A fourth primary objective is method/tool advancement. How best to provide
ACE researchers with the methods and tools they need to undertake theoretical stud-
ies of dynamic economic systems through systematic sensitivity studies, and to ex-
amine the compatibility of sensitivity-generated theories with real-world data? ACE
researchers are exploring a variety of ways to address this objective ranging from
the careful consideration of methodological principles to the practical development
of programming, verification, empirical validation, and visualization tools.

8 Brief History of ACE

I first encountered agent-based modeling in a delightful 1983 Scientific American
essay [15] by Douglas Hofstadter celebrating Bob Axelrod’s work on Iterated Pris-
oner’s Dilemma (IPD) tournaments [2].4 Axelrod’s key idea was first to specify an
initial population of computer programs, each implementing an IPD strategy, and
then to let these programs engage in repeated round-robin play of PD games with
or without evolution of their initially programmed strategies. The goal was to see
under what conditions, and to what extent, cooperative play might be induced.

Two aspects of Axelrod’s tournaments stood out for me in comparison with stan-
dard economic modeling approaches at the time. First, even in deterministic form,
the tournaments involved sufficiently complex interactions that it was difficult to
deduce long-run outcomes from initial conditions. Thus, as in real-world biological

4 This essay was brought to my attention circa 1985 by Bob Rider, a PhD student in the Department
of Economics at the University of Southern California with an interest in game theory.
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experiments with cultures in Petri dishes, researchers could be genuinely surprised
by tournament outcomes. Second, in repeated play, Axelrod’s agents (computer pro-
grams) exhibited induced “social” behaviors with interesting “life-like” characteris-
tics, such as trust, deception, reciprocity, and stance towards strangers.

In the mid-1980s I was heavily involved in the development of adaptive com-
putation methods, i.e., flexible computational solution methods able to adapt to the
problem at hand rather than requiring the problem to be adapted to the method. It
thus took me some time to redirect my research towards an exploration of Axelrod’s
intriguing agent-based approach for the flexible modeling of economic systems.

Indeed, my first “agent-based” work was a 1991 adaptive computation paper [17]
co-authored with applied mathematician Bob Kalaba. In this paper we develop an
adaptive homotopy solution method able, in runtime, to detect and avoid regions of
the solution space where calculations are ill-conditioned due to nearby singularities
or bifurcation points. This adaptive capability is achieved by replacing the standard
homotopy continuation parameter, moving in a pre-set manner from 0 to 1 along
the real line, with a “smart agent” able to construct and traverse an adaptively-
determined path from 0+0i to 1+0i in the complex plane. The smart agent decides
the direction and length of its next step, given its current state, by solving a multi-
criteria optimization problem requiring a trade-off between two criteria: (i) maintain
a short path length from 0+0i to 1+0i; and (ii) avoid regions in the complex plane
where ill-conditioning of calculations is detected.

During the early-to-mid 1990s I increasingly participated in ABM-related con-
ference panel sessions. This participation included: the Artificial Life III Confer-
ence sponsored by the Santa Fe Institute (Sweeney Center, Santa Fe, New Mex-
ico, June 15–19, 1992); a session at the Economic Science Association Meeting
(Tucson, Arizona, October 21–23, 1993); a session at the North American Summer
Meeting of the Econometric Society (Université Laval, Quebec City, June 24–28,
1994); the First International Conference on Computing in Economics and Finance
(CEF1995, University of Texas, Austin, May 21–24, 1995); the First Economic Ar-
tificial Life Conference (Santa Fe Institute, Santa Fe, New Mexico, May 26–29,
1995); an American Economic Association panel session at the Annual Meeting of
the Allied Social Science Associations (ASSA, San Francisco, CA, January 5–7,
1996); the UCLA Economic Simulation Conference (University of California, Los
Angeles, February 9, 1996); and the Fifth Annual Conference on Evolutionary Pro-
gramming (San Diego, California, February 29–March 2, 1996).

However, the most pivotal meeting for me, personally, was an informal “agent-
based economics” meeting I organized, held immediately after the formal close
of the Second International Conference on Computing in Economics and Finance
(CEF1996, Geneva, Switzerland, June 26-28, 1996).5 A key agenda item for this in-
formal meeting was to consider how agent-based modeling might best be promoted

5 As indicated by a preserved sign-up sheet, the participants in this informal meeting were: Rob
Axtell; Ann Bell; Chris Birchenhall; Kai Brandt; Thomas Brenner; Charlotte Bruun; Shu-Heng
Chen; Michael Gordy; Sergei Guriev; Armin Haas; Esther Hauk; Gillioz Jean-Blaise; Alan Kir-
man; Bob Marks; Christian Rieck; Ernesto Somma; Leigh Tesfatsion; and Nick Vriend.
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to the economics profession at large. I left this meeting determined to develop a
website devoted to this objective.

Exploiting the brand-new availability of web browsers, in particular Netscape
Navigator,6 I began my Agent-Based Economics (ABE) website in late July of 1996
on an Iowa State University (ISU) server. In addition, with important input from
Rob Axtell, I supplemented the ABE website with an ABE mailing list to be used
for the distribution of occasional news notes.

However, microeconomists at ISU and elsewhere – Herman Quirmbach in par-
ticular – soon convinced me that ABE was a poor name-choice. They predicted
that economic theorists would be dismissive of this “new” agent-based modeling
approach on the grounds that standard micro-founded economic models were al-
ready “agent-based” since they modeled the optimizing behaviors of individual con-
sumers and/or firms. Crucial additional “agent-based” requirements (e.g., agent au-
tonomy and system historicity) would be ignored. Consequently, as documented
in the February 1997 ACE news notes [37],7 I changed the names of my website
and mailing list to Agent-based Computational Economics (ACE) in August 1996
to stress computational modeling as one feature distinguishing the proposed agent-
based modeling approach from then-standard economic modeling approaches.8

This 1996 name-change from ABE to ACE turned out to be fortuitous. It imme-
diately connected the ACE modeling approach to seminal work on “computational
economics” being undertaken by Ken Judd and other participants in the Society for
Computational Economics (SCE), founded in 1995. ACE was soon formally named
an SCE Special Interest Group, thus permitting its consideration for panel session
allotment at annual SCE meetings.9

A major ACE landmark occurred in the summer of 1997. As documented in
my ACE news notes [37] distributed between February and May of 1997, Program
Chair Ken Judd invited Blake LeBaron and myself to organize two contributed-
paper sessions on ACE for the Third International Conference on Computing in
Economics and Finance (CEF1997) to be held in July 1997 at Stanford University,
plus a post-meeting satellite session devoted entirely to ACE topics.

A second major ACE landmark occurred in 1998: I was invited to guest-edit
three special journal issues on ACE, one for the Journal of Economic Dynamics

6 Netscape Communications Corporation, founded in April 1994 by Marc Andreessen and James
H. Clark, released Netscape Navigator in November 1994 as freely downloadable software.
Netscape Navigator, a successor of Mosaic (co-developed by Andreesen), was among the first
browser products released in support of the mid-1990s consumer Internet revolution.
7 The earliest distributed ABM/ACE news notes were not saved in retrievable form; the online
posted ACE news notes [37] begin in February 1997. The formatting of these online ACE news
notes is ancient by browser standards. Although some formatting commands used in these news
notes no longer compile properly using modern browsers, the news notes have been left in their
originally posted form in order to preserve their historical authenticity.
8 Specifically, to reflect the name change from ABE to ACE, the website URL address was changed
from http://www.econ.iastate.edu/tesfatsi/abe.htm to http://www.econ.iastate.edu/tesfatsi/ace.htm
and the mailing list address was changed from abelist@iastate.edu to acenewslist@iastate.edu.
9 The annual SCE meeting is officially referred to as the International Conference on Computing
in Economics and Finance (CEF).
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and Control (JEDC) [28], another for Computational Economics (CE) [29], and a
third for the IEEE Transactions on Evolutionary Computation (IEEE TEC) [30].
As documented in my September 1998 ACE news notes [37], prospective authors
for the JEDC special issue were asked to submit papers that addressed an issue of
economic importance from an agent-based perspective. Prospective authors for the
CE and IEEE TEC special issues were asked to submit papers with a strong agent-
based computational component that addressed evolutionary economics issues.

These three ACE special issues all appeared in 2001. The research reported in
these special issues demonstrated how ACE modeling permitted interesting ground-
breaking extensions of then-standard economic modeling capabilities.

For example, Chen and Yeh [9] develop an agent-based stock market model con-
sisting of a collection of stock market traders together with a ‘business school’.
Each business faculty member at any given instant represents a particular ‘school
of thought’ regarding the best stock market forecasting model. The comparative
performance of these various forecasting models is regularly tested in a social re-
view process (e.g., competition for publication in refereed journals), modeled via
genetic programming. The business faculty use these test results to revise their mod-
els. A trader that takes time-off from trading to attend a particular faculty-member’s
course gains access to the forecasting model taught by this faculty member and tests
whether this model outperforms his own currently-used model. If so, the trader re-
places his currently-used model with the faculty member’s model and returns to
market trading. The stock market traders thus evolve their forecasting models us-
ing a combination of individual learning (faculty course attendance decisions) and
social learning (forecasting model adoption decisions).

As a second example, Tesfatsion [31] develops an agent-based labor market
model with endogenous worker-employer matching, implemented by a Gale-Shapley
deferred acceptance mechanism. To implement this mechanism, the workers and
employers must exchange messages with each other at event-triggered instances re-
garding the receipt, acceptance, and refusal of work offers. During each labor market
round, workers direct work offers to their most preferred employers; and employ-
ers accept work offers from their most preferred workers, refusing the rest. Once
matched, a worker and employer engage in a work-site interaction modeled as a
prisoner’s dilemma game. The outcomes of these games in each labor market round
affect worker and employer match preferences, hence who receives work offers and
whose work offers are accepted or refused in the following round. This agent-based
modeling of a labor market thus blends matching theory with game theory.

A third major ACE landmark occurred in 2005. Ken Arrow and Mike Intriligator,
general editors for the North Holland (Elsevier) Handbooks in Economics Series, in-
vited Ken Judd and myself to edit an ACE handbook volume for this series. Potential
lead authors, with co-authors of their own choosing, were invited to submit chapters
on topics of interest to ACE researchers.

Following a careful refereeing process, sixteen research chapters, seven per-
spective essays, and a resource guide for social science newcomers to agent-based
modeling were accepted for the ACE handbook volume. The topic areas covered
in the research chapters included: learning methods for economic agents; agent-
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based models and human-subject experiments; network formation among economic
agents; agent-based computational finance; agent-based industrial organization;
agent-based political economy; agent-based socio-economic modeling; agent-based
software platforms for market design evaluation; and automated markets with trad-
ing agents. The ACE handbook volume [27] was published in 2006.

As documented at the ACE website [36], research making use of agent-based
modeling for the study of economic systems has greatly expanded since 2006. This
research is now appearing in a variety of journals10 with a welcoming inclusive
methodological stance. Research areas include: auction markets; automated mar-
kets; business and management; coupled economic and ecological systems; devel-
opment economics; economic policy; energy economics; evolution of institutions
and social norms; experiments with real and computational agents; financial eco-
nomics; industrial organization; labor economics; learning and the embodied mind;
macroeconomics; network formation and evolution; organizations; path dependence
and lock-in effects; political economy; and technological innovation.

Another welcome development, stressed in recent reviews [1, 3, 32], is that agent-
based researchers are increasingly focusing on real-world applications in addition
to conceptual advances. For example, as extensively documented at the research
repositories [41, 42, 43] and in the survey articles [10, 11, 33], three fast-growing
application areas for agent-based research are macroeconomic policy, financial eco-
nomics, and electric power markets.

As a final note of optimism, consider the following: The new design proposed
for centrally-managed wholesale power markets in the 2021 Wiley/IEEE Press book
[34] was developed and tested by means of an open-source ACE platform [4] that
implements salient aspects of actual U.S. wholesale power markets. This did not
elicit any negative comments from the book’s publisher or anonymous referees. In-
deed, based on extensive refereeing for power system journals, my assessment is that
power researchers now routinely make use of agent-based computational models to
address the daunting complexity of modern power system operations. Surely many
real-world economic systems are at least as complex as real-world power systems.

9 Concluding Remarks

As detailed in previous sections, Agent-based Computational Economics (ACE) is
a specialization of complete Agent-Based Modeling (c-ABM) to economic systems.
In turn, c-ABM is a completely agent-based variant of ABM axiomatically charac-
terized by seven specific modeling principles (MP1)–(MP7).

Roughly summarized, any model satisfying (MP1)–(MP7) is a computationally-
expressed initial-value state-space model consisting of a collection of agents (soft-

10 Welcoming economic journals include: Computational Economics; International J. of Microsim-
ulation; J. of Economic Behavior and Organization; J. of Economic Dynamics and Control; J. of
Economic Interaction and Coordination; and J. of Evolutionary Economics. For a more extensive
linked listing of welcoming journals, including finance and game theory journals, see [38].
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ware entities), each characterized at any given instant by its current state (data, at-
tributes, and/or methods). Given initial agent states, any subsequent event (change
in agent states) is induced by prior and/or concurrent agent interactions. The role of
the modeler is limited to the configuration and setting of initial agent states, and to
the non-perturbational observation, analysis, and reporting of model outcomes.

Sections 2–3 provide support for the supposition that c-ABM provides the “right
mathematics” for the study of general real-world systems, e.g., systems involving
complex intertwined social and physical processes, or even purely physical pro-
cesses. Viewing c-ABM as a form of “mathematics” is apt in the following sense:

• A classical mathematician specifies a model MMM in equation form that embod-
ies structural assumptions regarding the relationship between MMM’s externally-
determined inputs xxx and the (possibly empty) set of resulting model-determined
outputs (solutions) vvv, where xxx is restricted to lie in some admissible input-space
XXX . The classical mathematician then proves theorems for MMM in two forms: (i) Suf-
ficiency of A (if A, then B): If the input xxx′ lies in XXX ′ ⊆ XXX , then any corresponding
solution vvv′ for MMM must satisfy property PPP′; (ii) Necessity of A (if B, then A): If a
solution vvv′ for MMM satisfies property PPP′, then the input xxx for MMM must lie in XXX ′ ⊆ XXX .

• A c-ABM modeler specifies a model CCCMMM in computational (software) form
that embodies structural assumptions regarding the relationship between CCCMMM’s
externally-determined inputs cccxxx (initial agent states) and the (possibly empty)
set of resulting model-determined outputs (agent state trajectories) cccvvv, where cccxxx
is restricted to lie in some admissible input-space CCCXXX . The c-ABM modeler then
implements an experimental study for CCCMMM taking the following form: For each
input cccxxx′ in a specified finite subset CCCXXX ′ of the input-space CCCXXX , what properties
are exhibited by any resulting computationally-generated output cccvvv′?

Critics might argue that a classical mathematician typically establishes suffi-
ciency and necessity “theorems” (input↔ output relationships) for an analytically-
expressed model MMM over infinite input subspaces XXX ′. In contrast, a c-ABM mod-
eler can only establish sufficiency “examples” (input→ output relationships) for a
computationally-expressed model CCCMMM over finite input subsets CCCXXX ′. This criticism
can be countered in two ways.

First, as eloquently argued by Judd [16, Sec. 4, p. 886], a “theorem” is simply
a collection of “examples.” The relevance and robustness of a collection of “exam-
ples” is surely more important than the number of these “examples.”

Second, in classical mathematics, many proofs rely on two-valued logic, i.e., the
maintained assumption that every proposition is either true or false. For example,
the proof of a sufficiency theorem “if A, then B” often proceeds using proof by
contradiction, as follows: Establish that the falsity of the proposition “if A, then B”
would imply the falsity of a proposition C that is known (or assumed) to be true.
Assuming two-valued logic, the proposition “if A, then B” must then be true, even
if it is not possible to construct (calculate, generate, ...) the realization of B that
corresponds to a realization of A.
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In contrast, the sufficiency “examples” (if A, then B) established by a c-ABM
modeler take the following externally constructive form: The c-ABM modeler con-
ducts an experimental study with a c-ABM model that exhibits property A and ob-
serves that every resulting model outcome exhibits property B.

However, as stressed in Section 3, a c-ABM model can in fact be a thickly con-
structive blend of classical and constructive mathematics, in the following sense.
Agent states consist of data, attributes, and/or methods. Agent attributes can include
evolved or acquired non-constructive beliefs (“leaps of faith”) as well as construc-
tive beliefs based on input-output relationships directly observed or experienced
in interactions with other agents. Agent methods can include belief-dependent be-
havioral rules for the determination of intended acts, i.e., acts the agents intend to
express within their computational world. Agent interactions (expressed agent acts)
depend on agent methods. Finally, all world events (changes in agent states) are
driven by agent interactions. Consequently, world events can depend on a mix of
non-constructive and constructive agent beliefs.

Does the thick constructivity of c-ABM necessarily imply that c-ABM is the
“best” modeling approach for the study of real-world systems whose participants
include entities that act in part on the basis of non-constructive beliefs? Absolutely
not. However, as depicted in Fig. 1, human-subject experiments and c-ABM con-
stitute the two polar end-points for a spectrum of hybrid human/agent experiment-
based modeling approaches that appear to be especially well-suited for such studies.

Fig. 1 A spectrum of experiment-based modeling approaches ranging from 100% human subjects
to 100% computer agents (c-ABM).
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The repository [44] provides annotated links to studies focusing on possible syn-
ergies between human-based and agent-based experimental studies, as well as an-
notated links to several experiment-based studies (e.g., serious game research [46])
involving a mix of humans and computer agents. However, to date, the full range of
hybrid human/agent experiment-based modeling approaches depicted in Fig. 1 has
not been systematically explored.
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