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How to Use the CFA
Program Curriculum

Congratulations on your decision to enter the Chartered Financial Analyst (CFA®)
Program. This exciting and rewarding program of study reflects your desire to become
a serious investment professional. You are embarking on a program noted for its high
ethical standards and the breadth of knowledge, skills, and abilities (competencies) it
develops. Your commitment should be educationally and professionally rewarding.

The credential you seek is respected around the world as a mark of accomplish-
ment and dedication. Each level of the program represents a distinct achievement in
professional development. Successful completion of the program is rewarded with
membership in a prestigious global community of investment professionals. CFA
charterholders are dedicated to life-long learning and maintaining currency with
the ever-changing dynamics of a challenging profession. CFA Program enrollment
represents the first step toward a career-long commitment to professional education.

The CFA exam measures your mastery of the core knowledge, skills, and abilities
required to succeed as an investment professional. These core competencies are the
basis for the Candidate Body of Knowledge (CBOK™). The CBOK consists of four
components:

B A broad outline that lists the major CFA Program topic areas (www.cfainstitute.
org/programs/cfa/curriculum/cbok);

B Topic area weights that indicate the relative exam weightings of the top-level
topic areas (www.cfainstitute.org/programs/cfa/curriculum);

B Learning outcome statements (LOS) that advise candidates about the specific
knowledge, skills, and abilities they should acquire from readings covering a
topic area (LOS are provided in candidate study sessions and at the beginning
of each reading); and

B CFA Program curriculum that candidates receive upon exam registration.

Therefore, the key to your success on the CFA exams is studying and understanding
the CBOK. The following sections provide background on the CBOK, the organiza-
tion of the curriculum, features of the curriculum, and tips for designing an effective
personal study program.

BACKGROUND ON THE CBOK

CFA Program is grounded in the practice of the investment profession. CFA Institute
performs a continuous practice analysis with investment professionals around the
world to determine the competencies that are relevant to the profession, beginning
with the Global Body of Investment Knowledge (GBIK®). Regional expert panels and
targeted surveys are conducted annually to verify and reinforce the continuous feed-
back about the GBIK. The practice analysis process ultimately defines the CBOK. The
CBOK reflects the competencies that are generally accepted and applied by investment
professionals. These competencies are used in practice in a generalist context and are
expected to be demonstrated by a recently qualified CFA charterholder.

© 2021 CFA Institute. All rights reserved.



How to Use the CFA Program Curriculum

The CFA Institute staff—in conjunction with the Education Advisory Committee
and Curriculum Level Advisors, who consist of practicing CFA charterholders—designs
the CFA Program curriculum in order to deliver the CBOK to candidates. The exams,
also written by CFA charterholders, are designed to allow you to demonstrate your
mastery of the CBOK as set forth in the CFA Program curriculum. As you structure
your personal study program, you should emphasize mastery of the CBOK and the
practical application of that knowledge. For more information on the practice anal-
ysis, CBOK, and development of the CFA Program curriculum, please visit www.
cfainstitute.org.

ORGANIZATION OF THE CURRICULUM

The Level IT CFA Program curriculum is organized into 10 topic areas. Each topic area
begins with a brief statement of the material and the depth of knowledge expected.
It is then divided into one or more study sessions. These study sessions should form
the basic structure of your reading and preparation. Each study session includes a
statement of its structure and objective and is further divided into assigned readings.
An outline illustrating the organization of these study sessions can be found at the
front of each volume of the curriculum.

The readings are commissioned by CFA Institute and written by content experts,
including investment professionals and university professors. Each reading includes
LOS and the core material to be studied, often a combination of text, exhibits, and in-
text examples and questions. End of Reading Questions (EORQs) followed by solutions
help you understand and master the material. The LOS indicate what you should be
able to accomplish after studying the material. The LOS, the core material, and the
EORQs are dependent on each other, with the core material and EORQs providing
context for understanding the scope of the LOS and enabling you to apply a principle
or concept in a variety of scenarios.

The entire readings, including the EORQs, are the basis for all exam questions
and are selected or developed specifically to teach the knowledge, skills, and abilities
reflected in the CBOK.

You should use the LOS to guide and focus your study because each exam question
is based on one or more LOS and the core material and practice problems associated
with the LOS. As a candidate, you are responsible for the entirety of the required
material in a study session.

We encourage you to review the information about the LOS on our website (www.
cfainstitute.org/programs/cfa/curriculum/study-sessions), including the descriptions
of LOS “command words” on the candidate resources page at www.cfainstitute.org.

FEATURES OF THE CURRICULUM

End of Reading Questions/Solutions All End of Reading Questions (EORQs) as well
as their solutions are part of the curriculum and are required material for the exam.
In addition to the in-text examples and questions, these EORQs help demonstrate
practical applications and reinforce your understanding of the concepts presented.
Some of these EORQs are adapted from past CFA exams and/or may serve as a basis
for exam questions.



How to Use the CFA Program Curriculum

Glossary For your convenience, each volume includes a comprehensive Glossary.
Throughout the curriculum, a bolded word in a reading denotes a term defined in
the Glossary.

Note that the digital curriculum that is included in your exam registration fee is
searchable for key words, including Glossary terms.

LOS Self-Check We have inserted checkboxes next to each LOS that you can use to
track your progress in mastering the concepts in each reading.

Source Material The CFA Institute curriculum cites textbooks, journal articles, and
other publications that provide additional context or information about topics covered
in the readings. As a candidate, you are not responsible for familiarity with the original
source materials cited in the curriculum.

Note that some readings may contain a web address or URL. The referenced sites
were live at the time the reading was written or updated but may have been deacti-
vated since then.

Some readings in the curriculum cite articles published in the Financial Analysts Journal®,
which is the flagship publication of CFA Institute. Since its launch in 1945, the Financial
Analysts Journal has established itself as the leading practitioner-oriented journal in the
investment management community. Over the years, it has advanced the knowledge and
understanding of the practice of investment management through the publication of
peer-reviewed practitioner-relevant research from leading academics and practitioners.
It has also featured thought-provoking opinion pieces that advance the common level of
discourse within the investment management profession. Some of the most influential
research in the area of investment management has appeared in the pages of the Financial
Analysts Journal, and several Nobel laureates have contributed articles.

Candidates are not responsible for familiarity with Financial Analysts Journal articles
that are cited in the curriculum. But, as your time and studies allow, we strongly encour-
age you to begin supplementing your understanding of key investment management
issues by reading this, and other, CFA Institute practice-oriented publications through
the Research & Analysis webpage (www.cfainstitute.org/en/research).

Errata The curriculum development process is rigorous and includes multiple rounds
of reviews by content experts. Despite our efforts to produce a curriculum that is free
of errors, there are times when we must make corrections. Curriculum errata are peri-
odically updated and posted by exam level and test date online (www.cfainstitute.org/
en/programs/submit-errata). If you believe you have found an error in the curriculum,
you can submit your concerns through our curriculum errata reporting process found
at the bottom of the Curriculum Errata webpage.

DESIGNING YOUR PERSONAL STUDY PROGRAM

Create a Schedule An orderly, systematic approach to exam preparation is critical.
You should dedicate a consistent block of time every week to reading and studying.
Complete all assigned readings and the associated problems and solutions in each study
session. Review the LOS both before and after you study each reading to ensure that

Xi
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How to Use the CFA Program Curriculum

you have mastered the applicable content and can demonstrate the knowledge, skills,
and abilities described by the LOS and the assigned reading. Use the LOS self-check
to track your progress and highlight areas of weakness for later review.

Successful candidates report an average of more than 300 hours preparing for each
exam. Your preparation time will vary based on your prior education and experience,
and you will probably spend more time on some study sessions than on others.

You should allow ample time for both in-depth study of all topic areas and addi-
tional concentration on those topic areas for which you feel the least prepared.

CFA INSTITUTE LEARNING ECOSYSTEM (LES)

As you prepare for your exam, we will email you important exam updates, testing
policies, and study tips. Be sure to read these carefully.

Your exam registration fee includes access to the CFA Program Learning Ecosystem
(LES). This digital learning platform provides access, even offline, to all of the readings
and End of Reading Questions found in the print curriculum organized as a series of
shorter online lessons with associated EORQs. This tool is your one-stop location for
all study materials, including practice questions and mock exams.

The LES provides the following supplemental study tools:

Structured and Adaptive Study Plans The LES offers two ways to plan your study
through the curriculum. The first is a structured plan that allows you to move through
the material in the way that you feel best suits your learning. The second is an adaptive
study plan based on the results of an assessment test that uses actual practice questions.

Regardless of your chosen study path, the LES tracks your level of proficiency in
each topic area and presents you with a dashboard of where you stand in terms of
proficiency so that you can allocate your study time efficiently.

Flashcards and Game Center The LES offers all the Glossary terms as Flashcards and
tracks correct and incorrect answers. Flashcards can be filtered both by curriculum
topic area and by action taken—for example, answered correctly, unanswered, and so
on. These Flashcards provide a flexible way to study Glossary item definitions.

The Game Center provides several engaging ways to interact with the Flashcards in
a game context. Each game tests your knowledge of the Glossary terms a in different
way. Your results are scored and presented, along with a summary of candidates with
high scores on the game, on your Dashboard.

Discussion Board The Discussion Board within the LES provides a way for you to
interact with other candidates as you pursue your study plan. Discussions can happen
at the level of individual lessons to raise questions about material in those lessons that
you or other candidates can clarify or comment on. Discussions can also be posted at
the level of topics or in the initial Welcome section to connect with other candidates
in your area.

Practice Question Bank The LES offers access to a question bank of hundreds of
practice questions that are in addition to the End of Reading Questions. These practice
questions, only available on the LES, are intended to help you assess your mastery of
individual topic areas as you progress through your studies. After each practice ques-
tion, you will receive immediate feedback noting the correct response and indicating
the relevant assigned reading so you can identify areas of weakness for further study.



How to Use the CFA Program Curriculum

Mock Exams The LES also includes access to three-hour Mock Exams that simulate
the morning and afternoon sessions of the actual CFA exam. These Mock Exams are
intended to be taken after you complete your study of the full curriculum and take
practice questions so you can test your understanding of the curriculum and your
readiness for the exam. If you take these Mock Exams within the LES, you will receive
feedback afterward that notes the correct responses and indicates the relevant assigned
readings so you can assess areas of weakness for further study. We recommend that
you take Mock Exams during the final stages of your preparation for the actual CFA
exam. For more information on the Mock Exams, please visit www.cfainstitute.org.

PREP PROVIDERS

You may choose to seek study support outside CFA Institute in the form of exam prep
providers. After your CFA Program enrollment, you may receive numerous solicita-
tions for exam prep courses and review materials. When considering a prep course,
make sure the provider is committed to following the CFA Institute guidelines and
high standards in its offerings.

Remember, however, that there are no shortcuts to success on the CFA exams;
reading and studying the CFA Program curriculum is the key to success on the exam.
The CFA Program exams reference only the CFA Institute assigned curriculum; no
prep course or review course materials are consulted or referenced.

SUMMARY

Every question on the CFA exam is based on the content contained in the required
readings and on one or more LOS. Frequently, an exam question is based on a specific
example highlighted within a reading or on a specific practice problem and its solution.
To make effective use of the CFA Program curriculum, please remember these key points:

1 All pages of the curriculum are required reading for the exam.

2 All questions, problems, and their solutions are part of the curriculum and are
required study material for the exam. These questions are found at the end of the
readings in the print versions of the curriculum. In the LES, these questions appear
directly after the lesson with which they are associated. The LES provides imme-
diate feedback on your answers and tracks your performance on these questions
throughout your study.

3 We strongly encourage you to use the CFA Program Learning Ecosystem. In
addition to providing access to all the curriculum material, including EORQs, in
the form of shorter, focused lessons, the LES offers structured and adaptive study
planning, a Discussion Board to communicate with other candidates, Flashcards,
a Game Center for study activities, a test bank of practice questions, and online
Mock Exams. Other supplemental study tools, such as eBook and PDF versions
of the print curriculum, and additional candidate resources are available at www.
cfainstitute.org.

4  Using the study planner, create a schedule and commit sufficient study time to
cover the study sessions. You should also plan to review the materials, answer
practice questions, and take Mock Exams.

5 Some of the concepts in the study sessions may be superseded by updated
rulings and/or pronouncements issued after a reading was published. Candidates
are expected to be familiar with the overall analytical framework contained in the
assigned readings. Candidates are not responsible for changes that occur after the
material was written.

Xiii



Xiv

How to Use the CFA Program Curriculum

FEEDBACK

At CFA Institute, we are committed to delivering a comprehensive and rigorous curric-
ulum for the development of competent, ethically grounded investment professionals.
We rely on candidate and investment professional comments and feedback as we
work to improve the curriculum, supplemental study tools, and candidate resources.

Please send any comments or feedback to info@cfainstitute.org. You can be assured
that we will review your suggestions carefully. Ongoing improvements in the curric-
ulum will help you prepare for success on the upcoming exams and for a lifetime of
learning as a serious investment professional.



Quantitative Methods

STUDY SESSION

Study Session 1 Quantitative Methods (1)
Study Session 2 Quantitative Methods (2)

TOPIC LEVEL LEARNING OUTCOME

The candidate should be able to explain regression and time series analysis and their
uses in investment decision-making. The candidate should also be able to interpret
the results and implications of a regression and time-series analysis in an investment
context.

Quantitative methods such as regression and time series provide the means to
identify and assess the relationships that exist between variables. Measuring the direc-
tion and strength of these relationships, with some level of confidence, can provide
valuable insights for many investment-related activities. Moreover, large structured
and unstructured datasets are now prevalent in investment management. Quantitative
techniques for analyzing such datasets, via classification, simplification and clustering,
based on machine learning, are presented with applications to investment management.

© 2021 CFA Institute. All rights reserved.






QUANTITATIVE METHODS
STUDY SESSION

Quantitative Methods (1)

This study session provides coverage on how linear regression and time-series analysis
are used as tools in financial analysis for identifying relationships among variables.
The session begins by examining simple linear regression with a single (independent)
variable to explain or predict the value of another (dependent) variable. Multiple
regression, using more than one independent variable to explain or predict a dependent
variable, is explored next. Time-series analysis, in which the dependent variable’s past
values are included as independent variables, concludes the session.

READING ASSIGNMENTS

Reading 1 Introduction to Linear Regression
by Pamela Peterson Drake, PhD, CFA
Reading 2 Multiple Regression

by Richard A. DeFusco, PhD, CFA,
Dennis W. McLeavey, DBA, CFA, Jerald E. Pinto, PhD, CFA, and
David E. Runkle, PhD, CFA

Reading 3 Time-Series Analysis
by Richard A. DeFusco, PhD, CFA,
Dennis W. McLeavey, DBA, CFA, Jerald E. Pinto, PhD, CFA, and
David E. Runkle, PhD, CFA

© 2021 CFA Institute. All rights reserved.






READING

Introduction to Linear Regression

by Pamela Peterson Drake, PhD, CFA

Pamela Peterson Drake, PhD, CFA, is at James Madison University (USA).

LEARNING OUTCOMES

The candidate should be able to:

Mastery

[
[

a.

describe a simple linear regression model and the roles of the
dependent and independent variables in the model;

describe the least squares criterion, how it is used to estimate
regression coefficients, and their interpretation;

explain the assumptions underlying the simple linear regression
model, and describe how residuals and residual plots indicate if
these assumptions may have been violated;

calculate and interpret the coefficient of determination and the
F-statistic in a simple linear regression;

describe the use of analysis of variance (ANOVA) in regression
analysis, interpret ANOVA results, and calculate and interpret the
standard error of estimate in a simple linear regression;

formulate a null and an alternative hypothesis about a population
value of a regression coefficient, and determine whether the null
hypothesis is rejected at a given level of significance;

calculate and interpret the predicted value for the dependent
variable, and a prediction interval for it, given an estimated linear
regression model and a value for the independent variable;

describe different functional forms of simple linear regressions.

SIMPLE LINEAR REGRESSION

a describe a simple linear regression model and the roles of the dependent and
independent variables in the model

© 2021 CFA Institute. All rights reserved.



Reading 1 = Introduction to Linear Regression

Financial analysts often need to examine whether a variable is useful for explaining
another variable. For example, the analyst may want to know whether earnings growth,
or perhaps cash flow growth, helps explain the company’s value in the marketplace.
Regression analysis is a tool for examining this type of issue.

Suppose an analyst is examining the return on assets (ROA) for an industry and
observes the ROA for the six companies shown in Exhibit 1. The average of these
ROAs is 12.5%, but the range is from 4% to 20%.

Exhibit 1 Return on Assets of Selected Companies

Company ROA (%)
A
B
C 15
D 20
E 10
F 20

In trying to understand why the ROAs differ among these companies, we could
look at why the ROA of Company A differs from that of Company B, why the ROA
of Company A differs from that of Company D, why the ROA of Company F differs
from that of Company C, and so on, comparing each pair of ROAs. A way to make
this a simpler exploration is to try to understand why each company’s ROA differs
from the mean ROA of 12.5%. We look at the sum of squared deviations of the obser-
vations from the mean to capture variations in ROA from their mean. Let Y represent
the variable that we would like to explain, which in this case is the return on assets.

Let Y, represent an observation of a company’s ROA, and let Y represent the mean

ROA for the sample of size n. We can describe the variation of the ROAs as

. . n o

Variation of ¥ = ZI_:I(Y]- — Y)z. (1)

Our goal is to understand what drives these returns on assets or, in other words,
what explains the variation of Y. The variation of Y'is often referred to as the sum of
squares total (SST), or the total sum of squares.

We now ask whether it is possible to explain the variation of the ROA using
another variable that also varies among the companies; note that if this other variable
is constant or random, it would not serve to explain why the ROAs differ from one
another. Suppose the analyst believes that the capital expenditures in the previous
period, scaled by the prior period’s beginning property, plant, and equipment, are a
driver for the ROA variable. Let us represent this scaled capital expenditures variable
as CAPEX, as we show in Exhibit 2.

Exhibit2 Return on Assets and Scaled Capital
Expenditures

ROA CAPEX
Company (%) (%)
A 6.0 0.7
B 4.0 0.4

C 15.0 5.0
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Exhibit2 (Continued)

ROA CAPEX
Company (%) (%)
20.0 10.0
E 10.0 8.0
20.0 12.5
Arithmetic mean 12.50 6.10

The variation of X, in this case CAPEX, is calculated as
Variation of X = " (X, — X)°. ()

We can see the relation between ROA and CAPEX in the scatter plot (or scatter-
gram) in Exhibit 3, which represents the two variables in two dimensions. Typically,
we present the variable whose variation we want to explain along the vertical axis
and the variable whose variation we want to use to explain that variation along the
horizontal axis. Each point in this scatter plot represents a paired observation that
consists of CAPEX and ROA. From a casual visual inspection, there appears to be a
positive relation between ROA and CAPEX: Companies with higher CAPEX tend to
have a higher ROA.

Exhibit3 Scatter Plot of ROA and CAPEX

ROA (%)
25

10.0, 20.0 12.5,20.0
20 ] [ ]

5.0,15.0

8.0,10.0
[ J
0.7,6.0

®04,40

0 1 1 1 1 1 1
0 2 4 6 8 10 12 14

CAPEX (%)

In the ROA example, we use the capital expenditures to explain the returns on
assets. We refer to the variable whose variation is being explained as the dependent
variable, or the explained variable; it is typically denoted by Y. We refer to the vari-
able whose variation is being used to explain the variation of the dependent variable
as the independent variable, or the explanatory variable; it is typically denoted by
X. Therefore, in our example, the ROA is the dependent variable (Y) and CAPEX is
the independent variable (X).
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A common method for relating the dependent and independent variables is through
the estimation of a linear relationship, which implies describing the relation between
the two variables as represented by a straight line. If we have only one independent
variable, we refer to the method as simple linear regression (SLR); if we have more
than one independent variable, we refer to the method as multiple regression.

Linear regression allows us to test hypotheses about the relationship between two
variables, by quantifying the strength of the relationship between the two variables,
and to use one variable to make predictions about the other variable. Our focus is on
linear regression with a single independent variable—that is, simple linear regression.

EXAMPLE 1

Identifying the Dependent and Independent Variables in
a Regression

An analyst is researching the relationship between corporate earnings growth
and stock returns. Specifically, she is interested in whether earnings revisions
affect stock price returns in the same period. She collects five years of monthly
data on “Wall Street” EPS revisions for a sample of 100 companies and on their
monthly stock price returns over the five-year period.

What are the dependent and independent variables in her model?

Solution

The dependent variable is monthly stock price returns, and the independent
variable is Wall Street EPS revisions, since in the analyst’s model, the variation in
monthly stock price returns is being explained by the variation in EPS revisions.

ESTIMATING THE PARAMETERS OF A SIMPLE LINEAR
REGRESSION

b describe the least squares criterion, how it is used to estimate regression coeffi-
cients, and their interpretation

2.1 The Basics of Simple Linear Regression

Regression analysis begins with the dependent variable, the variable whose variation
you are seeking to explain. The independent variable is the variable whose variation
you are using to explain changes in the dependent variable. For example, you might
try to explain small-stock returns (the dependent variable) using returns to the S&P
500 Index (the independent variable). Or you might try to explain a country’s infla-
tion rate (the dependent variable) as a function of growth in its money supply (the
independent variable).

As the name implies, linear regression assumes a linear relationship between the
dependent and the independent variables. The goal is to fit a line to the observations
on Yand X to minimize the squared deviations from the line; this is the least squares
criterion—hence, the name least squares regression. Because of its common use, linear
regression is often referred to as ordinary least squares (OLS) regression.
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Using notation, the linear relation between the dependent and independent vari-
ables is described as

)/i:b0+b1Xi+8i,i:1,...,l’l. (3)

Equation 3 is a model that does not require that every (Y, X) pair for an observation fall
on the regression line. This equation states that the dependent variable, Y, is equal to
the intercept, b, plus a slope coefficient, b;, multiplied by the independent variable,
X, plus an error term, e. The error term, or simply the error, represents the difference
between the observed value of Y and that expected from the true underlying popula-
tion relation between Y and X. We refer to the intercept, b, and the slope coefficient,
by, as the regression coefficients. A way that we often describe this simple linear
regression relation is that Yis regressed on X.

Consider the ROA and CAPEX scatter diagram from Exhibit 3, which we elaborate
on in Exhibit 4 by including the fitted regression line. This line represents the average
relationship between ROA and CAPEX; not every observation falls on the line, but
the line describes the mean relation between ROA and CAPEX.

Exhibit 4 Fitted Regression Line of ROA and CAPEX

ROA (Y,%)
25

CAPEX (X,%)

® QObserved Values Regression Line

2.2 Estimating the Regression Line

We cannot observe the population parameter values b, and by in a regression model.

Instead, we observe only bo and b1, which are estimates (as indicated by the “hats”
above the coefficients) of the population parameters based on the sample. Thus, pre-
dictions must be based on the parameters’ estimated values, and testing is based on
estimated values in relation to the hypothesized population values.

We estimate the regression line as the line that best fits the observations. In simple

linear regression, the estimated intercept, 60, and slope, 61, are such that the sum of
the squared vertical distances from the observations to the fitted line is minimized.
The focus is on the sum of the squared differences between the observations on Y;
and the corresponding estimated value, Yi, on the regression line.

We represent the value of the dependent variable for the ith observation that falls
on the line as Y7, which s equal to bo + b1 X ;. The Yi is what the estimated value of
the Yvariable would be for the ith observation based on the mean relationship between
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Y and X. The residual for the ith observation, ¢;, is how much the observed value

of Y, differs from the Y;estimated using the regression line: ¢; = ¥; — ¥;. Note the

subtle difference between the error term and the residual: The error term refers to
the true underlying population relationship, whereas the residual refers to the fitted
linear relation based on the sample.

Fitting the line requires minimizing the sum of the squared residuals, the sum of
squares error (SSE), also known as the residual sum of squares:

Sum of squares error = Z?ZI(YI- - I?i)z
~ ~ 2
:ZL@y{m+mxﬂ (4)

=>" e

Using least squares regression to estimate the values of the population parameters
of b0 and bl, we can fit a line through the observations of X and Y that explains the

value that Y takes for any particular value of X.

As seen in Exhibit 5, the residuals are represented by the vertical distances from
the fitted line (see the third and fifth observations, Companies C and E, respectively)
and are, therefore, in the units of measurement represented by the dependent vari-
able. The residual is in the same unit of measurement as the dependent variable: If
the dependent variable is in euros, the error term is in euros, and if the dependent
variable is in growth rates, the error term is in growth rates.

Exhibit 5 Residuals of the Linear Regression

ROA (Y,%)
25
20 | Y °
©
15 f . (®
Company CAResLduaI.{ O Company E Residual
3= Y3 - (bo - b]XB) €g = Y5 - (BO - 6]X5)
10
5 -(;@
O 1 1 1 1 1 1

CAPEX (X,%)

©® Observed Values of Y O Predicted Values of Y
Regression Line
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How do we calculate the intercept (Bo) and the slope (61) for a given sample of
(Y, X) pairs of observations? The slope is the ratio of the covariance between Y and

X to the variance of X, where Y is the mean of the Y variable and )? is the mean of
X variable:

D =X, - X)

A Covariance of ¥ and X n—1
| = =
Vari fX n —X)?
ariance o Zi:1(Xi X)
n—1
Simplifying,
p _ _
j < Zeimi D= D) (5)
Z:’:I(Xi - )?)2

Once we estimate the slope, we can then estimate the intercept using the mean of ¥’
and the mean of X:

Bo = )7—131)?. (6)

We show the calculation of the slope and the intercept in Exhibit 6.

Exhibit6 Estimating Slope and Intercept for the ROA Model

-7 X (5P -

Company ROA (Y;) CAPEX (X}

A 6.0 0.7 42.25 29.16 35.10
B 4.0 0.4 72.25 32.49 48.45
C 15.0 5.0 6.25 1.21 -2.75
D 20.0 10.0 56.25 15.21 29.25
E 10.0 8.0 6.25 3.61 -4.75
F 20.0 12.5 56.25 40.96 48.00
Sum 75.0 36.6 239.50 122.64 153.30
Arithmetic mean 12.5 6.100

A 153.30

b = =1.25.
Slope coefficient: 122.64
Intercept: bo =12.5 - (1.25 x 6.10) = 4.875

Yi = 4875+ 125X, +¢,.

ROA regression model:

Notice the similarity of the formula for the slope coefficient and that of the pairwise
correlation. The sample correlation, 7, is the ratio of the covariance to the product of
the standard deviations:

Covariance of Y and X
Standard deviation )('Standard deviation)
of Y of X

1
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The subtle difference between the slope and the correlation formulas is in the
denominator: For the slope, this is the variance of the independent variable, but for
the correlation, the denominator is the product of the standard deviations. For our
ROA and CAPEX analysis,

2o =X - X) 15330

Covariance of Yand X: covyy, = 1 = 30.66. (7a)
"
Standard deviation of Y and X:
-1 (23950
Sy = 1 = - 69210
- (7b)

T2
Do (X - X) 122.64
Sy = - = 4.9526.
n-—1 5

30.66

r=——"—""  —0.89458945.
(6.9210)(4.9526)

Because the denominators of both the slope and the correlation are positive, the
sign of the slope and the correlation are driven by the numerator: If the covariance
is positive, both the slope and the correlation are positive, and if the covariance is
negative, both the slope and the correlation are negative.

HOW DO ANALYSTS PERFORM SIMPLE LINEAR
REGRESSION?

Typically, an analyst will use the data analysis functions on a spreadsheet, such as Microsoft
Excel, or a statistical package in the R or Python programming languages to perform linear
regression analysis. The following are some of the more common choices in practice.

Simple Linear Regression: Intercept and Slope

B Excel: Use the INTERCEPT, SLOPE functions.
B R: Use the Im function.
B Python: Use the sm.OLS function in the statsmodels package.

Correlations

B Fxcel: Use the CORREL function.
B R: Use the cor function in the stats library.

B Python: Use the corrcoef function in the numpy library.

Note that in Rand Python, there are many choices for regression and correlation analysis.

2.3 Interpreting the Regression Coefficients

What is the meaning of the regression coefficients? The intercept is the value of the
dependent variable if the value of the independent variable is zero. Importantly, this
does not make sense in some contexts, especially if it is unrealistic that the independent
variable would be zero. For example, if we have a model where money supply explains
GDP growth, the intercept has no meaning because, practically speaking, zero money
supply is not possible. If the independent variable were money supply growth, however,
the intercept is meaningful. The slope is the change in the dependent variable for a
one-unit change in the independent variable. If the slope is positive, then the change
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in the independent variable and that of the dependent variable will be in the same
direction; if the slope is negative, the change in the independent variable and that of
the dependent variable will be in opposite directions.

INTERPRETING POSITIVE AND NEGATIVE SLOPES

Suppose the dependent variable (Y) is in millions of euros and the independent variable
(X) is in millions of US dollars.
If the slope is positive 1.2, then
1 USD1 million — 1 EUR1.2 million
1 USD1 million — | EUR1.2 million
If the slope is negative 1.2, then
1 USD1 million — | EUR1.2 million
1 USD1 million — 1 EUR1.2 million

Using the ROA regression model from Exhibit 6, we would interpret the estimated
coefficients as follows:

B The return on assets for a company is 4.875% if the company makes no capital
expenditures.

B If CAPEX increases by one unit—say, from 4% to 5%—ROA increases by 1.25%.

Using the estimated regression coefficients, we can determine the values of the
dependent variable if they follow the average relationship between the dependent
and independent variables. A result of the mathematics of the least squares fitting
of the regression line is that the expected value of the residual term is zero: E(e) = 0.

We show the calculation of the predicted dependent variable and residual term
for each observation in the ROA example in Exhibit 7. Note that the sum and average

of Yl and Y1 are the same, and the sum of the residuals is zero.

Exhibit7 Calculation of the Dependent Variable and Residuals for the ROA

and CAPEX Model
(1) (2) (3) (4)

Predicted
ROA
CAPEX &) (1 -03)
Company ROA (Y)) X;) Yi Residual (e;)

A 6.0 0.7 5.750 0.250
B 4.0 0.4 5.375 1375
C 15.0 5.0 11.125 3.875
D 20.0 10.0 17.375 2.625
E 10.0 8.0 14.875 4875
F 200 12.5 20.500 ~0.500

(continued)

13
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Exhibit7 (Continued)

(1) (2) (3) (4)

Predicted
ROA
CAPEX G) (1)-(3)
Company ROA (Y)) X;) Yi Residual (e;)
Sum 75.0 36.6 75.000 0.000
Average 12.5 6.1 12.5 0.000

For Company C (i = 3),
Yi =bo +biX; +¢ =4875+125X; +¢

Yi = 4.875 + (1.25% 5.0) = 4.875 + 6.25 = 11.125

Y, - Yi = e; =15.0 —11.125 = 3.875, the vertical distance in Exhibit 5.

Whereas the sum of the residuals must equal zero by design, the focus of fitting
the regression line in a simple linear regression is minimizing the sum of the squared
residual terms.

2.4 Cross-Sectional vs. Time-Series Regressions

Regression analysis uses two principal types of data: cross sectional and time series.
A cross-sectional regression involves many observations of X and Y for the same
time period. These observations could come from different companies, asset classes,
investment funds, countries, or other entities, depending on the regression model.
For example, a cross-sectional model might use data from many companies to test
whether predicted EPS growth explains differences in price-to-earnings ratios during
a specific time period. Note that if we use cross-sectional observations in a regression,
we usually denote the observationsasi=1,2,...,n.

Time-series data use many observations from different time periods for the same
company, asset class, investment fund, country, or other entity, depending on the
regression model. For example, a time-series model might use monthly data from
many years to test whether a country’s inflation rate determines its short-term interest
rates. If we use time-series data in a regression, we usually denote the observations

ast=1,2,..., T. Note that in the sections that follow, we primarily use the notation
i=1,2,...,n, even for time series.
EXAMPLE 2

Estimating a Simple Linear Regression Model

An analyst is exploring the relationship between a company’s net profit margin
and research and development expenditures. He collects data for an industry
and calculates the ratio of research and development expenditures to revenues
(RDR) and the net profit margin (NPM) for eight companies. Specifically, he
wants to explain the variation that he observes in the net profit margin by using
the variation he observes in the companies’ research and development spending.
He reports the data in Exhibit 8.
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Exhibit8 Observations on NPM and RDR for Eight

Companies

NPM RDR

Company (%) (%)

1 4 8
2 10
3 10 6
4 9 5
5 7
6 6 9
7 12 5
8 3 10

1 What is the slope coefficient for this simple linear regression model?
2 What is the intercept for this regression model?

3 How is this estimated linear regression model represented?

4 What is the pairwise correlation between NPM and RDR?

Solutions

1 'The slope coefficient for the regression model is —1.3, and the details for
the inputs to this calculation are in Exhibit 9.

Exhibit9 Details of Calculation of Slope of NPM Regressed on RDR

NPM RDR

%) (%)YYX)?YYZX)?ZY?X)?
Company (Y,) (X,) i i~ (i‘ ) (i‘ ) (i_ X [ )

1 4 8 -2.8 0.5 7.5625 0.25 -1.375
2 10 -18 2.5 3.0625 6.25 -4.375
3 10 6 33 -15 10.5625 2.25 -4.875
4 5 23 =25 5.0625 6.25 -5.625
5 7 -1.8 -05 3.0625 0.25 0.875
6 9 -0.8 15 0.5625 2.25 -1.125
7 12 5 53 -25 27.5625 6.25 -13.125
8 3 10 -3.8 2.5  14.0625 6.25 -9.375
Sum 54.0 60.0 0.0 0.0 71.5000  30.00 -39.0
Average 6.75 7.5
-39

Slope coefficient: by = 0 —-1.3.
2 The intercept of the regression model is 16.5:

Intercept: bp = 6.75 — (-1.3x 7.5) = 6.75 + 9.75 = 16.5
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3 The regression model is represented by Yi=16.5— 13X, +¢;.

4 The pairwise correlation is —0.8421:
= 5.5714

_ 7 _
- \/71.% W T (3.1960)(2.0702)

—0.8421.

EXAMPLE 3

Interpreting Regression Coefficients

An analyst has estimated a model that regresses a company’s return on equity
(ROE) against its growth opportunities (GO), defined as the company’s three-
year compounded annual growth rate in sales, over 20 years and produces the
following estimated simple linear regression:

ROEl =4 + 18 GOl ar 81"
Both variables are stated in percentages, so a GO observation of 5% is included
as b5.
1 The predicted value of the company’s ROE if its GO is 10% is closest to:
A 1.8%.
B 15.8%.
C 22.0%.
2 The change in ROE for a change in GO from 5% to 6% is closest to:
A 1.8%.

B 4.0%.
C 5.8%.
3 The residual in the case of a GO of 8% and an observed ROE of 21% is
closest to:
A -1.8%.
B 2.6%.
C 12.0%.
Solutions

1 Cis correct. The predicted value of ROE = 4 + (1.8 x 10) = 22.

2 A is correct. The slope coefficient of 1.8 is the expected change in the
dependent variable (ROE) for a one-unit change in the independent vari-
able (GO).

3 Bis correct. The predicted value is ROE = 4 + (1.8 x 8) = 18.4. The
observed value of ROE is 21, so the residual is 2.6 = 21.0 — 18.4.
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ASSUMPTIONS OF THE SIMPLE LINEAR REGRESSION 3
MODEL

¢ explain the assumptions underlying the simple linear regression model, and
describe how residuals and residual plots indicate if these assumptions may
have been violated

We have discussed how to interpret the coefficients in a simple linear regression model.
Now we turn to the statistical assumptions underlying this model. Suppose that we
have # observations of both the dependent variable, Y, and the independent variable,
X, and we want to estimate the simple linear regression of Y regressed on X. We need
to make the following four key assumptions to be able to draw valid conclusions from
a simple linear regression model:

1 Linearity: The relationship between the dependent variable, Y, and the indepen-
dent variable, X, is linear.

2 Homoskedasticity: The variance of the regression residuals is the same for all
observations.

3 Independence: The observations, pairs of Ys and Xs, are independent of
one another. This implies the regression residuals are uncorrelated across
observations.

4 Normality: The regression residuals are normally distributed.

Now we take a closer look at each of these assumptions and introduce the “best prac-
tice” of examining residual plots of regression results to identify potential violations
of these key assumptions.

3.1 Assumption 1: Linearity

We are fitting a linear model, so we must assume that the true underlying relationship
between the dependent and independent variables is linear. If the relationship between
the independent and dependent variables is nonlinear in the parameters, estimating
that relation with a simple linear regression model will produce invalid results: The
model will be biased, because it will under- and overestimate the dependent variable
at certain points. For example, ¥; = bOele" + g; is nonlinear in b, so we should not
apply the linear regression model to it. Exhibit 10 shows an example of this exponential
model, with a regression line indicated. You can see that this line does not fit this
relationship well: For lower and higher values of X, the linear model underestimates
the Y, whereas for the middle values, the linear model overestimates Y.
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Exhibit 10 lllustration of Nonlinear Relationship Estimated as a Linear

Relationship

Another implication of this assumption is that the independent variable, X, must
not be random; that is, it is non-stochastic. If the independent variable is random,
there would be no linear relation between the dependent and independent variables.
Although we may initially assume that the independent variable in the regression
model is not random, that assumption may not always be true.

When we look at the residuals of a model, what we would like to see is that the
residuals are random. The residuals should not exhibit a pattern when plotted against
the independent variable. As we show in Exhibit 11, the residuals from the Exhibit 10
linear regression do not appear to be random but, rather, exhibit a relationship with
the independent variable, X, falling for some range of X and rising in another.

Exhibit 11 lllustration of Residuals in a Nonlinear Relationship Estimated

as a Linear Relationship
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3.2 Assumption 2: Homoskedasticity

Assumption 2, that the variance of the residuals is the same for all observations, is
known as the homoskedasticity assumption. In terms of notation, this assumption
relates to the squared residuals:

E(siz)zcg,izl,...,n. (8)

If the residuals are not homoscedastic, that is, if the variance of residuals differs across
observations, then we refer to this as heteroskedasticity.

Suppose you are examining a time series of short-term interest rates as the depen-
dent variable and inflation rates as the independent variable over 16 years. We may
believe that short-term interest rates (Y) and inflation rates (X) should be related (that
is, interest rates are higher with higher rates of inflation. If this time series spans many
years, with different central bank actions that force short-term interest rates to be
(artificially) low for the last eight years of the series, then it is likely that the residuals
in this estimated model will appear to come from two different models. We will refer
to the first eight years as Regime 1 (normal rates) and the second eight years as Regime
2 (low rates). If the model fits differently in the two regimes, the residuals and their
variances will be different.

You can see this situation in Exhibit 12, which shows a scatter plot with an estimated
regression line. The slope of the regression line over all 16 years is 1.1979.

Exhibit 12 Scatter Plot of Interest Rates (Y) and Inflation Rates (X)

Short-Term Interest Rate (Y,%)
5.0
45
40

35 oe® ¢
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Y =0.9954 + 1.1979X
o | @@ ®
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0 1 1 1 ! 1

0 0.5 1.0 1.5 2.0 2.5 3.0
Rate of Inflation (X,%)

® Short-Term Interest Rate (Y,%) Regression Line: All Years

We plot the residuals of this model in Exhibit 13 against the years. In this plot,
we indicate the distance that is two standard deviations from zero (the mean of the
residuals) for the first eight years’ residuals and then do the same for the second
eight years. As you can see, the residuals appear different for the two regimes: the
variation in the residuals for the first eight years is much smaller than the variation
for the second eight years.
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Exhibit 13 Residual Plot for Interest Rates (Y) vs. Inflation Rates (X) Model
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Why does this happen? The model seems appropriate, but when we examine the
residuals (Exhibit 13), an important step in assessing the model fit, we see that the
model fits better in some years compared with others. The difference in variance of
residuals between the two regimes is apparent from the much wider band around
residuals for Regime 2 (the low-rate period). This indicates a clear violation of the
homoskedasticity assumption.

If we estimate a regression line for each regime, we can see that the model for the
two regimes is quite different, as we show in Exhibit 14. In the case of Regime 1 (nor-
mal rates), the slope is 1.0247, whereas in Regime 2 (low rates) the slope is —-0.2805.
In sum, the clustering of residuals in two groups with much different variances clearly
indicates the existence of distinct regimes for the relationship between short-term
interest rates and the inflation rate.

Exhibit 14 Fitted Regression Lines for the Two Regimes
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3.3 Assumption 3: Independence

We assume that the observations (Y and X pairs) are uncorrelated with one another,
meaning they are independent. If there is correlation between observations (that is,
autocorrelation), they are not independent and the residuals will be correlated. The
assumption that the residuals are uncorrelated across observations is also necessary

for correctly estimating the variances of the estimated parameters of b, and b, (i.e.,

bo and 61) that we use in hypothesis tests of the intercept and slope, respectively. It
is important to examine whether the residuals exhibit a pattern, suggesting a violation
of this assumption. Therefore, we need to visually and statistically examine the resid-
uals for a regression model.

Consider the quarterly revenues of a company regressed over 40 quarters, as shown
in Exhibit 15, with the regression line included. It is clear that these revenues display
a seasonal pattern, an indicator of autocorrelation.

Exhibit 15 Regression of Quarterly Revenues vs. Time (40 Quarters)
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(O Observed Quarterly Revenues: 4th Quarter

In Exhibit 16, we plot the residuals from this model and see that there is a pattern.
These residuals are correlated, specifically jumping up in Quarter 4 and then falling
back the subsequent quarter. In sum, the patterns in both Exhibits 15 and 16 indicate
a violation of the assumption of independence.
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Exhibit 16 Residual Plot for Quarterly Revenues vs. Time Model
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3.4 Assumption 4: Normality

The assumption of normality requires that the residuals be normally distributed.
This does not mean that the dependent and independent variables must be normally
distributed; it only means that the residuals from the model are normally distributed.
However, in estimating any model, it is good practice to understand the distribution of
the dependent and independent variables to explore for outliers. An outlier in either
or both variables can substantially influence the fitted line such that the estimated
model will not fit well for most of the other observations.

With normally distributed residuals, we can test a particular hypothesis about a
linear regression model. For large sample sizes, we may be able to drop the assumption
of normality by appealing to the central limit theorem; asymptotic theory (which deals
with large samples) shows that in many cases, the test statistics produced by standard
regression programs are valid even if the model’s residuals are not normally distributed.

EXAMPLE 4

Assumptions of Simple Linear Regression

An analyst is investigating a company’s revenues and estimates a simple linear
time-series model by regressing revenues against time, where time—1, 2, . . .,
15—is measured in years. She plots the company’s observed revenues and the
estimated regression line, as shown in Exhibit 17. She also plots the residuals
from this regression model, as shown in Exhibit 18.
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Exhibit 17 Revenues vs. Time Using Simple Linear Regression
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Exhibit 18 Residual Plot for Revenues vs. Time
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Based on Exhibits 17 and 18, describe which assumption(s) of simple linear
regression the analyst’s model may be violating.

Solution

The correct model is not linear, as evident from the pattern of the revenues in
Exhibit 17. In the earlier years (i.e., 1 and 2) and later years (i.e., 14 and 15),
the linear model underestimates revenues, whereas for the middle years (i.e.,
7—-11), the linear model overestimates revenues. Moreover, the curved pattern
of residuals in Exhibit 18 indicates potential heteroskedasticity (residuals have
unequal variances), lack of independence of observations, and non-normality
(a concern given the small sample size of # = 15). In sum, the analyst should be
concerned that her model violates all the assumptions governing simple linear
regression (linearity, homoskedasticity, independence, and normality).
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ANALYSIS OF VARIANCE

d calculate and interpret the coefficient of determination and the F-statistic in a
simple linear regression

The simple linear regression model sometimes describes the relationship between
two variables quite well, but sometimes it does not. We must be able to distinguish
between these two cases to use regression analysis effectively. Remember our goal
is to explain the variation of the dependent variable. So, how well has this goal been
achieved, given our choice of independent variable?

4.1 Breaking down the Sum of Squares Total into Its
Components

We begin with the sum of squares total and then break it down into two parts: the
sum of squares error and the sum of squares regression (SSR). The sum of squares
regression is the sum of the squared differences between the predicted value of the

dependent variable, Y, based on the estimated regression line, and the mean of the

dependent variable, Y :

Z?zl(f’i —17)2. (9)

We have already defined the sum of squares total, which is the total variation in
Y, and the sum of squares error, the unexplained variation in Y. Note that the sum
of squares regression is the explained variation in Y. So, as illustrated in Exhibit 19,
SST = SSR + SSE, meaning total variation in Y equals explained variation in Y plus
unexplained variation in Y.

Exhibit 19 Breakdown of Variation of Dependent Variable

Sum of Squares Total (SST)
S Y-2

Sum of Squares Regression (SSR) Sum of Squares Error (SSE)

u A
(Y- 92

i=1

m ;- V2

We show the breakdown of the sum of squares total formula for our ROA regres-
sion example in Exhibit 20. The total variation of ROA that we want to explain (SST)
is 239.50. This number comprises the variation unexplained (SSE), 47.88, and the
variation explained (SSR), 191.63. These sum of squares values are important inputs
into measures of the fit of the regression line.
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Exhibit 20 Breakdown of Sum of Squares Total for ROA Model

Variation
Predicted to Be Variatif)n Varia‘tion
ROA Explained Unexplained  Explained
ROA CAPEX - o ~\2 ~ 2
o e e (i -7)
Company (Y (X;)
A 6.0 0.7 5.750 42.25 0.063 45.563
B 4.0 0.4 5.375 72.25 1.891 50.766
C 15.0 5.0 11.125 6.25 15.016 1.891
D 20.0 10.0 17.375 56.25 6.891 23.766
E 10.0 8.0 14.875 6.25 23.766 5.641
F 20.0 12.5 20.500 56.25 0.250 64.000
239.50 47.88 191.625
Mean 12.50

Sum of squares total = 239.50.
Sum of squares error = 47.88.
Sum of squares regression = 191.63.

4.2 Measures of Goodness of Fit

There are several measures that we can use to evaluate goodness of fit—that is, how
well the regression model fits the data. These include the coefficient of determination,
the F-statistic for the test of fit, and the standard error of the regression.

The coefficient of determination, also referred to as the R-squared or R?, is the
percentage of the variation of the dependent variable that is explained by the inde-
pendent variable:

Sum of squares regression

Coefficient of determination =
Sum of squares total

2?21(2 - ?)2 L
PSS

By construction, the coefficient of determination ranges from 0% to 100%. In our ROA
example, the coefficient of determination is 191.625 + 239.50, or 0.8001, so 80.01% of
the variation in ROA is explained by CAPEX. In a simple linear regression, the square
of the pairwise correlation is equal to the coefficient of determination:

no(A 2
2 Zi:l(Yi B Y)

n 7\2
2i,E-7)

In our earlier ROA regression analysis, r = 0.8945, so we now see that 72 is indeed

equal to the coefficient of determination (R2), since (0.8945)2 = 0.8001.
Whereas the coefficient of determination—the portion of the variation of the
dependent variable explained by the independent variable—is descriptive, it is not a

statistical test. To see if our regression model is likely to be statistically meaningful,
we will need to construct an F-distributed test statistic.

Coefficient of determination =

- R%.
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In general, we use an F-distributed test statistic to compare two variances. In
regression analysis, we can use an F-distributed test statistic to test whether the
slopes in a regression are equal to zero, with the slopes designated as b;, against the
alternative hypothesis that at least one slope is not equal to zero:

Hy by =by=by=...=b=0.

H,: At least one by is not equal to zero.

For simple linear regression, these hypotheses simplify to

Hoi bl =0.

HaZ bl = 0.

The F-distributed test statistic is constructed by using the sum of squares regression
and the sum of squares error, each adjusted for degrees of freedom; in other words, it
is the ratio of two variances. We divide the sum of squares regression by the number
of independent variables, represented by k. In the case of a simple linear regression,

k = 1, so we arrive at the mean square regression (MSR), which is the same as the
sum of squares regression:

noS P2
Sum of squares regression Zizl(yi -Y)
k 1 ’

So, for simple linear regression,

MSR =

MSR = 3" (¥, - 1) (1)

Next, we calculate the mean square error (MSE), which is the sum of squares error
divided by the degrees of freedom, which are n — k — 1. In simple linear regression,
n -k —1becomes n — 2:

Sum of squares error

MSE =
n—k-1
n v \2
(Y, -1
MSE = zl—l—’ (12)
n—2
Therefore, the F-distributed test statistic (MSR/MSE) is
Sum of squares regression
o k _ MSR
~ Sumofsquareserror  MSE
n—k—1
XLt -1
F=—r—1l—, (13)
Z:‘q:l(yi - Yf)2
n—2

which is distributed with 1 and # — 2 degrees of freedom in simple linear regression.
The F-statistic in regression analysis is one sided, with the rejection region on the right
side, because we are interested in whether the variation in Y explained (the numerator)
is larger than the variation in Y unexplained (the denominator).
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4.3 ANOVA and Standard Error of Estimate in Simple Linear
Regression

e describe the use of analysis of variance (ANOVA) in regression analysis, inter-
pret ANOVA results, and calculate and interpret the standard error of estimate
in a simple linear regression

We often represent the sums of squares from a regression model in an analysis of
variance (ANOVA) table, as shown in Exhibit 21, which presents the sums of squares,
the degrees of freedom, the mean squares, and the F-statistic. Notice that the variance
of the dependent variable is the ratio of the sum of squares total to n — 1.

Exhibit 21  Analysis of Variance Table for Simple Linear Regression

Degrees of
Source Sum of Squares Freedom Mean Square F-Statistic
-1
n 5 o2 -
. .~ T (Yi-Y) MSR 1
Regression SSR = zn_ i - Y)2 1 MSR = Zz:l( F = = —~
i=1 1 MSE Z?:l(yi _ Y,-)2
n—2
n 72
A~ Y _ Y
Error SSE = z:’,l(y,' ~Yi)? n-2 MSE = lel(;’)
B n-2
Total SST =" (% -7) n-1

From the ANOVA table, we can also calculate the standard error of the estimate
(sp), which is also known as the standard error of the regression or the root mean
square error. The s, is a measure of the distance between the observed values of the
dependent variable and those predicted from the estimated regression; the smaller the
se» the better the fit of the model. The s,, along with the coefficient of determination
and the F-statistic, is a measure of the goodness of the fit of the estimated regression
line. Unlike the coefficient of determination and the F-statistic, which are relative
measures of fit, the standard error of the estimate is an absolute measure of the
distance of the observed dependent variable from the regression line. Thus, the s, is
an important statistic used to evaluate a regression model and is used in calculating
prediction intervals and performing tests on the coefficients. The calculation of s, is
straightforward once we have the ANOVA table because it is the square root of the MSE:

v .N\2
2% =Y
n—2 .

We show the ANOVA table for our ROA regression example in Exhibit 22, using
the information from Exhibit 20. For a 5% level of significance, the critical F-value
for the test of whether the model is a good fit (that is, whether the slope coefficient
is different from zero) is 7.71. We can get this critical value in the following ways:
B [Excel [FINV(0.95,1,4)]
B R [qf(.95,1,4)]
B Python [from scipy.stats import f and f.ppf(.95,1,4)]

Standard error of the estimate (s,) = VMSE = (14)
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With a calculated F-statistic of 16.0104 and a critical F-value of 7.71, we reject the
null hypothesis and conclude that the slope of our simple linear regression model for
ROA is different from zero.

Exhibit22 ANOVA Table for ROA Regression Model

Degrees
of
Source Sum of Squares Freedom Mean Square F-Statistic
Regression 191.625 1 191.625 16.0104
Error 47.875 4 11.96875

Total 239.50

The calculations to derive the ANOVA table and ultimately to test the goodness of
fit of the regression model can be time consuming, especially for samples with many
observations. However, statistical packages, such as SAS, SPSS Statistics, and Stata,
as well as software, such as Excel, R, and Python, produce the ANOVA table as part
of the output for regression analysis.

Using ANOVA Table Results to Evaluate a Simple Linear
Regression

Suppose you run a cross-sectional regression for 100 companies, where the
dependent variable is the annual return on stock and the independent variable
is the lagged percentage of institutional ownership (INST). The results of this
simple linear regression estimation are shown in Exhibit 23. Evaluate the model
by answering the questions below.

Exhibit23 ANOVA Table for Annual Stock Return Regressed on

Institutional Ownership

Degrees of
Source Sum of Squares Freedom Mean Square
Regression 576.1485 1 576.1485
Error 1,873.5615 98 19.1180

Total 2,449.7100

1 What is the coefficient of determination for this regression model?
2 What is the standard error of the estimate for this regression model?

3 Ata 5% level of significance, do we reject the null hypothesis of the slope
coefficient equal to zero if the critical F-value is 3.938?

4 Based on your answers to the preceding questions, evaluate this simple
linear regression model.
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Solutions

29

1 The coefficient of determination is sum of squares regression/sum of
squares total: 576.148 + 2,449.71 = 0.2352, or 23.52%.

2 The standard error of the estimate is the square root of the mean square
error: 19.1180 = 4.3724.

3 Using a six-step process for testing hypotheses, we get the following:

Step 1
Step 2

Step 3
Step 4

Step 5

Step 6

State the hypotheses.

Identify the appropriate test
statistic.

Specify the level of significance.

State the decision rule.

Calculate the test statistic.

Make a decision.

Hy: by = 0 versus H,: by # 0

o LRl

MSE
with 1 and 98 degrees of freedom.
a = 5% (one tail, right side).

Critical F-value = 3.938.
Reject the null hypothesis if the calculated F-statistic is greater
than 3.938.

_576.1485
19.1180

=30.1364

Reject the null hypothesis because the calculated F-statistic is
greater than the critical F-value. There is sufficient evidence to
indicate that the slope coefficient is different from 0.0.

4 The coefficient of determination indicates that variation in the indepen-
dent variable explains 23.52% of the variation in the dependent variable.
Also, the F-statistic test confirms that the model’s slope coefficient is
different from 0 at the 5% level of significance. In sum, the model seems to
fit the data reasonably well.

HYPOTHESIS TESTING OF LINEAR REGRESSION 5
COEFFICIENTS

f formulate a null and an alternative hypothesis about a population value of a
regression coefficient, and determine whether the null hypothesis is rejected at
a given level of significance

5.1 Hypothesis Tests of the Slope Coefficient

We can use the F-statistic to test for the significance of the slope coefficient (that is,
whether it is significantly different from zero), but we also may want to perform other
hypothesis tests for the slope coefficient—for example, testing whether the population
slope is different from a specific value or whether the slope is positive. We can use
a t-distributed test statistic to test such hypotheses about a regression coefficient.
Suppose we want to check a stock’s valuation using the market model; we hypoth-
esize that the stock has an average systematic risk (i.e., risk similar to that of the
market), as represented by the coefficient on the market returns variable. Or we may
want to test the hypothesis that economists’ forecasts of the inflation rate are unbiased
(that is, on average, not overestimating or underestimating actual inflation rates). In
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each case, does the evidence support the hypothesis? Such questions as these can be
addressed with hypothesis tests on the regression slope. To test a hypothesis about a
slope, we calculate the test statistic by subtracting the hypothesized population slope

(B;) from the estimated slope coefficient (b1) and then dividing this difference by the
standard error of the slope coefficient, s;
1

t:bl_—Bl. (15)

S[‘)1
This test statistic is ¢-distributed with # — k — 1 or n - 2 degrees of freedom because
two parameters (an intercept and a slope) were estimated in the regression.
The standard error of the slope coefficient (s; ) for a simple linear regression
1

is the ratio of the model’s standard error of the estimate (s,) to the square root of the
variation of the independent variable:

- S (16)

bl n fuged ’
o (X - X)?

We compare the calculated ¢-statistic with the critical values to test hypotheses.
Note that the greater the variability of the independent variable, the lower the stan-
dard error of the slope (Equation 16) and hence the greater the calculated ¢-statistic
(Equation 15). If the calculated ¢-statistic is outside the bounds of the critical t-values,
we reject the null hypothesis, but if the calculated ¢-statistic is within the bounds of
the critical values, we fail to reject the null hypothesis. Similar to tests of the mean,
the alternative hypothesis can be two sided or one sided.

Consider our previous simple linear regression example with ROA as the dependent
variable and CAPEX as the independent variable. Suppose we want to test whether
the slope coefficient of CAPEX is different from zero to confirm our intuition of a
significant relationship between ROA and CAPEX. We can test the hypothesis concern-
ing the slope using the six-step process, as we show in Exhibit 24. As a result of this
test, we conclude that the slope is different from zero; that is, CAPEX is a significant
explanatory variable of ROA.

Exhibit 24 Test of the Slope for the Regression of ROA on CAPEX

Step 1
Step 2

Step 3

Identify the appropriate test

statistic.

State the hypotheses. Hgy: by = 0 versus H,: by =0
by-B
fmh
S/AJl

with 6 — 2 = 4 degrees of freedom.

Specify the level of significance. a = 5%.
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Exhibit 24 (Continued)

Critical ¢-values = +2.776.
We can determine this from

Step 4 State the decision rule.

Excel
Lower: T.INV(0.025,4)
Upper: T.INV(0.975,4)

R qt(c(.025,.975),4)

Python from scipy.stats import t
Lower: t.ppf(.025,4)
Upper: t.ppf(.975,4)

We reject the null hypothesis if the calculated ¢-statistic is less than

-2.776 or greater than +2.776.

Calculate the test statistic. The slope coefficient is 1.25
The mean  square 11.96875
The  variation  of 122.640
5, = \J11.96875 = 3.459588.
. 3459588
b 122,640

1= 12520y h0131.
0.312398

Step 5
error is
CAPEX is

=0.312398.

Step 6 Make a decision.

to indicate that the slope is different from zero.

Reject the null hypothesis of a zero slope. There is sufficient evidence

A feature of simple linear regression is that the ¢-statistic used to test whether
the slope coefficient is equal to zero and the ¢-statistic to test whether the pairwise
correlation is zero (that is, Hy: p = 0 versus H: p = 0) are the same value. Just as with
a test of a slope, both two-sided and one-sided alternatives are possible for a test of a
correlation—for example, Hy: p < 0 versus H;: p > 0. The test-statistic to test whether
the correlation is equal to zero is

foNn-2
172

In our example of ROA regressed on CAPEX, the correlation (r) is 0.8945. To test
whether this correlation is different from zero, we perform a test of hypothesis, shown
in Exhibit 25. As you can see, we draw a conclusion similar to that for our test of the
slope, but it is phrased in terms of the correlation between ROA and CAPEX: There

is a significant correlation between ROA and CAPEX.

Exhibit 25 Test of the Correlation between ROA and CAPEX

Step 1 State the hypotheses.

Step 2 Identify the appropriate test
statistic.

Step 3 Specify the level of significance.

Step 4 State the decision rule.

Hy p=0versus H;:p =0

. rNn—2

1- 2
with 6 — 2 = 4 degrees of freedom.

a=5%.

Critical ¢-values = £2.776.

Reject the null if the calculated ¢-statistic is less than —2.776 or greater

than +2.776.

(continued)
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Exhibit 25 (Continued)

Step 5 Calculate the test statistic.
.8945+/4
t= M =4.00131.
+1-0.8001
Step 6 Make a decision. Reject the null hypothesis of no correlation. There is sufficient evi-

dence to indicate that the correlation between ROA and CAPEX is
different from zero.

Another interesting feature of simple linear regression is that the test-statistic
used to test the fit of the model (that is, the F-distributed test statistic) is related to
the calculated ¢-statistic used to test whether the slope coefficient is equal to zero: £
= F; therefore, 4.00131% = 16.0104.

What if instead we want to test whether there is a one-to-one relationship between
ROA and CAPEX, implying a slope coefficient of 1.0. The hypotheses become H: b,
=1 and H: by = 1. The calculated ¢-statistic is

t=12=1 80026,
0.312398

This calculated test statistic falls within the bounds of the critical values, +2.776,
so we fail to reject the null hypothesis: There is not sufficient evidence to indicate
that the slope is different from 1.0.

What if instead we want to test whether there is a positive slope or positive cor-
relation, as our intuition suggests? In this case, all the steps are the same as in Exhibits
24 and 25 except the critical values because the tests are one sided. For a test of a
positive slope or positive correlation, the critical value for a 5% level of significance is
+2.132. We show the test of hypotheses for a positive slope and a positive correlation
in Exhibit 26. Our conclusion is that there is sufficient evidence supporting both a
positive slope and a positive correlation.

Exhibit 26 One-Sided Tests for the Slope and Correlation

Test of the Slope Test of the Correlation
Step 1 State the hypotheses. Hy: by < 0 versus H,: by >0 Hy: p<O0versus H: p>0
Step 2 Identify the appro- A o
priate test statistic. t= bl—Bl t = u
SI;]_ 1- 7"2
with 6 — 2 = 4 degrees of freedom. with 6 — 2 = 4 degrees of freedom.
Step 3 Specify the level of a = 5%. a = 5%.
significance.
Step 4 State the decision Critical ¢-value = 2.132. Critical ¢-value = 2.132.
rule. Reject the null if the calculated ¢-sta-  Reject the null if the calculated ¢-statistic
tistic is greater than 2.132. is greater than 2.132.
Step 5 Cal?ul'ate the test C125-0 O.8945\/Z
statistic. t=——7——=400131 t = ———— =4.00131
0.312398 N1 —0.8001
Step 6 Make a decision. Reject the null hypothesis. There is Reject the null hypothesis. There is

sufficient evidence to indicate that the sufficient evidence to indicate that the
slope is greater than zero. correlation is greater than zero.




Hypothesis Testing of Linear Regression Coefficients 33

5.2 Hypothesis Tests of the Intercept

There are occasions when we want to test whether the population intercept is a spe-
cific value. As a reminder on how to interpret the intercept, consider the simple linear
regression with a company’s revenue growth rate as the dependent variable (Y) and the
GDP growth rate of its home country as the independent variable (X). The intercept
is the company’s revenue growth rate if the GDP growth rate is 0%.

The equation for the standard error of the intercept, Sy is

v2
n Zi:l(Xi _X)

We can test whether the intercept is different from the hypothesized value, By, by
comparing the estimated intercept (b,) with the hypothesized intercept and then

si’o

dividing the difference by the standard error of the intercept:

A~ A~

¢ _ bo _BO _ bo _BO
intercept — R - —
Sho 1 X
*J"n—_z
n Zi:l(Xi _X)

In the ROA regression example, the intercept is 4.875%. Suppose we want to test
whether the intercept is greater than 3%. The one-sided hypothesis test is shown in
Exhibit 27. As you can see, we reject the null hypothesis. In other words, there is
sufficient evidence that if there are no capital expenditures (CAPEX = 0), ROA is
greater than 3%.

Exhibit 27 Test of Hypothesis for Intercept for Regression of ROA on CAPEX

Step 1 State the hypotheses. Hy: by < 3% versus H,: by > 3%
Step 2 Identify the appropriate test A
L b, — By
statistic. bintercept = -0
P Sn
bo
with 6 — 2 = 4 degrees of freedom.
Step 3 Specify the level of significance.  a = 5%.
Step 4 State the decision rule. Critical ¢t-value = 2.132.
Reject the null if the calculated ¢-statistic is greater than 2.132.
Step 5 Calculate the test statistic. 4.875-3.0 1.875
Yintercept = = = 2.73475
2 0.68562
1 N 6.1
6 122.64
Step 6 Make a decision. Reject the null hypothesis. There is sufficient evidence to indicate that

the intercept is greater than 3%.

5.3 Hypothesis Tests of Slope When Independent Variable Is an
Indicator Variable

Suppose we want to examine whether a company’s quarterly earnings announcements
influence its monthly stock returns. In this case, we could use an indicator variable,
or dummy variable, that takes on only the values 0 or 1 as the independent variable.
Consider the case of a company’s monthly stock returns over a 30-month period. A
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simple linear regression model for investigating this question would be monthly returns,
RET, regressed on the indicator variable, EARN, that takes on a value of 0 if there is
no earnings announcement that month and 1 if there is an earnings announcement:

This regression setup allows us to test whether there are different returns for

earnings-announcement months versus non-earnings-announcement months. The
observations and regression results are shown graphically in Exhibit 28.

Exhibit 28 Earnings Announcements, Dummy Variable, and Stock Returns

Monthly Return (%)
2.5

20

1234567 89101121314151617 1819 20212223242526 27282930
Month

O Returns for Announcement Months @ Returns for Months without Announcements
Mean Return for Announcement Months

————— Mean Return for Non-Announcement Months

Clearly there are some months in which the returns are different from other
months, and these correspond to months in which there was an earnings announce-
ment. We estimate the simple linear regression model and perform hypothesis testing
in the same manner as if the independent variable were a continuous variable. In a
simple linear regression, the interpretation of the intercept is the predicted value of
the dependent variable if the indicator variable is zero. Moreover, the slope, when the
indicator variable is 1, is the difference in the means if we grouped the observations by
the indicator variable. The results of the regression are given in Panel A of Exhibit 29.

Exhibit 29 Regression and Test of Differences Using an Indicator Variable

A. Regression Estimation Results

Estimated Standard Error of Calculated Test
Coefficients Coefficients Statistic
Intercept 0.5629 0.0560 10.0596
EARN 1.2098 0.1158 10.4435

Degrees of freedom = 28.
Critical t-values = +2.0484 (5% significance).
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B. Test of Differences in Means

RET for Non-
RET for Earnings- Earnings-
Announcement Announcement Difference in

Months Months Means
Mean 1.7727 0.5629 1.2098
Variance 0.1052 0.0630
Observations 7 23
Pooled variance 0.07202
Calculated test statistic 10.4435

Degrees of freedom = 28.
Critical t-values = +2.0484 (5% significance).

We can see the following from Panel A of Exhibit 29:

B The intercept (0.5629) is the mean of the returns for non-earnings-
announcement months.

B The slope coefficient (1.2098) is the difference in means of returns between
earnings-announcement and non-announcement months.

B We reject the null hypothesis that the slope coefficient on EARN is equal to
zero. We also reject the null hypothesis that the intercept is zero. The reason is
that in both cases, the calculated test statistic exceeds the critical ¢-value.

We could also test whether the mean monthly return is the same for both the
non-earnings-announcement months and the earnings-announcement months by
testing the following:

HO : “RETearnings = IJ'RETNon—earnings and Ha : IJ'RETearnings # ”RETNon—earnings

The results of this hypothesis test are gleaned from Panel B of Exhibit 29. As you
can see, we reject the null hypothesis that there is no difference in the mean RET for
the earnings-announcement and non-earnings-announcements months at the 5%
level of significance, since the calculated test statistic (10.4435) exceeds the critical
value (2.0484).

5.4 Test of Hypotheses: Level of Significance and p-Values

The choice of significance level in hypothesis testing is always a matter of judgment.
Analysts often choose the 0.05 level of significance, which indicates a 5% chance of
rejecting the null hypothesis when, in fact, it is true (a Type I error, or false positive).
Of course, decreasing the level of significance from 0.05 to 0.01 decreases the proba-
bility of Type I error, but it also increases the probability of Type II error—failing to
reject the null hypothesis when, in fact, it is false (that is, a false negative).

The p-value is the smallest level of significance at which the null hypothesis can
be rejected. The smaller the p-value, the smaller the chance of making a Type I error
(i.e., rejecting a true null hypothesis), so the greater the likelihood the regression
model is valid. For example, if the p-value is 0.005, we reject the null hypothesis that
the true parameter is equal to zero at the 0.5% significance level (99.5% confidence).
In most software packages, the p-values provided for regression coefficients are for a
test of null hypothesis that the true parameter is equal to zero against the alternative
that the parameter is not equal to zero.
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In our ROA regression example, the calculated ¢-statistic for the test of whether the
slope coeflicient is zero is 4.00131. The p-value corresponding to this test statistic is
0.008, which means there is just a 0.8% chance of rejecting the null hypotheses when it
is true. Comparing this p-value with the level of significance of 5% (and critical values
of £2.776) leads us to easily reject the null hypothesis of Hy: b; = 0.

How do we determine the p-values? Since this is the area in the distribution out-
side the calculated test statistic, we need to resort to software tools. For the p-value
corresponding to the ¢ = 4.00131 from the ROA regression example, we could use
the following:

B Excel 1-T.DIST(4.00131,4,TRUE))*2
® R (1-pt(4.00131,4))*2
B Python from scipy.stats import t and (1 - t.cdf(4.00131,4))*2

EXAMPLE 6

Hypothesis Testing of Simple Linear Regression Results

An analyst is interested in interpreting the results of and performing tests of
hypotheses for the market model estimation that regresses the daily return on
ABC stock on the daily return on the fictitious Europe—Asia—Africa (EAA)
Equity Index, his proxy for the stock market. He has generated the regression
results presented in Exhibit 30.

Exhibit 30 Selected Results of Estimation of Market Model for ABC
Stock

Standard error of the estimate (s,) 1.26
Standard deviation of ABC stock returns 0.80
Standard deviation of EAA Equity Index returns 0.70
Number of observations 1,200
Coefficients
Intercept 0.010
Slope of EAA Equity Index returns 0.982

1 If the critical £-values are £1.96 (at the 5% significance level), is the slope
coefficient different from zero?

2 If the critical ¢-values are +1.96 (at the 5% significance level), is the slope
coefficient different from 1.0?

Solutions

1 First, we calculate the variation of the independent variable using the
standard deviation of the independent variable:

S - Tl

i=1

x (n —1).

n—1
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So,

n
3 (x; - X)? = 0.70% x 1199 = 587.51.
i=1

Next, the standard error of the estimated slope coefficient is

S, 1.26
Si) = - = \/
1 \/ZL(Xi _ X2 587.51

and the test statistic is

= 0.051983,

t_in—Bl . 0.982-0

5 ©0.051983
1

=18.89079

The calculated test statistic is outside the bounds of +1.96, so we reject
the null hypothesis of a slope coefficient equal to zero.

2 The calculated test statistic for the test of whether the slope coefficient is
equal to 1.0 is

0.982 -1
t —

= — = —0.3463.
0.051983

The calculated test statistic is within the bounds of +1.96, so we fail to
reject the null hypothesis of a slope coefficient equal to 1.0, which is evi-
dence that the true population slope may be 1.0.

PREDICTION USING SIMPLE LINEAR REGRESSION
AND PREDICTION INTERVALS

g calculate and interpret the predicted value for the dependent variable, and a
prediction interval for it, given an estimated linear regression model and a value
for the independent variable

Financial analysts often want to use regression results to make predictions about a
dependent variable. For example, we might ask, “How fast will the sales of XYZ
Corporation grow this year if real GDP grows by 4%?” But we are not merely interested
in making these forecasts; we also want to know how certain we can be about the

forecasts’ results. A forecasted value of the dependent variable, Y 7, is determined
using the estimated intercept and slope, as well as the expected or forecasted inde-

pendent variable, X:
Ys =bo+ lAale (18)

In our ROA regression model, if we forecast a company’s CAPEX to be 6%, the
forecasted ROA based on our estimated equation is 12.375%:

Y/ = 4875 + (125 x 6) = 12.375

However, we need to consider that the estimated regression line does not describe
the relation between the dependent and independent variables perfectly; it is an aver-
age of the relation between the two variables. This is evident because the residuals
are not all zero.
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Therefore, an interval estimate of the forecast is needed to reflect this uncertainty.

The estimated variance of the prediction error, s}, of Y, given X, is

L (- %) L, X
S%:Sezl-l-—-i-‘—z =Sezl+—+nf—_2
' no (n-1)sy oy X - X)

and the standard error of the forecast is

s

X, - X)?
Sf =S, 1+l+(nf—)_2. (19)
" Zi:l(Xi _X)

The standard error of the forecast depends on

the standard error of the estimate, s,;
B the number of observations, #;

the forecasted value of the independent variable, X5 used to predict the depen-
dent variable and its deviation from the estimated mean, X ; and

B the variation of the independent variable.
We can see the following from the equation for the standard error of the forecast:
1 The better the fit of the regression model, the smaller the standard error of the
estimate (s,) and, therefore, the smaller standard error of the forecast.

2 The larger the sample size () in the regression estimation, the smaller the stan-
dard error of the forecast.

3 The closer the forecasted independent variable (Xf) is to the mean of the
independent variable (X) used in the regression estimation, the smaller the
standard error of the forecast.

Once we have this estimate of the standard error of the forecast, determining a
prediction interval around the predicted value of the dependent variable (Y 7) is very

similar to estimating a confidence interval around an estimated parameter. The pre-
diction interval is

Yf * tcriticalfor al25f- (20)
We outline the steps for developing the prediction interval in Exhibit 31.
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Exhibit31 Creating a Prediction Interval around the Predicted Dependent

Variable

Predict the value of Y, f’f, given the forecasted value of X, X;

\Z

Choose a significance level, a, for the prediction interval

2

Determine the critical value for the prediction interval based on the degrees of
freedom and the significance level

7

Compute the standard error of the forecast

\Z

Compute the (1 - a) percent prediction interval for the prediction as: \/’\,J_r t critical for a2 Sf

For our ROA regression model, given that the forecasted value of CAPEX is 6.0,
the predicted value of Y'is 12.375:

Yy =4875+125X , = 4.875 + (1.25 x 6.0) = 12.375.

Assuming a 5% significance level (), two sided, with # — 2 degrees of freedom (so, df
= 4), the critical values for the prediction interval are +2.776.
The standard error of the forecast is

2
/ 1 6—-6.1
Sy = 3.459588,1 + g + ﬁ = 3.459588+/1.166748 = 3.736912.

The 95% prediction interval then becomes

12,375 + 2.776(3.736912)

12.375 £10.3737

[2.0013 < 7 < 22.7487)

For our ROA regression example, we can see how the standard error of the forecast
(sf) changes as our forecasted value of the independent variable gets farther from the
mean of the independent variable (X , — X) in Exhibit 32. The mean of CAPEX is

6.1%, and the band that represents one standard error of the forecast, above and below
the forecast, is minimized at that point and increases as the independent variable gets
farther from X .
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Exhibit 32 ROA Forecasts and Standard Error of the Forecast

Forecasted ROA (%)
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EXAMPLE 7

Predicting Net Profit Margin Using R&D Spending

Suppose we want to forecast a company’s net profit margin (NPM) based on
its research and development expenditures scaled by revenues (RDR), using
the model estimated in Example 2 and the details provided in Exhibit 8. The
regression model was estimated using data on eight companies as

Yy =165-13X,,
with a standard error of the estimate (s,) of 1.8618987 and variance of

_2
> X - X) .
RDR, =———————, 0f 4.285714, as given.
(n—1)
1 What is the predicted value of NPM if the forecasted value of RDR is 5?
2 What is the standard error of the forecast (sf) if the forecasted value of

RDR is 5?

3 What is the 95% prediction interval for the predicted value of NPM using
critical ¢-values (df = 6) of +2.447?

4 What is the predicted value of NPM if the forecasted value of RDR is 15?

5 What is the standard error of the forecast if the forecasted value of RDR is
15?

6 What is the 95% prediction interval for the predicted value of NPM using
critical ¢-values (df = 6) of +2.447?



Functional Forms for Simple Linear Regression

Solutions

1 The predicted value of NPM is 10: 16.5 — (1.3 x 5) = 10.
2 To derive the standard error of the forecast (sf), we first have to calculate

the variation of RDR. Then, we have the all the pieces to calculate Sf:

n
>(X; - X) = 4.285714 % 7 = 30,
i=1

. 2
s, =1.8618987. 1+ L+ O =7 _ 1 1499
! 8 30

3 The 95% prediction interval for the predicted value of NPM is

{10 + 2.447(2.1499)}

(47392 < 77 < 152608

4 The predicted value of NPM is —-3: 16.5 — (1.3 x 15) = -3.
To derive the standard error of the forecast, we first must calculate the
variation of RDR. Then, we can calculate st

(X, - X = 4285714 x7 = 30,
i=1

1 (15-75)

Sp = 1.8618987\/1+—+ = 3.2249.
8

6 The 95% prediction interval for the predicted value of NPM is

{-3 +2.447(3.2249)}

(108913 < ¥ 5 < 4.8913]

FUNCTIONAL FORMS FOR SIMPLE LINEAR
REGRESSION

h describe different functional forms of simple linear regressions

Not every set of independent and dependent variables has a linear relation. In fact,
we often see non-linear relationships in economic and financial data. Consider the
revenues of a company over time illustrated in Exhibit 33, with revenues as the depen-
dent (Y) variable and time as the independent (X) variable. Revenues grow at a rate
of 15% per year for several years, but then the growth rate eventually declines to just
5% per year. Estimating this relationship as a simple linear model would understate
the dependent variable, revenues, for some ranges of the independent variable, time,
and would overstate it for other ranges of the independent variable.
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Exhibit33 Company Revenues over Time

Revenues (Y)
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)
)
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)
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, 000080 *-® F-statistic = 508.9017
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Time (X)
® Observed Y Linear Prediction of Y

We can still use the simple linear regression model, but we need to modify either
the dependent or the independent variables to make it work well. This is the case
with many different financial or economic data that you might use as dependent and
independent variables in your regression analysis.

There are several different functional forms that can be used to potentially transform
the data to enable their use in linear regression. These transformations include using
the log (i.e., natural logarithm) of the dependent variable, the log of the independent
variable, the reciprocal of the independent variable, the square of the independent
variable, or the differencing of the independent variable. We illustrate and discuss
three often-used functional forms, each of which involves log transformation:

1 the log-lin model, in which the dependent variable is logarithmic but the inde-
pendent variable is linear;

2 the lin-log model, in which the dependent variable is linear but the indepen-
dent variable is logarithmic; and

3 the log-log model, where both the dependent and independent variables are in
logarithmic form.

7.1 The Log-Lin Model

In the log-lin model, the dependent variable is in logarithmic form and the indepen-
dent variable is not, as follows:

The slope coeflicient in this model is the relative change in the dependent variable
for an absolute change in the independent variable. We can transform the Y variable
(revenues) in Exhibit 33 into its natural log (In) and then fit the regression line, as we
show in Exhibit 34. From this chart, we see that the log-lin model is a better fitting
model than the simple linear regression model.
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Exhibit 34 Log-Lin Model Applied to Company Revenues over Time

Ln Revenues (Ln Y)
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It is important to note that in working with a log-lin model, you must take care
when making a forecast. For example, suppose the estimated regression model isIn Y =
-7 + 2X. If X is 2.5%, then the forecasted value of In Yis —2. In this case, the predicted
value of Y is the antilog of -2, or =% = 0.135335. Another caution is that you cannot
directly compare a log-lin model with a lin-lin model (that is, the regression of Y on
X without any transformation) because the dependent variables are not in the same
form — we would have to transform the R? and F-statistic to enable a comparison.
However, looking at the residuals is helpful.

7.2 The Lin-Log Model

The lin-log model is similar to the log-lin model, but only the independent variable
is in logarithmic form:

Y; = by + by InX;, (22)

The slope coefficient in this regression model provides the absolute change in the
dependent variable for a relative change in the independent variable.

Suppose an analyst is examining the cross-sectional relationship between operating
profit margin, the dependent variable (Y), and unit sales, the independent variable
(X), and gathers data on a sample of 30 companies. The scatter plot and regression
line for these observations are shown in Exhibit 35. Although the slope is different
from zero at the 5% level (the calculated ¢-statistic on the slope is 5.8616, compared
with critical ¢-values of +2.048), given the R? of 55.10%, the issue is whether we can
get a better fit by using a different functional form.
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Exhibit 35 Relationship between Operating Profit Margin and Unit Sales

Operating Profit Margin (Y)
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® Operating Profit Margin Regression Line

If instead we use the natural log of the unit sales as the independent variable in our
model, we get a very different picture, as shown in Exhibit 36. The R? for the model
of operating profit margin regressed on the natural log of unit sales jumps to 97.17%.
Since the dependent variable is the same in both the original and transformed models,
we can compare the standard error of the estimate: 2.2528 with the original indepen-
dent variable and a much lower 0.5629 with the transformed independent variable.
Clearly the log-transformed explanatory variable has resulted in a better fitting model.

Exhibit 36 Relationship Between Operating Profit Margin and Natural

Logarithm of Unit Sales
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® Operating Profit Margin Lin-Log Regression Line

7.3 The Log-Log Model

The log-log model, in which both the dependent variable and the independent vari-
able are linear in their logarithmic forms, is also referred to as the double-log model.

(23)
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This model is useful in calculating elasticities because the slope coefficient is the
relative change in the dependent variable for a relative change in the independent vari-
able. Consider a cross-sectional model of company revenues (the Y variable) regressed
on advertising spending as a percentage of selling, general, and administrative expenses,
ADVERT (the X variable). As shown in Exhibit 37, a simple linear regression model
results in a shallow regression line, with a coefficient of determination of just 20.89%.

Exhibit 37 Fitting a Linear Relation Between Revenues and Advertising

Spending
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® Revenues Regression Line

However, if instead we use the natural logarithms of both the revenues and
ADVERT, we get a much different picture of this relationship. As shown in Exhibit 38,
the estimated regression line has a significant positive slope; the log-log model’s R?
increases by more than four times, from 20.89% to 84.91%; and the F-statistic jumps
from 7.39 to 157.52. So, using the log-log transformation dramatically improves the
regression model fit relative to our data.
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Exhibit 38 Fitting a Log-Log Model of Revenues and Advertising Spending
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7.4 Selecting the Correct Functional Form

The key to fitting the appropriate functional form of a simple linear regression is
examining the goodness of fit measures—the coefficient of determination (R?), the
F-statistic, and the standard error of the estimate (s,)—as well as examining whether
there are patterns in the residuals. In addition to fit statistics, most statistical pack-
ages provide plots of residuals as part of the regression output, which enables you to
visually inspect the residuals. To reiterate an important point, what you want to see
in these plots is random residuals.

As an example, consider the relationship between the monthly returns on DEF
stock and the monthly returns of the EAA Equity Index, as depicted in Panel A of
Exhibit 39, with the regression line indicated. Using the equation for this regression
line, we calculate the residuals and plot them against the EAA Equity Index, as shown
in Panel B of Exhibit 39. The residuals appear to be random, bearing no relation to the
independent variable. The distribution of the residuals, shown in Panel C of Exhibit 39,
shows that the residuals are approximately normal. Using statistical software, we can
investigate further by examining the distribution of the residuals, including using a
normal probability plot or statistics to test for normality of the residuals.
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Exhibit 39 Monthly Returns on DEF Stock Regressed on Returns on the EAA

Index

A. Scatterplot of Returns on DEF Stock and Return on the EAA Index
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B. Scatterplot of Residuals and the Returns on the EAA Index
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C. Histogram of Residuals
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EXAMPLE 8

Comparing Functional Forms

An analyst is investigating the relationship between the annual growth in con-
sumer spending (CONS) in a country and the annual growth in the country’s
GDP (GGDP). The analyst estimates the following two models:

Model 1 Model 2
GGDP, = by + bCONS; + ¢ GGDP, = by + bIn(CONS;) + ¢;

Intercept 1.040 1.006
Slope 0.669 1.994
R? 0.788 0.867
Standard error of 0.404 0.320
the estimate
F-statistic 141.558 247.040

1 Identify the functional form used in these models.

2 Explain which model has better goodness-of-fit with the sample data.
Solution

1 Model 1 is the simple linear regression with no variable transformation,
whereas Model 2 is a lin-log model with the natural log of the variable
CONS as the independent variable.

2 The lin-log model, Model 2, fits the data better. Since the dependent vari-
able is the same for the two models, we can compare the fit of the models
using either the relative measures (R? or F-statistic) or the absolute mea-
sure of fit, the standard error of the estimate. The standard error of the
estimate is lower for Model 2, whereas the R? and F-statistic are higher for
Model 2 compared with Model 1.

SUMMARY

B The dependent variable in a linear regression is the variable whose variability
the regression model tries to explain. The independent variable is the variable
whose variation the researcher uses to explain the variation of the dependent
variable.

B If there is one independent variable in a linear regression and there are n
observations of the dependent and independent variables, the regression model
isY;=by+ b1 X;+¢,i=1,...,n where Y is the dependent variable, X; is the
independent variable, and ¢; is the error term. In this model, the coefficients b,
and b1 are the population intercept and slope, respectively.



Summary

The intercept is the expected value of the dependent variable when the inde-
pendent variable has a value of zero. The slope coefficient is the estimate of the
population slope of the regression line and is the expected change in the depen-
dent variable for a one-unit change in the independent variable.

The assumptions of the classic simple linear regression model are as follows:

® Linearity: A linear relation exists between the dependent variable and the
independent variable.

® Homoskedasticity: The variance of the error term is the same for all
observations.

® Independence: The error term is uncorrelated across observations.
® Normality: The error term is normally distributed.

The estimated parameters in a simple linear regression model minimize the sum
of the squared errors.

The coefficient of determination, or RZ, measures the percentage of the total
variation in the dependent variable explained by the independent variable.

To test the fit of the simple linear regression, we can calculate an F-distributed
test statistic and test the hypotheses Hy: b1 = 0 versus H,: by = 0, with 1 and # -
2 degrees of freedom.

The standard error of the estimate is an absolute measure of the fit of the model
calculated as the square root of the mean square error.

We can evaluate a regression model by testing whether the population value of
a regression coefficient is equal to a particular hypothesized value. We do this
by calculating a ¢-distributed test statistic that compares the estimated param-
eter with the hypothesized parameter, dividing this difference by the standard
error of the coefficient.

An indicator (or dummy) variable takes on only the values 0 or 1 and can be
used as the independent variable in a simple linear regression. In such a model,
the interpretation of the intercept is the predicted value of the dependent vari-
able if the indicator variable is 0, and when the indicator variable is 1, the slope
is the difference in the means if we grouped the observations by the indicator
variable.

We calculate a prediction interval for a regression coefficient using the esti-
mated coefficient, the standard error of the estimated coefficient, and the criti-
cal value for the ¢-distributed test statistic based on the level of significance and
the appropriate degrees of freedom, which are n - 2 for simple regression.

We can make predictions for the dependent variable using an estimated linear
regression by inserting the forecasted value of the independent variable into the
estimated model.

The standard error of the forecast is the product of the standard error of the
estimate and a term that reflects the sample size of the regression, the variation
of the independent variable, and the deviation between the forecasted value

of the independent variable and the mean of the independent variable in the
regression.
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B The prediction interval for a particular forecasted value of the dependent
variable is formed by using the forecasted value of the dependent variable and
extending above and below this value a quantity that reflects the critical ¢-value
corresponding to the degrees of freedom, the level of significance, and the stan-
dard error of the forecast.

B [f the relationship between the independent variable and the dependent vari-
able is not linear, we can often transform one or both of these variables to
convert this relation to a linear form, which then allows the use of simple linear
regression.
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PRACTICE PROBLEMS

1 Julie Moon is an energy analyst examining electricity, oil, and natural gas con-
sumption in different regions over different seasons. She ran a simple regression
explaining the variation in energy consumption as a function of temperature.
The total variation of the dependent variable was 140.58, and the explained
variation was 60.16. She had 60 monthly observations.

A Calculate the coefficient of determination.

B Calculate the F-statistic to test the fit of the model.

C Calculate the standard error of the estimate of the regression estimation.
D Calculate the sample standard deviation of monthly energy consumption.

2 Homoskedasticity is best described as the situation in which the variance of the
residuals of a regression is:

A zero.
B normally distributed.

( constant across observations.

The following information relates to Questions
3-6

An analyst is examining the annual growth of the money supply for a country over
the past 30 years. This country experienced a central bank policy shift 15 years ago,
which altered the approach to the management of the money supply. The analyst
estimated a model using the annual growth rate in the money supply regressed on
the variable (SHIFT) that takes on a value of 0 before the policy shift and 1 after. She
estimated the following:

Coefficients Standard Error t-Stat.
Intercept 5.767264 0.445229 12.95348
SHIFT -5.13912 0.629649 -8.16188

Critical ¢-values, level of significance of 0.05:
One-sided, left side: —1.701
One-sided, right side: +1.701
Two-sided: +2.048

3 The variable SHIFT is best described as:
A an indicator variable.
B a dependent variable.
C a continuous variable.
4 The interpretation of the intercept is the mean of the annual growth rate of the
money supply:

A over the enter entire period.
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52 Reading 1 = Introduction to Linear Regression

B after the shift in policy.
C Dbefore the shift in policy.
5 The interpretation of the slope is the:
A change in the annual growth rate of the money supply per year.
B average annual growth rate of the money supply after the shift in policy.

C difference in the average annual growth rate of the money supply from
before to after the shift in policy.

6 Testing whether there is a change in the money supply growth after the shift in
policy, using a 0.05 level of significance, we conclude that there is:

A sufficient evidence that the money supply growth changed.
B not enough evidence that the money supply growth is different from zero.

C not enough evidence to indicate that the money supply growth changed.

7 You are examining the results of a regression estimation that attempts to
explain the unit sales growth of a business you are researching. The analysis of
variance output for the regression is given in the following table. The regression
was based on five observations (1 = 5).

Sum of Mean
Source df Squares Square F p-Value
Regression 1 88.0 88.0 36.667 0.00904
Residual 3 7.2 2.4
Total 4 95.2

A Calculate the sample variance of the dependent variable using information
in the table.

Calculate the coefficient of determination for this estimated model.
What hypothesis does the F-statistic test?
Is the F-test significant at the 0.05 significance level?

m o N @

Calculate the standard error of the estimate.

8 An economist collected the monthly returns for KDL’s portfolio and a diversi-
fied stock index. The data collected are shown in the following table:

Month Portfolio Return (%) Index Return (%)
1 1.11 -0.59
2 72.10 64.90
3 512 4.81
4 1.01 1.68
5 -1.72 -4.97
6 4.06 -2.06

The economist calculated the correlation between the two returns and found it
to be 0.996. The regression results with the KDL return as the dependent vari-
able and the index return as the independent variable are given as follows:
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Regression Statistics

R? 0.9921
Standard error 2.8619
Observations 6
Sum of Mean

Source df Squares Square F p-Value
Regression 1 4,101.6205 4,101.6205 500.7921 0.0000
Residual 4 32.7611 8.1903
Total 5 4,134.3815

Coefficients  Standard Error t-Statistic p-Value
Intercept 2.2521 1.2739 1.7679 0.1518
Index return (%) 1.0690 0.0478 22.3784 0.0000

When reviewing the results, Andrea Fusilier suspected that they were unreli-
able. She found that the returns for Month 2 should have been 7.21% and 6.49%,
instead of the large values shown in the first table. Correcting these values
resulted in a revised correlation of 0.824 and the following revised regression
results:

Regression Statistics

R? 0.6784
Standard error 2.0624
Observations 6
Sum of Mean

Source df Squares Square F p-Value
Regression 1 35.8950 35.8950 8.4391 0.044
Residual 4 17.0137 4.2534
Total 5 52.91

Coefficients Standard Error t-Statistic p-Value
Intercept 2.2421 0.8635 2.5966 0.060
Slope 0.6217 0.2143 2.9050 0.044

Explain how the bad data affected the results.
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The following information relates to Questions
9-12

Kenneth McCoin, CFA, is a challenging interviewer. Last year, he handed each job
applicant a sheet of paper with the information in the following table, and he then
asked several questions about regression analysis. Some of McCoin’s questions, along
with a sample of the answers he received to each, are given below. McCoin told the
applicants that the independent variable is the ratio of net income to sales for restau-
rants with a market cap of more than $100 million and the dependent variable is the
ratio of cash flow from operations to sales for those restaurants. Which of the choices
provided is the best answer to each of McCoin’s questions?

Regression Statistics

R? 0.7436
Standard error 0.0213
Observations 24
Sum of Mean

Source df Squares Square F p-Value
Regression 1 0.029 0.029000 63.81 0
Residual 22 0.010 0.000455
Total 23 0.040

Coefficients Standard Error t-Statistic p-Value
Intercept 0.077 0.007 11.328 0
Net income 0.826 0.103 7.988

to sales (%)

9 The coefficient of determination is closest to:

A 0.7436.
B 0.8261.
C 0.8623.
10 The correlation between X and Y is closest to:
A -0.7436.
B 0.7436.
C 0.8623.

11 If the ratio of net income to sales for a restaurant is 5%, the predicted ratio of
cash flow from operations (CFO) to sales is closest to:

A -4.054.
B 0.524.
C 4.207.

12 Is the relationship between the ratio of cash flow to operations and the ratio of
net income to sales significant at the 0.05 level?

A No, because the R? is greater than 0.05
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B No, because the p-values of the intercept and slope are less than 0.05

C Yes, because the p-values for F and ¢ for the slope coefficient are less than
0.05

The following information relates to Questions
13-17

Howard Golub, CFA, is preparing to write a research report on Stellar Energy Corp.
common stock. One of the world’s largest companies, Stellar is in the business of
refining and marketing oil. As part of his analysis, Golub wants to evaluate the
sensitivity of the stock’s returns to various economic factors. For example, a client
recently asked Golub whether the price of Stellar Energy Corp. stock has tended to
rise following increases in retail energy prices. Golub believes the association between
the two variables is negative, but he does not know the strength of the association.

Golub directs his assistant, Jill Batten, to study the relationships between (1) Stellar
monthly common stock returns and the previous month’s percentage change in the US
Consumer Price Index for Energy (CPIENG) and (2) Stellar monthly common stock
returns and the previous month’s percentage change in the US Producer Price Index
for Crude Energy Materials (PPICEM). Golub wants Batten to run both a correlation
and a linear regression analysis. In response, Batten compiles the summary statistics
shown in Exhibit 1 for 248 months. All the data are in decimal form, where 0.01 indi-
cates a 1% return. Batten also runs a regression analysis using Stellar monthly returns
as the dependent variable and the monthly change in CPIENG as the independent
variable. Exhibit 2 displays the results of this regression model.

Exhibit 1 Descriptive Statistics

Stellar Common Lagged Monthly

Stock Monthly Change

Return CPIENG PPICEM
Mean 0.0123 0.0023 0.0042
Standard deviation 0.0717 0.0160 0.0534
Covariance, Stellar vs. CPIENG -0.00017
Covariance, Stellar vs. PPICEM -0.00048
Covariance, CPIENG vs. PPICEM 0.00044
Correlation, Stellar vs. CPIENG -0.1452

Exhibit2 Regression Analysis with CPIENG

Regression Statistics

R? 0.0211
Standard error of the estimate 0.0710
Observations 248

(continued)
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Exhibit2 (Continued)

Regression Statistics

Coefficients Standard Error t-Statistic
Intercept 0.0138 0.0046 3.0275
CPIENG (%) -0.6486 0.2818 -2.3014

Critical t-values
One-sided, left side: —1.651
One-sided, right side: +1.651
Two-sided: £1.967

13 Which of the following best describes Batten’s regression?
A Time-series regression
B Cross-sectional regression
C Time-series and cross-sectional regression

14 Based on the regression, if the CPIENG decreases by 1.0%, the expected return
on Stellar common stock during the next period is closest to:

A 0.0073 (0.73%).
B 0.0138 (1.38%).
¢ 0.0203 (2.03%).

15 Based on Batten’s regression model, the coefficient of determination indicates
that:

A Stellar’s returns explain 2.11% of the variability in CPIENG.

B Stellar’s returns explain 14.52% of the variability in CPIENG.

C changes in CPIENG explain 2.11% of the variability in Stellar’s returns.
16 For Batten’s regression model, 0.0710 is the standard deviation of:

A the dependent variable.

B the residuals from the regression.

C the predicted dependent variable from the regression.

17 For the analysis run by Batten, which of the following is an incorrect conclusion
from the regression output?

A The estimated intercept from Batten’s regression is statistically different
from zero at the 0.05 level of significance.

B In the month after the CPIENG declines, Stellar’s common stock is expected
to exhibit a positive return.

C Viewed in combination, the slope and intercept coefficients from Batten’s
regression are not statistically different from zero at the 0.05 level of
significance.
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The following information relates to Questions
18-26

Anh Liu is an analyst researching whether a company’s debt burden affects investors’
decision to short the company’s stock. She calculates the short interest ratio (the ratio
of short interest to average daily share volume, expressed in days) for 50 companies as
of the end of 2016 and compares this ratio with the companies’ debt ratio (the ratio
of total liabilities to total assets, expressed in decimal form).

Liu provides a number of statistics in Exhibit 1. She also estimates a simple regres-
sion to investigate the effect of the debt ratio on a company’s short interest ratio. The
results of this simple regression, including the analysis of variance (ANOVA), are
shown in Exhibit 2.

In addition to estimating a regression equation, Liu graphs the 50 observations
using a scatter plot, with the short interest ratio on the vertical axis and the debt ratio
on the horizontal axis.

Exhibit1 Summary Statistics

Debt Ratio Short Interest Ratio
Statistic X; Y;
Sum 19.8550 192.3000

n

Sum of squared deviations i(Xi _ )—()2 — 207275, Z(Yz B ?)2 — 4122042,

from the mean . ‘
i=1 i=l1

n

Sum of cross-products of v o
X. — XY, = Y) = -9.2430.
deviations from the mean E( ! )( ! )

Exhibit2 Regression of the Short Interest Ratio on the Debt Ratio

Degrees of
ANOVA Freedom (df) Sum of Squares Mean Square
Regression 1 38.4404 38.4404
Residual 48 373.7638 7.7867
Total 49 412.2042
Regression Statistics
R? 0.0933
Standard error of 2.7905
estimate
Observations 50

Coefficients Standard Error t-Statistic

Intercept 5.4975 0.8416 6.5322

Debt ratio (%) -4.1589 1.8718 -2.2219
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Critical z-values for a 0.05 level of significance:
One-sided, left side: —1.677
One-sided, right side: +1.677
Two-sided: £2.011

Liu is considering three interpretations of these results for her report on the rela-

tionship between debt ratios and short interest ratios:

Interpretation 1 Companies’ higher debt ratios cause lower short interest
ratios.

Interpretation 2 Companies’ higher short interest ratios cause higher debt
ratios.

Interpretation 3 Companies with higher debt ratios tend to have lower short
interest ratios.

She is especially interested in using her estimation results to predict the short

interest ratio for MQD Corporation, which has a debt ratio of 0.40.

18

19

20

21

22

23

24

Based on Exhibits 1 and 2, if Liu were to graph the 50 observations, the scatter
plot summarizing this relation would be best described as:

A horizontal
B upward sloping.
C downward sloping.

Based on Exhibit 1, the sample covariance is closest to:

A -9.2430.
B -0.1886.
C 8.4123.

Based on Exhibits 1 and 2, the correlation between the debt ratio and the short
interest ratio is closest to:

A -0.3054.
B 0.0933.
C 0.3054.

Which of the interpretations best describes Liu’s findings?
A Interpretation 1

B Interpretation 2

C Interpretation 3

The dependent variable in Liu’s regression analysis is the:
A intercept.

B debt ratio.

C short interest ratio.

Based on Exhibit 2, the degrees of freedom for the ¢-test of the slope coefficient
in this regression are:

A 48.
B 49.
C 50

Which of the following should Liu conclude from the results shown in
Exhibit 2?
A The average short interest ratio is 5.4975.
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B The estimated slope coefficient is different from zero at the 0.05 level of
significance.

C The debt ratio explains 30.54% of the variation in the short interest ratio.

25 Based on Exhibit 2, the short interest ratio expected for MQD Corporation is

closest to:

A 3.8339.
B 5.4975.
C 6.2462.

26 Based on Liu’s regression results in Exhibit 2, the F-statistic for testing whether
the slope coefficient is equal to zero is closest to:

A -2.2219.
B 3.5036.
C 4.9367.

The following information relates to Questions
27-31

Elena Vasileva recently joined Energylnvest as a junior portfolio analyst. Vasileva’s
supervisor asks her to evaluate a potential investment opportunity in Amtex, a mul-
tinational oil and gas corporation based in the United States. Vasileva’s supervisor
suggests using regression analysis to examine the relation between Amtex shares and
returns on crude oil.

Vasileva notes the following assumptions of regression analysis:

Assumption 1 The error term is uncorrelated across observations.

Assumption 2 The variance of the error term is the same for all observations.

Assumption 3 The dependent variable is normally distributed.

Vasileva runs a regression of Amtex share returns on crude oil returns using the
monthly data she collected. Selected data used in the regression are presented in

Exhibit 1, and selected regression output is presented in Exhibit 2. She uses a 1% level
of significance in all her tests.
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Exhibit1 Selected Data for Crude Oil Returns and Amtex Share Returns

. . Squared

Predicted Regression .
Cross-Product  Amtex Ret Residual Residual
Oil Return Amtex Return (X, - X1 - 7) miex Return s (Y_ - f/_)z

(X,) (Y,) i i Yi i L i

Month 1 -0.032000 0.033145 -0.000388 0.002011 -0.031134 0.000969
Month 36 0.028636 0.062334 0.002663 0.016282 -0.046053 0.002121
Sum 0.085598 0.071475

Average -0.018056 0.005293
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Exhibit2 Selected Regression Output, Dependent

Variable: Amtex Share Return

Coefficient Standard Error
Intercept 0.0095 0.0078
Oil return 0.2354 0.0760

Critical ¢-values for a 1% level of significance:
One-sided, left side: —2.441
One-sided, right side: +2.441
Two-sided: £2.728
Vasileva expects the crude oil return next month, Month 37, to be -0.01. She
computes the standard error of the forecast to be 0.0469.
27 Which of Vasileva’s assumptions regarding regression analysis is incorrect?
A Assumption 1
B Assumption 2
C Assumption 3

28 Based on Exhibit 1, the standard error of the estimate is closest to:

A 0.04456.
B 0.04585.
C 0.05018.

29 Based on Exhibit 2, Vasileva should reject the null hypothesis that:
A the slope is less than or equal to 0.15.
B the intercept is less than or equal to zero.
C crude oil returns do not explain Amtex share returns.

30 Based on Exhibit 2 and Vasileva’s prediction of the crude oil return for Month
37, the estimate of Amtex share return for Month 37 is closest to:

A -0.0024.
B 0.0071.
C 0.0119.

31 Using information from Exhibit 2, the 99% prediction interval for Amtex share
return for Month 37 is best described as:

A ¥, +00053.
B Y, +00469.

C ¥;+01279.
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The following information relates to Questions
32-34

Doug Abitbol is a portfolio manager for Polyi Investments, a hedge fund that trades in
the United States. Abitbol manages the hedge fund with the help of Robert Olabudo,
a junior portfolio manager.

Abitbol looks at economists’ inflation forecasts and would like to examine the
relationship between the US Consumer Price Index (US CPI) consensus forecast and
the actual US CPI using regression analysis. Olabudo estimates regression coefficients
to test whether the consensus forecast is unbiased. If the consensus forecasts are
unbiased, the intercept should be 0.0 and the slope will be equal to 1.0. Regression
results are presented in Exhibit 1. Additionally, Olabudo calculates the 95% prediction
interval of the actual CPI using a US CPI consensus forecast of 2.8.

Exhibit1 Regression Output: Estimating US CPI

Regression Statistics

R? 0.9859
Standard error of estimate 0.0009
Observations 60
Coefficients Standard Error t-Statistic

Intercept 0.0001 0.0002 0.5000
US CPI consensus forecast 0.9830 0.0155 63.4194
Notes:
1 The absolute value of the critical value for the ¢-statistic is 2.002 at the 5% level of

significance.

2 The standard deviation of the US CPI consensus forecast is s, = 0.7539.

3 The mean of the US CPI consensus forecast is X = 1.3350.

Finally, Abitbol and Olabudo discuss the forecast and forecast interval:
Observation 1  For a given confidence level, the forecast interval is the same
no matter the US CPI consensus forecast.

Observation 2 A larger standard error of the estimate will result in a wider
confidence interval.

32 Based on Exhibit 1, Olabudo should:
A conclude that the inflation predictions are unbiased.
B reject the null hypothesis that the slope coefficient equals one.
C reject the null hypothesis that the intercept coefficient equals zero.

33 Based on Exhibit 1, Olabudo should calculate a prediction interval for the actual
US CPI closest to:

A 2.7506 to 2.7544.
B 2.7521 to 2.7529.
C 2.7981 to 2.8019.

34 Which of Olabudo’s observations of forecasting is correct?
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A Only Observation 1
B Only Observation 2
C Both Observation 1 and Observations 2

The following information relates to Questions
35-38

Espey Jones is examining the relation between the net profit margin (NPM) of com-
panies, in percent, and their fixed asset turnover (FATO). He collected a sample of 35
companies for the most recent fiscal year and fit several different functional forms,
settling on the following model:

The results of this estimation are provided in Exhibit 1.

Exhibit 1 Results of Regressing NPM on FATO

Sum of Mean
Source df Squares Square F p-Value
Regression 1 102.9152 102.9152 1,486.7079 0.0000
Residual 32 2.2152 0.0692
Total 33 105.1303
Standard
Coefficients Error t- Statistic p-Value
Intercept 0.5987 0.0561 10.6749 0.0000
FATO 0.2951 0.0077 38.5579 0.0000

35 The coefficient of determination is closest to:

A 0.0211.
B 0.9789.
C 0.9894.
36 The standard error of the estimate is closest to:
A 0.2631.
B 1.7849.
C 38.5579.

37 At a 0.01 level of significance, Jones should conclude that:
A the mean net profit margin is 0.5987%.

B the variation of the fixed asset turnover explains the variation of the natural
log of the net profit margin.

C achange in the fixed asset turnover from 3 to 4 times is likely to result in a
change in the net profit margin of 0.5987%.

38 The predicted net profit margin for a company with a fixed asset turnover of 2
times is closest to:



Practice Problems 63

A 1.1889%.
B 1.8043%.
C 3.2835%
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SOLUTIONS

A The coefficient of determination is 0.4279:

Explained variation _ 60.16
Total variation 140.58

60.16/ 60,16

(140.58 — 60.16) ~1.3866
(60 - 2)

C Begin with the sum of squares error of 140.58 — 60.16 = 80.42. Then calcu-
late the mean square error of 80.42 + (60 — 2) = 1.38655. The standard error
of the estimate is the square root of the mean square error: s, = +/1.38655 =
1.1775.

D The sample variance of the dependent variable uses the total variation of the
dependent variable and divides it by the number of observations less one:

= 0.4279.

= 43.3882.

—\2
< (Yz - ) Total variation  140.58
Z n—1 - -

= = 2.3827.
n—1 60 -1

i=1

The sample standard deviation of the dependent variable is the square root
of the variance, or v2.3827 =1.544.

C is correct. Homoskedasticity is the situation in which the variance of the
residuals is constant across the observations.

A is correct. SHIFT is an indicator or dummy variable because it takes on only
the values 0 and 1.

C is correct. In a simple regression with a single indicator variable, the intercept
is the mean of the dependent variable when the indicator variable takes on a
value of zero, which is before the shift in policy in this case.

C is correct. Whereas the intercept is the average of the dependent variable
when the indicator variable is zero (that is, before the shift in policy), the slope
is the difference in the mean of the dependent variable from before to after the
change in policy.

A is correct. The null hypothesis of no difference in the annual growth rate is
rejected at the 0.05 level: The calculated test statistic of -8.16188 is outside the
bounds of +2.048.

A The sample variance of the dependent variable is the sum of squares total
divided by its degrees of freedom (1 — 1 =5 — 1 = 4, as given). Thus, the
sample variance of the dependent variable is 95.2 + 4 = 23.8.

B The coefficient of determination = 88.0 + 95.2 = 0.92437.

The F-statistic tests whether all the slope coefficients in a linear regression
are equal to zero.

D The calculated value of the F-statistic is 36.667, as shown in the table. The
corresponding p-value is less than 0.05, so you reject the null hypothesis of a
slope equal to zero.

E The standard error of the estimate is the square root of the mean square
error: s, = /2.4 =1.54919.
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8

The Month 2 data point is an outlier, lying far away from the other data values.
Because this outlier was caused by a data entry error, correcting the outlier
improves the validity and reliability of the regression. In this case, revised R?

is lower (from 0.9921 to 0.6784). The outliers created the illusion of a better fit
from the higher RZ; the outliers altered the estimate of the slope. The standard
error of the estimate is lower when the data error is corrected (from 2.8619

to 2.0624), as a result of the lower mean square error. However, at a 0.05 level
of significance, both models fit well. The difference in the fit is illustrated in
Exhibit 1.

Exhibit 1 The Fit of the Model with and without Data Errors

A. Before the Data Errors Are Corrected
Portfolio Return
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B. After the Data Errors Are Corrected
Portfolio Return (%)
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Index Return (%)

10

1

12

13

A is correct. The coefficient of determination is the same as R2, which is 0.7436
in the table.

C is correct. Because the slope is positive, the correlation between X and Y'is
simply the square root of the coefficient of determination: +/0.7436 =0.8623.

C is correct. To make a prediction using the regression model, multiply the
slope coefficient by the forecast of the independent variable and add the result
to the intercept. Expected value of CFO to sales = 0.077 + (0.826 x 5) = 4.207.

C is correct. The p-value is the smallest level of significance at which the null
hypotheses concerning the slope coefficient can be rejected. In this case, the
p-value is less than 0.05, and thus the regression of the ratio of cash flow from
operations to sales on the ratio of net income to sales is significant at the 5%
level.

A is correct. The data are observations over time.
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15
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17

18

19
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23
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25

26

27

28
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C is correct. From the regression equation, Expected return = 0.0138 +
(-0.6486 x -0.01) = 0.0138 + 0.006486 = 0.0203, or 2.03%.

C is correct. R? is the coefficient of determination. In this case, it shows that
2.11% of the variability in Stellar’s returns is explained by changes in CPIENG.
B is correct. The standard error of the estimate is the standard deviation of the
regression residuals.

C is the correct response because it is a false statement. The slope and intercept
are both statistically different from zero at the 0.05 level of significance.

C is correct. The slope coefficient (shown in Exhibit 2) is negative. We could
also determine this by looking at the cross-product (Exhibit 1), which is
negative.

B is correct. The sample covariance is calculated as

n

Z(Xi - )_()(Yi - }7)
o : — _9.2430 = 49 = —0.1886
L

A is correct. In simple regression, the R? is the square of the pairwise correla-
tion. Because the slope coefficient is negative, the correlation is the negative of
the square root of 0.0933, or —0.3054.

C is correct. Conclusions cannot be drawn regarding causation; they can be
drawn only about association; therefore, Interpretations 1 and 2 are incorrect.

C is correct. Liu explains the variation of the short interest ratio using the varia-
tion of the debt ratio.

A is correct. The degrees of freedom are the number of observations minus the
number of parameters estimated, which equals 2 in this case (the intercept and
the slope coefficient). The number of degrees of freedom is 50 — 2 = 48.

B is correct. The ¢-statistic is —2.2219, which is outside the bounds created by
the critical t-values of £2.011 for a two-tailed test with a 5% significance level.
The value of 2.011 is the critical ¢-value for the 5% level of significance (2.5%
in one tail) for 48 degrees of freedom. A is incorrect because the mean of the
short interest ratio is 192.3 + 50 = 3.846. C is incorrect because the debt ratio
explains 9.33% of the variation of the short interest ratio.

A is correct. The predicted value of the short interest ratio = 5.4975 +
(-4.1589 x 0.40) = 5.4975 - 1.6636 = 3.8339.

Cis correct because E — Mean square regression _ 38.4404 49367,
Mean square error 7.7867

C is correct. The assumptions of the linear regression model are that (1) the
relationship between the dependent variable and the independent variable is
linear in the parameters b and by, (2) the residuals are independent of one
another, (3) the variance of the error term is the same for all observations, and
(4) the error term is normally distributed. Assumption 3 is incorrect because
the dependent variable need not be normally distributed.

B is correct. The standard error of the estimate for a linear regression model
with one independent variable is calculated as the square root of the mean
square error:

Sp = /% = 0.04585.
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30

31

32

33

C is correct. Crude oil returns explain the Amtex share returns if the slope coef-
ficient is statistically different from zero. The slope coeflicient is 0.2354, and the
calculated ¢-statistic is

~0.2354 -0.0000

=3.0974,
0.0760

which is outside the bounds of the critical values of +2.728.

Therefore, Vasileva should reject the null hypothesis that crude oil returns do
not explain Amtex share returns, because the slope coefficient is statistically
different from zero.

A is incorrect because the calculated ¢-statistic for testing the slope against 0.15
~0.2354 - 0.1500
©0.0760

ist =1.1237, which is less than the critical value of +2.441.

B is incorrect because the calculated ¢-statisticis t = w =1.2179,

which is less than the critical value of +2.441. 0.0078

B is correct. The predicted value of the dependent variable, Amtex share return,
given the value of the independent variable, crude oil return, —0.01, is calcu-

lated as ¥ = bo + bi.X; = 0.0095 +[0.2354 x (~0.01)] = 0.0071.

C is correct. The predicted share return is 0.0095 + [0.2354 x (-0.01)] =
0.0071. The lower limit for the prediction interval is 0.0071 - (2.728 x 0.0469)
= -0.1208, and the upper limit for the prediction interval is 0.0071 + (2.728 x
0.0469) = 0.1350.

A is incorrect because the bounds of the interval should be based on the
standard error of the forecast and the critical z-value, not on the mean of the
dependent variable.

B is incorrect because bounds of the interval are based on the product of the
standard error of the forecast and the critical ¢-value, not simply the standard
error of the forecast.

A is correct. We fail to reject the null hypothesis of a slope equal to one, and we

fail to reject the null hypothesis of an intercept equal to zero. The test of the

slope equal to 1.0 is t = % = —1.09677. The test of the intercept

equalto 0.0ist = W = 0.5000. Therefore, we conclude that the

forecasts are unbiased.
A is correct. The forecast interval for inflation is calculated in three steps:
Step 1. Make the prediction given the US CPI forecast of 2.8:

Y = by + b X
= 0.0001 + (0.9830 x 2.8)
= 2.7525.
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Step 2. Compute the variance of the prediction error:

s} = sg{l +(1/n) + |:(Xf - )_()2}/[(71 —1)x sﬁ]}
5% = 0.0009° {1 +(1/60) + | (2.8 ~1.3350)" | /[ (60 - 1) 0.75392}}.

s7 = 0.00000088.
s; = 0.0009.

Step 3. Compute the prediction interval:

Y£1,. x5y

2.7525 + (2.0 x 0.0009)
Lower bound: 2.7525 — (2.0 x 0.0009) = 2.7506.
Upper bound: 2.7525 + (2.0 x 0.0009) = 2.7544.

So, given the US CPI forecast of 2.8, the 95% prediction interval is 2.7506 to
2.7544.

34 B is correct. The confidence level influences the width of the forecast interval
through the critical t-value that is used to calculate the distance from the fore-
casted value: The larger the confidence level, the wider the interval. Therefore,
Observation 1 is not correct.

Observation 2 is correct. The greater the standard error of the estimate, the
greater the standard error of the forecast.

35 Bis correct. The coefficient of determination is 102.9152 + 105.1303 = 0.9789.
36 A is correct. The standard error is the square root of the mean square error,

or +/0.0692 = 0.2631.

37 B is correct. The p-value corresponding to the slope is less than 0.01, so we
reject the null hypothesis of a zero slope, concluding that the fixed asset turn-
over explains the natural log of the net profit margin.

38 Cis correct. The predicted natural log of the net profit margin is 0.5987 + (2 x

0.2951) = 1.1889. The predicted net profit margin is el 1889 = 32835%.
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LEARNING OUTCOMES

The candidate should be able to:

Mastery

[
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a.

formulate a multiple regression equation to describe the relation
between a dependent variable and several independent variables,
and determine the statistical significance of each independent
variable;

interpret estimated regression coefficients and their p-values;
formulate a null and an alternative hypothesis about the
population value of a regression coeflicient, calculate the value

of the test statistic, and determine whether to reject the null
hypothesis at a given level of significance;

interpret the results of hypothesis tests of regression coefficients;
calculate and interpret a predicted value for the dependent

variable, given an estimated regression model and assumed values
for the independent variables;

explain the assumptions of a multiple regression model;
calculate and interpret the F-statistic, and describe how it is used
in regression analysis;

contrast and interpret the R2 and adjusted R2 in multiple
regression;

evaluate how well a regression model explains the dependent
variable by analyzing the output of the regression equation and an
ANOVA table;

formulate and interpret a multiple regression, including
qualitative independent variables;
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LEARNING OUTCOMES

Mastery | The candidate should be able to:

] k. explain the types of heteroskedasticity and how heteroskedasticity
and serial correlation affect statistical inference;

] . describe multicollinearity, and explain its causes and effects in
regression analysis;

] m. describe how model misspecification affects the results of a
regression analysis, and describe how to avoid common forms of
misspecification;

n. interpret an estimated logistic regression;

OO

o. evaluate and interpret a multiple regression model and its results.

MULTIPLE LINEAR REGRESSION ASSUMPTIONS,
TESTING COEFFICIENTS, AND PREDICTION

a formulate a multiple regression equation to describe the relation between a
dependent variable and several independent variables, and determine the statis-
tical significance of each independent variable;

b interpret estimated regression coefficients and their p-values;

¢ formulate a null and an alternative hypothesis about the population value of
a regression coefficient, calculate the value of the test statistic, and determine
whether to reject the null hypothesis at a given level of significance;

d interpret the results of hypothesis tests of regression coefficients;

e calculate and interpret a predicted value for the dependent variable, given an
estimated regression model and assumed values for the independent variables;

f explain the assumptions of a multiple regression model;

i evaluate how well a regression model explains the dependent variable by ana-
lyzing the output of the regression equation and an ANOVA table;

o evaluate and interpret a multiple regression model and its results.

As financial analysts, we often need to use more sophisticated statistical methods
than correlation analysis or regression involving a single independent variable. For
example, a mutual fund analyst might want to know whether returns to a technology
mutual fund behaved more like the returns to a growth stock index or like the returns
to a value stock index. An investor might be interested in the factors that determine
whether analysts cover a stock. Or analysts researching individual companies may
want to understand what factors (such as macroeconomic variables) drive the demand
for the company’s products or services. We can answer these questions using linear
regression with more than one independent variable—multiple linear regression.
We first introduce and illustrate the basic concepts and models of multiple regres-
sion analysis. These models rest on assumptions that are sometimes violated in practice.
We then discuss three commonly occurring violations of regression assumptions. We
address practical concerns, such as how to diagnose an assumption violation and what
remedial steps to take when a model assumption has been violated. The subsequent
section outlines some guidelines for building good regression models and discusses



Multiple Linear Regression Assumptions, Testing Coefficients, and Prediction

ways that analysts sometimes go wrong in this endeavor. We then discuss a class of
models whose dependent variable is qualitative in nature. Specifically, we discuss logis-
tic regression that plays an important role in machine learning for Big Data analysis.

1.1 Multiple Linear Regression

As investment analysts, we often hypothesize that more than one variable explains
the behavior of a variable in which we are interested. The variable we seek to explain
is called the dependent variable. The variables that we believe explain the dependent
variable are called the independent variables. They may also be termed explanatory
variables, predictor variables, or simply regressors. A tool that permits us to examine
the relationship (if any) between the two types of variables is multiple linear regres-
sion. Multiple linear regression allows us to determine the effect of more than one
independent variable on a particular dependent variable.
A multiple linear regression model has the general form

Yi = bO + lell + bZXZZ + ...+ bk.Xk + € i= 1, 2, ... n, (1)

4

where

Y; = the ith observation of the dependent variable Y

X;; = the ith observation of the independent variable Xj, j = 1, 2, ..., k
by = the intercept of the equation

by, ..., by = the slope coefficients for each of the independent variables
g; = the error term

7 = the number of observations

A slope coefficient, bj, measures how much the dependent variable, Y, changes when
the independent variable, X;, changes by one unit, holding all other independent vari-
ables constant. For example, if b; = 1 and all the other independent variables remain
constant, then we predict that if X increases by one unit, Y will also increase by one
unit. If »; = -1 and all the other independent variables are held constant, then we
predict that if X; increases by one unit, ¥ will decrease by one unit. Multiple linear
regression estimates by, ..., by. In this reading, we will refer to both the intercept, b,
and the slope coefficients, by, ..., by, as regression coefficients. As we proceed with
our discussion, keep in mind that a regression equation has k slope coefficients and
k + 1 regression coefficients.

Although Equation 1 may seem to apply only to cross-sectional data because the
notation for the observations is the same (i = 1, ..., n), all these results apply to time-
series data as well. For example, if we analyze data from many time periods for one
company, we would typically use the notation Y, X7, Xy, ..., X;, in which the first
subscript denotes the variable and the second denotes the ¢th time period.

In practice, we use software to estimate a multiple regression model. Exhibit 1
presents an application of multiple regression analysis in investment practice. In the
course of discussing a hypothesis test, Exhibit 1 presents typical regression output
and its interpretation.

Exhibit1 Explaining the Bid-Ask Spread

As the manager of the trading desk at an investment management firm, you have
noticed that the average bid—ask spreads of different NASDAQ-listed stocks can
vary widely. When the ratio of a stock’s bid—ask spread to its price is higher than
for another stock, your firm’s costs of trading in that stock tend to be higher.
You have formulated the hypothesis that NASDAQ stocks’ percentage bid—ask
(continued)

Al
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Exhibit1 (Continued)

spreads are related to the number of market makers and the company’s stock
market capitalization. You have decided to investigate your hypothesis using
multiple regression analysis.

You specify a regression model in which the dependent variable measures the
percentage bid—ask spread, and the independent variables measure the number
of market makers and the company’s stock market capitalization. The regression
is estimated using data from 31 December 2013 for 2,587 NASDAQ-listed stocks.
Based on earlier published research exploring bid—ask spreads, you express the
dependent and independent variables as natural logarithms, a so-called log-log
regression model. A log-log regression model may be appropriate when one
believes that proportional changes in the dependent variable bear a constant
relationship to proportional changes in the independent variable(s), as we illus-
trate next. You formulate the multiple regression:

}/l' . bo + lell + bZXZL + 8l" (2)
where

Y; = the natural logarithm of (Bid—ask spread/Stock price) for stock i
X1, = the natural logarithm of the number of NASDAQ market makers
for stock i
X,; = the natural logarithm of the market capitalization (measured in
millions of US$) of company i

In a log-log regression, such as Equation 2, the slope coefficients are inter-
preted as elasticities assumed to be constant. For example, a value of b, = -0.75
would mean that for a 1% increase in the market capitalization, we expect Bid—ask
spread/Stock price to decrease by 0.75%, holding all other independent variables
constant [note that A (In X) ~ AX/X, where A represents “change in” and AX/X
is a proportional change in X].

Reasoning that greater competition tends to lower costs, you suspect that
the greater the number of market makers, the smaller the percentage bid—ask
spread. Therefore, you formulate a first null hypothesis (H;) and alternative
hypothesis (H,,):

H()I bl >0
Ha: bl <0

The null hypothesis is the hypothesis that the “suspected” condition is not
true. If the evidence supports rejecting the null hypothesis and accepting the
alternative hypothesis, you have statistically confirmed your suspicion. An
alternative valid formulation is a two-sided test, Hy: b; = 0 versus H: b; = 0,
which reflects the beliefs of the researcher less strongly.

You also believe that the stocks of companies with higher market capitalization
may have more-liquid markets, tending to lower percentage bid—ask spreads.
Therefore, you formulate a second null hypothesis and alternative hypothesis:

Hoi b2 > 0
Hﬂ: b2 < 0
For both tests, we use a ¢-test, rather than a z-test, because we do not know

the population variance of b; and b,. Suppose that you choose a 0.01 significance
level for both tests.
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Exhibit1 (Continued)

Results from Regressing In(Bid—Ask Spread/Price) on In(Number of Market

Makers) and In(Market Capitalization)

Coefficient Standard Error t-Statistic

Intercept 1.5949 0.2275 7.0105
In(Number of NASDAQ market -1.5186 0.0808 —-18.7946
makers)

In(Company’s market capitalization) -0.3790 0.0151 -25.0993
ANOVA df SS MSS F Significance F
Regression 2 3,728.1334 1,864.0667 2,216.75 0.00
Residual 2,584 2,172.8870 0.8409

Total 2,586 5,901.0204

Residual standard error 0.9170

Multiple R? 0.6318

Observations 2,587

Note: “df” = degrees of freedom.
Source: Center for Research in Security Prices, University of Chicago.

The table shows the results of estimating this linear regression. If the regres-
sion result is not significant, we may follow the useful principle of not proceeding
to interpret the individual regression coefficients. Thus, the analyst might look
first at the analysis of variance (ANOVA) section, which addresses the regres-
sion’s overall significance.

B The ANOVA section reports quantities related to the overall explanatory power
and significance of the regression. SS stands for sum of squares, and MSS stands
for mean sum of squares (SS divided by df). The F-test reports the overall
significance of the regression. For example, an entry of 0.01 for the significance
of F means that the regression is significant at the 0.01 level. In our illustration
the regression is even more significant because the significance of Fis 0 at two
decimal places.

Having ascertained that the overall regression is highly significant, an analyst
might turn to the first listed column in the first section of the regression output.

B The Coefficient column gives the estimates of the intercept, b, and the slope
coefficients, b; and b,. The estimated intercept is positive, but both estimated
slope coefficients are negative. Are these estimated regression coefficients
significantly different from zero? The Standard Error column gives the standard
error (the standard deviation) of the estimated regression coefficients. The test
statistic for hypotheses concerning the population value of a regression coeffi-
cient has the form (Estimated regression coefficient - Hypothesized population
value of the regression coefficient)/(Standard error of the regression coeffi-
cient). This is a ¢-test. Under the null hypothesis, the hypothesized population
value of the regression coefficient is 0. Thus (Estimated regression coefficient)/
(Standard error of the regression coefficient) is the ¢-statistic given in the third
column. For example, the ¢-statistic for the intercept is 1.5949/0.2275 = 7.0105.
To evaluate the significance of the ¢-statistic, we need to determine a quantity
called degrees of freedom (df). When calculating the degrees of freedom lost in



Reading 2 m Multiple Regression

the regression, we add | to the number of independent variables to account for
the intercept term. The calculation is: Degrees of freedom = Number of obser-
vations — (Number of independent variables + 1) = n — (k + 1).

B The final section of the regression results table presents two measures of how
well the estimated regression fits or explains the data. The first is the standard
deviation of the regression residual, the residual standard error. This standard
deviation is called the standard error of estimate (SEE). The second measure
quantifies the degree of linear association between the dependent variable and
all the independent variables jointly. This measure is known as multiple R? or
simply R? (the square of the correlation between predicted and actual values of
the dependent variable). Multiple R? is also known as the multiple coefficient
of determination, or simply the coefficient of determination. A value of 0 for R
indicates no linear association; a value of 1 indicates perfect linear association.
The final item in Exhibit 1 is the number of observations in the sample (2,587).

Having reviewed the meaning of typical regression output, we can return to
complete the hypothesis tests. The estimated regression supports the hypothesis
that the greater the number of market makers, the smaller the percentage bid—
ask spread: We reject Hy: by > 0 in favor of H: b; < 0. The results also support
the belief that the stocks of companies with higher market capitalization have
lower percentage bid—ask spreads: We reject Hy: b, > 0 in favor of H: b, < 0.

To see that the null hypothesis is rejected for both tests, we can use ¢-test
tables. For both tests, df = 2,587 — 3 = 2,584. The tables do not give critical values
for degrees of freedom that large. The critical value for a one-tailed test with
df = 200 at the 0.01 significance level is 2.345; for a larger number of degrees
of freedom, the critical value would be even smaller in magnitude. Therefore,
in our one-sided tests, we reject the null hypothesis in favor of the alternative
hypothesis if

where
Z;j = the regression estimate of b, j = 1, 2

b; = the hypothesized value! of the coefficient (0)

s; = the estimated standard error of b J
J

The t-values of -18.7946 and -25.0993 for the estimates of b; and b,, respec-
tively, are both less than -2.345.

Before proceeding further, we should address the interpretation of a pre-
diction stated in natural logarithm terms. We can convert a natural logarithm
to the original units by taking the antilogarithm. To illustrate this conversion,
suppose that a particular stock has 20 NASDAQ market makers and a market
capitalization of $100 million. The natural logarithm of the number of NASDAQ
market makers is equal to In 20 = 2.9957, and the natural logarithm of the com-
pany’s market cap (in millions) is equal to In 100 = 4.6052. With these values, the
regression model predicts that the natural log of the ratio of the bid—ask spread
to the stock price will be 1.5949 + (-1.5186 x 2.9957) + (-0.3790 x 4.6052) =
~4.6997. We take the antilogarithm of ~4.6997 by raising e to that power: =469/
= 0.0091. The predicted bid—ask spread will be 0.91% of the stock price. The

1 To economize on notation in stating test statistics, in this context we use b; to represent the hypothesized
value of the parameter (elsewhere we use it to represent the unknown population parameter).
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operation illustrated (taking the antilogarithm) recovers the value of a variable
in the original units as el™X = X. Later we state the assumptions of the multiple
regression model; before using an estimated regression to make predictions in
actual practice, we should assure ourselves that those assumptions are satisfied.

In Exhibit 1, we presented output common to most regression software programs.
Many software programs also report p-values for the regression coefficients (the
entry 0.00 for the significance of F was a p-value for the F-test). For each regression
coefficient, the p-value would be the smallest level of significance at which we can
reject a null hypothesis that the population value of the coefficient is 0, in a two-sided
test. The lower the p-value, the stronger the evidence against that null hypothesis.
A p-value quickly allows us to determine if an independent variable is significant at
a conventional significance level, such as 0.05, or at any other standard we believe is
appropriate.

Having estimated Equation 1, we can write

i}i = Z;O + EIX“ + l;2X2i
=1.5949 —1.5186.X}; — 0.3790.X;

where Y; stands for the predicted value of Y}, and 60, 61, and 62 stand for the esti-
mated values of by, by, and b,, respectively. How should we interpret the estimated
slope coefficients —1.5186 and -0.3790?

Interpreting the slope coefficients in a multiple linear regression model is different
than doing so in the one-independent-variable regressions explored in earlier coverage
of the topic of simple regression. Suppose we have a one-independent-variable regres-
sion that we estimate as ¥; = 0.50 + 0.75.X; 1;- The interpretation of the slope estimate
0.75 is that for every 1-unit increase in X7, we expect Y to increase by 0.75 units. If
we were to add, however, a second independent variable to the equation, we would
generally find that the estimated coefficient on X is not 0.75 unless the second inde-
pendent variable were uncorrelated with X;. In other words, the slope coefficient of
a dependent variable may depend upon other independent variables.

The slope coefficients in a multiple regression are known as partial regression
coefficients or partial slope coefficients and need to be interpreted with care (the
terminology comes from the fact that they correspond to the partial derivatives of Y
with respect to the independent variables).

Suppose the coefficient on X, in a regression with the second independent variable
was 0.60. Can we say that for every 1-unit increase in X;, we expect Y to increase by
0.60 units? Not without qualification. For every 1-unit increase in X7, we still expect
Y to increase by 0.75 units when X, is not held constant. We would interpret 0.60 as
the expected increase in Y for a 1-unit increase X; holding the second independent
variable constant.

To explain what the shorthand reference “holding the second independent con-
stant” refers to, if we were to regress X; on X,, the residuals from that regression
would represent the part of X; that is uncorrelated with X,. We could then regress
Y on those residuals in a one-independent-variable regression. We would find that
the slope coefficient on the residuals would be 0.60; by construction, 0.60 would
represent the expected effect on Y of a 1-unit increase in X; after removing the part
of X; that is correlated with X,. Consistent with this explanation, we can view 0.60
as the expected net effect on Y of a 1-unit increase in X7, after accounting for any
effects of the other independent variables on the expected value of Y. To reiterate, a
partial regression coefficient measures the expected change in the dependent variable
for a 1-unit increase in an independent variable, holding all the other independent
variables constant.

75



76

Reading 2 m Multiple Regression

To apply this process to the regression in Exhibit 1, we see that the estimated
coefficient on the natural logarithm of market capitalization is —0.3790. Therefore,
the model predicts that an increase of 1 in the natural logarithm of the company’s
market capitalization is associated with a —0.3790 change in the natural logarithm of
the ratio of the bid—ask spread to the stock price, holding the natural logarithm of
the number of market makers constant. We need to be careful not to expect that the
natural logarithm of the ratio of the bid—ask spread to the stock price would differ by
-0.3790 if we compared two stocks for which the natural logarithm of the company’s
market capitalization differed by 1, because in all likelihood the number of market
makers for the two stocks would differ as well, which would affect the dependent
variable. The value —0.3790 is the expected net effect of difference in log market
capitalizations, net of the effect of the log number of market makers on the expected
value of the dependent variable.

1.1.1 Assumptions of the Multiple Linear Regression Model

Before we can conduct correct statistical inference on a multiple linear regression
model (a model with more than one independent variable estimated using ordinary
least squares, OLS, an estimation method based on the criterion of minimizing the
sum of the squared residuals of a regression), we need to know the assumptions
underlying that model. Suppose we have #n observations on the dependent variable,
Y, and the independent variables, X, X,, ..., X}, and we want to estimate the equation
Yi=bg+ b1 Xy, + by Xy + . + DXy + €

In order to make a valid inference from a multiple linear regression model, we need
to make the following six assumptions, which as a group define the classical normal
multiple linear regression model:

1 The relationship between the dependent variable, Y, and the independent vari-
ables, X7, X5, ..., X}, is linear as described in Equation 1.

2 The independent variables (X7, Xy, ..., X;) are not random, which means that
they are fixed and known; no exact linear relation exists between two or more
of the independent variables or combinations of independent variables.

3 The expected value of the error term, conditioned on the independent variables,
is 0: E(e | X1,Xy, ..., Xp) = 0.

4 The variance of the error term is the same for all observations:? E(alz) = Gg.

The error term is uncorrelated across observations: E(eiei) =0,j =i

6 The error term is normally distributed.

Note that these assumptions are almost exactly the same as those for the single-
variable linear regression model. Assumption 2 is modified such that no exact linear
relation exists between two or more independent variables or combinations of inde-
pendent variables. If this part of Assumption 2 is violated, then we cannot compute
linear regression estimates. Also, even if no exact linear relationship exists between
two or more independent variables, or combinations of independent variables, lin-
ear regression may encounter problems if two or more of the independent variables
or combinations thereof are highly correlated. Such a high correlation is known as
multicollinearity, which we will discuss later. We will also discuss the consequences
of conducting regression analysis premised on Assumptions 4 and 5 being met when,
in fact, they are violated.

2 Var(e) = E(¢2) and Cov(siej) = E(Eisj) because E(g) = 0.
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Exhibit2 Factors Explaining the Valuations of Multinational Corporations

Kyaw, Manley, and Shetty (2011) examined which factors affect the valuation of
a multinational corporation (MNC). Specifically, they wanted to know whether
political risk, transparency, and geographic diversification affected the valuations
of MNCs. They used data for 450 US MNCs from 1998 to 2003. The valuations
of these corporations were measured using Tobin’s g, a commonly used measure
of corporate valuation that is calculated as the ratio of the sum of the market
value of a corporation’s equity and the book value of long-term debt to the sum
of the book values of equity and long-term debt. The authors regressed Tobin’s g
of MNC:s on variables representing political risk, transparency, and geographic
diversification. The authors also included some additional variables that may affect
company valuation, including size, leverage, and beta. They used the equation

Tobin’s q; , = by + by(Size; ) + by(Leverage; ;) + bs(Beta; ;) + by(Political risk; ,)
+ bs(Transparency; ,) + bg(Geographic diversification; ;) + €;,,

where

Tobin’s g; , = the Tobin’s g for MNC i in year ¢, with
Tobin’s ¢ computed as (Market value of
equity + Book value of long-term debt)/
(Book value of equity + Book value of long-
term debt)

Size; , = the natural log of the total sales of MNC i
in the year ¢ in millions of US$

Leverage, , = the ratio of total debt to total assets of
MNC i in year ¢

Beta; , = the beta of the stock of MNC i in year ¢
Political risk; , = the at-risk-proportion of international
operations of MNC i in year ¢, calculated as
[1 - (number of safe countries/total num-
ber of foreign countries in which the firm
has operations)], using national risk coding
from Euromoney
Transparency; , = the “transparency %" (representing the
level of disclosure) of MNC i in year ¢,
using survey data from S&P Transparency
& Disclosure
Geographic diversification; , = foreign sales of MNC i in year ¢ expressed
as a percentage of its total sales in that year

The following table shows the results of their analysis.

Results from Regressing Tobin’s g on Factors Affecting the Value of

Multinational Corporations

Coefficient Standard Error t-Statistic
Intercept 19.829 4.798 4.133
Size -0.712 0.228 -3.123
Leverage -3.897 0.987 -3.948
Beta -1.032 0.261 -3.954
Political risk -2.079 0.763 -2.725

(continued)
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Exhibit2 (Continued)

Coefficient Standard Error t-Statistic
Transparency -0.129 0.050 -2.580
Geographic diversification 0.021 0.010 2.100

Notes: This study combines time series observations with cross-sectional observations; such data
are commonly referred to as panel data. In such a setting, the standard errors need to be corrected
for bias by using a clustered standard error approach as in Petersen (2009). The standard errors
reported in this exhibit are clustered standard errors.

Size is the natural log of total sales. A log transformation (either natural log or log base 10) is com-
monly used for independent variables that can take a wide range of values; company size and fund
size are two such variables. One reason to use the log transformation is to improve the statistical
properties of the residuals. If the authors had not taken the log of sales and instead used sales as
the independent variable, the regression model probably would not have explained Tobin’s q as well.
Source: Kyaw, Manley, and Shetty (2011).

Suppose that we use the regression results to test the null hypothesis that
the size of a multinational corporation has no effect on its value. Our null
hypothesis is that the coefficient on the size variable equals 0 (H: b; = 0), and
our alternative hypothesis is that the coefficient does not equal 0 (H,: b; = 0).
The t-statistic for testing that hypothesis is

_bi—h _—0712-0

53, 0.228

With 450 observations and 7 coefficients, the ¢-statistic has 450 — 7 = 443
degrees of freedom. At the 0.05 significance level, the critical value for ¢ is
about 1.97. The absolute value of computed ¢-statistic on the size coefficient is
3.12, which suggests strongly that we can reject the null hypothesis that size is
unrelated to MNC value. In fact, the critical value for ¢ is about 2.6 at the 0.01
significance level.

Because Size; , is the natural (base e or 2.72) log of sales, an increase of 1 in
Size; , is the same as a 2.72-fold increase in sales. Thus, the estimated coefficient
of approximately —0.7 for Size; , implies that every 2.72-fold increase in sales of
the MNC (an increase of 1 in Size; ;) is associated with an expected decrease
of 0.7 in Tobin’s g;, of the MNC, holding constant the other five independent
variables in the regression.

Now suppose we want to test the null hypothesis that geographic diversi-
fication is not related to Tobin’s g. We want to test whether the coefficient on
geographic diversification equals 0 (H: bg = 0) against the alternative hypothesis
that the coefficient on geographic diversification does not equal 0 (H,;: bg = 0).
The t-statistic to test this hypothesis is
_bg —bg 00210

= =2.10

She 0.010

t =-3.12

t

The critical value of the t-test is 1.97 at the 0.05 significance level. Therefore,
at the 0.05 significance level, we can reject the null hypothesis that geographic
diversification has no effect on MNC valuation. We can interpret the coefficient
on geographic diversification of 0.021 as implying that an increase of 1 in the
percentage of MNC's sales that are foreign sales is associated with an expected
0.021 increase in Tobin’s g for the MNC, holding all other independent variables
constant.
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Exhibit3 Explaining Returns to the Fidelity Select Technology Portfolio

Suppose you are considering an investment in the Fidelity Select Technology
Portfolio (FSPTX), a US mutual fund specializing in technology stocks. You
want to know whether the fund behaves more like a large-cap growth fund or
a large-cap value fund. You decide to estimate the regression

Yt = bo + lell’ + bZXZt + St,
where

Y; = the monthly return to the FSPTX
X;; = the monthly return to the S&P 500 Growth Index
X,; = the monthly return to the S&P 500 Value Index

The S&P 500 Growth and S&P 500 Value indexes represent predominantly
large-cap growth and value stocks, respectively.

The regression results show the results of this linear regression using monthly
data from August 2014 through August 2019. The estimated intercept in the
regression is 0.0011. Thus, if both the return to the S&P 500 Growth Index and
the return to the S&P 500 Value Index equal 0 in a specific month, the regression
model predicts that the return to the FSPTX will be 0.11%. The coefficient on
the large-cap growth index is 1.5850, and the coefficient on the large-cap value
index return is —-0.3902. Therefore, if in a given month the return to the S&P
500 Growth Index was 1% and the return to the S&P 500 Value Index was —2%,
the model predicts that the return to the FSPTX would be 0.0011 + 1.5850(0.01)
- 0.3902(-0.02) = 2.48%.

Results from Regressing the FSPTX Returns on the S&P 500 Growth and S&P
500 Value Indexes

Coefficient Standard Error t-Statistic

Intercept 0.0011 0.0025 0.4405
S&P 500 Growth Index 1.5850 0.1334 11.88
S&P 500 Value Index -0.3902 0.1332 -2.93
ANOVA df SS MSS F Significance F
Regression 2 0.1198 0.0599 178.01 3.07E-25
Residual 57 0.0192 0.0003

Total 59 0.1389

Residual standard error 0.0183

Multiple R? 0.862

Observations 60

Source: finance.yahoo.com.

We may want to know whether the coefficient on the returns to the S&P
500 Value Index is statistically significant. Our null hypothesis states that the
coeflicient equals 0 (Hy: by = 0); our alternative hypothesis states that the coef-
ficient does not equal 0 (H,: b, = 0).
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Our test of the null hypothesis uses a ¢-test constructed as follows:

by 03902-0 o0

53, 0.1332

where

A

b2 = the regression estimate of b,

b, = the hypothesized value of the coefficient (0)

8p, = the estimated standard error of 62 This regression has 60 observations
and three coefficients (two independent variables and the intercept);
therefore, the ¢-test has 60 — 3 = 57 degrees of freedom. At the 0.05
significance level, the critical value for the test statistic is about 2.00. The
absolute value of the test statistic is 2.93. Because the test statistic’s
absolute value is more than the critical value (2.93 > 2.00), we reject the
null hypothesis that 55 = 0. (Note that the ¢-tests reported in the regres-
sion results table, as well as the other regression tables, are tests of the
null hypothesis that the population value of a regression coefficient
equals 0.)

Similar analysis shows that at the 0.05 significance level, we cannot reject the
null hypothesis that the intercept equals 0 (H: by = 0) in favor of the alternative
hypothesis that the intercept does not equal 0 (H_: b = 0). The results also show
that the ¢-statistic for testing that hypothesis is 0.4405, a result smaller in absolute
value than the critical value of 2.00. However, at the 0.05 significance level we
can reject the null hypothesis that the coefficient on the S&P 500 Growth Index
equals 0 (Hy: by = 0) in favor of the alternative hypothesis that the coefficient
does not equal 0 (H,;: by = 0). The ¢-statistic for testing that hypothesis is 11.88,
a result far above the critical value of 2.00. Thus, multiple regression analysis
suggests that returns to the FSPTX are very closely associated with the returns
to the S&P 500 Growth Index, but they are negatively related to S&P 500 Value
Index. This regression is related to return-based style analysis, one of the most
frequent applications of regression analysis in the investment profession. For
more information, see Sharpe (1988), who pioneered this field, and Buetow,
Johnson, and Runkle (2000).

1.1.2 Predicting the Dependent Variable in a Multiple Regression Model

Financial analysts often want to predict the value of the dependent variable in a multiple
regression based on assumed values of the independent variables. We have previously
discussed how to make such a prediction in the case of only one independent variable.
The process for making that prediction with multiple linear regression is very similar.

To predict the value of a dependent variable using a multiple linear regression
model, we follow these three steps:

1 Obtain estimates by, by, by, ..., b of the regression parameters by, by, by, ..., by.
2 Determine the assumed values of the independent variables, )?1,~ , fz,-, s )?ki-
3 Compute the predicted value of the dependent variable, Y;, using the equation

A

?l’=i70 +blfli+i)2§2i+'“+ékild (3)



Multiple Linear Regression Assumptions, Testing Coefficients, and Prediction

Two practical points concerning using an estimated regression to predict the depen-
dent variable are in order. First, we should be confident that the assumptions of the
regression model are met. Second, we should be cautious about predictions based on
values of the independent variables that are outside the range of the data on which
the model was estimated; such predictions are often unreliable.

EXAMPLE 1

Predicting a Multinational Corporation’s Tobin's g

In Exhibit 2, we explained the Tobin’s g for US multinational corporations (MNC)
based on the natural log of sales, leverage, beta, political risk, transparency, and
geographic diversification. To review the regression equation:

Tobin’s g, , = by + by(Size; ;) + by(Leverage; ,) + bs(Beta; ;) + by(Political
risk; ;) + bs(Transparency; ) + bg(Geographic diversification-
i,t) aF Ei.

Now we can use the results of the regression (excerpted here) to predict the
Tobin’s g for a US MNC.

Regression results

Coefficient
Intercept 19.829
Size -0.712
Leverage -3.897
Beta -1.032
Political risk -2.079
Transparency -0.129
Geographic diversification 0.021

Suppose that a particular MNC has the following data for a given year:
B Total sales of $7,600 million. The natural log of total sales in millions of

US$ equals In(7,600) = 8.94.

Leverage (Total debt/Total assets) of 0.45.

Beta of 1.30.

Political risk of 0.47, implying that the ratio of the number of safe coun-
tries to the total number of foreign countries in which the MNC has
operations is 0.53.

®  Transparency score of 65, indicating 65% “yes” answers to survey ques-
tions related to the corporation’s transparency.

B Geographic diversification of 30, indicating that 30% of the corporation’s
sales are in foreign countries.

What is the predicted Tobin’s g for the above MNC?
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Solution:
The predicted Tobin’s g for the MNC, based on the regression, is:

19.829 + (=0.712 x 8.94) + (-3.897 x 0.45) + (~1.032 x 1.30) + (=2.079 x
0.47) + (~0.129 x 65) + (0.021 x 30) = 1.64.

When predicting the dependent variable using a linear regression model, we
encounter two types of uncertainty: uncertainty in the regression model itself, as
reflected in the standard error of estimate, and uncertainty about the estimates of
the regression model’s parameters. In earlier coverage of the regression topic, we
presented procedures for constructing a prediction interval for linear regression with
one independent variable. For multiple regression, however, computing a prediction
interval to properly incorporate both types of uncertainty requires matrix algebra,
which is outside the scope of our discussion (See Greene 2018 for more information).

TESTING THE WHOLE MULTIPLE LINEAR REGRESSION
MODEL AND ADJUSTED R-SQUARE

g calculate and interpret the F-statistic, and describe how it is used in regression
analysis;

h contrast and interpret the R2 and adjusted R2 in multiple regression;

i evaluate how well a regression model explains the dependent variable by ana-
lyzing the output of the regression equation and an ANOVA table;

o evaluate and interpret a multiple regression model and its results.

Earlier, we illustrated how to conduct hypothesis tests on regression coeflicients indi-
vidually. What if we now want to test the significance of the regression as a whole?
As a group, do the independent variables help explain the dependent variable? To
address this question, we test the null hypothesis that all the slope coefficients in a
regression are simultaneously equal to 0. In this section, we further discuss ANOVA
with regard to a regression’s explanatory power and the inputs for an F-test of the
above null hypothesis.

If none of the independent variables in a regression model helps explain the
dependent variable, the slope coefficients should all equal 0. In a multiple regression,
however, we cannot test the null hypothesis that all slope coefficients equal 0 based
on t-tests that each individual slope coefficient equals 0, because the individual tests
do not account for the effects of interactions among the independent variables. For
example, a classic symptom of multicollinearity is that we can reject the hypothesis
that all the slope coefficients equal 0 even though none of the ¢-statistics for the
individual estimated slope coefficients is significant. Conversely, we can construct
unusual examples in which the estimated slope coefficients are significantly different
from 0 although jointly they are not.

To test the null hypothesis that all the slope coefficients in the multiple regression
model are jointly equal to 0 (Hj: b; = by = ... = by = 0) against the alternative hypothesis
that at least one slope coefficient is not equal to 0, we must use an F-test. The F-test
is viewed as a test of the regression’s overall significance.

To correctly calculate the test statistic for the null hypothesis, we need four inputs:

®  Total number of observations, #.



Testing the Whole Multiple Linear Regression Model and Adjusted R-square

B Total number of regression coefficients to be estimated, k + 1, where k is the
number of slope coefficients.

A2 N
B Sum of squared errors or residuals, Z:’:l(Yi -Y i) = Z:lzlai , abbreviated SSE,

also known as the residual sum of squares, the unexplained variation. In a table
of regression output, this is the number under the “SS” column in the row
“Residual”

~ 2
B Regression sum of squares, z:’zl(Y i—Y ) , abbreviated RSS. This amount is the

variation in Y from its mean that the regression equation explains (explained
variation). In a table of regression output, this is the number under the “SS”
column in the row “Regression”

The F-test for determining whether the slope coefficients equal 0 is based on an
F-statistic calculated using the four values listed above. The F-statistic measures how
well the regression equation explains the variation in the dependent variable; it is the
ratio of the mean regression sum of squares to the mean squared error.

We compute the mean regression sum of squares by dividing the regression sum
of squares by the number of slope coefficients estimated, k. We compute the mean
squared error by dividing the sum of squared errors by the number of observations,
n, minus (k + 1). The two divisors in these computations are the degrees of freedom
for calculating an F-statistic. For # observations and k slope coefficients, the F-test
for the null hypothesis that the slope coefficients are all equal to 0 is denoted Fy,,
(k+1)- The subscript indicates that the test should have k degrees of freedom in the
numerator (numerator degrees of freedom) and n — (k + 1) degrees of freedom in the
denominator (denominator degrees of freedom).

The formula for the F-statistic is

B RSS/k _ Mean regression sum of squares  MSR @)
SSE/ [n —(k+ 1)] Mean squared error MSE

where MSR is the mean regression sum of squares and MSE is the mean squared error.
In our regression output tables, MSR and MSE are the first and second quantities under
the MSS (mean sum of squares) column in the ANOVA section of the output. If the
regression model does a good job of explaining variation in the dependent variable,
then the ratio MSR/MSE will be large.

What does this F-test tell us when the independent variables in a regression model
explain none of the variation in the dependent variable? In this case, each predicted

value in the regression model, Y i, has the average value of the dependent variable, ?,
A —2
and the regression sum of squares, Z:lzl(Y i—Y ) is 0. Therefore, the F-statistic for

testing the null hypothesis (that all the slope coefficients are equal to 0) has a value
of 0 when the independent variables do not explain the dependent variable at all.

To specify the details of making the statistical decision when we have calculated
F, we reject the null hypothesis at the « significance level if the calculated value of
F is greater than the upper a critical value of the F distribution with the specified
numerator and denominator degrees of freedom. Note that we use a one-tailed F-test
(because MSR necessarily increases relative to MSE as the explanatory power of the
regression increases.)

We can illustrate the test using Exhibit 1, in which we investigated whether the
natural log of the number of NASDAQ market makers and the natural log of the stock’s
market capitalization explained the natural log of the bid—ask spread divided by price.
Assume that we set the significance level for this test to a = 0.05 (i.e., a 5% probability
that we will mistakenly reject the null hypothesis if it is true). Excerpt from Exhibit 1
presents the results of variance computations for this regression.
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Excerpt from Exhibit 1:

ANOVA df SS MSS F Significance F
Regression 2 3,728.1334 1,864.0667 2,216.7505 0.00
Residual 2,584 2,172.8870 0.8409

Total 2,586 5,901.0204

This model has two slope coefficients (k = 2), so two degrees of freedom are in
the numerator of this F-test. With 2,587 observations in the sample, the number
of degrees of freedom in the denominator of the F-test is n — (k + 1) = 2,587 - 3 =
2,584. The sum of the squared errors is 2,172.8870. The regression sum of squares is
3,728.1334. Therefore, the F-test for the null hypothesis that the two slope coefficients
in this model equal 0 is

3,728.1334/2
2,172.8870/2,584

= 2,216.7505

This test statistic is distributed as an F , g4 random variable under the null hypothesis
that the slope coefficients are equal to 0. In Exhibit 1 for the 0.05 significance level, we
look at the second column, which shows F-distributions with two degrees of freedom
in the numerator. Near the bottom of the column, we find that the critical value of
the F-test needed to reject the null hypothesis is between 3.00 and 3.07. (We see a
range of values because the denominator has more than 120 degrees of freedom but
less than an infinite number of degrees of freedom.) The actual value of the F-test
statistic at 2,216.75 is much greater, so we reject the null hypothesis that coefficients
of both independent variables equal 0. In fact, regression results in Exhibit 1 under
“Significance F; reports a p-value of 0. This p-value means that the smallest level of
significance at which the null hypothesis can be rejected is practically 0. The large
value for this F-statistic implies a very small probability of incorrectly rejecting the
null hypothesis (a mistake known as a Type I error).

2.1 Adjusted R?

In our coverage of simple regression, we presented the coefficient of determination,
R?, as a measure of the goodness of fit of an estimated regression to the data. In a
multiple linear regression, however, R? is less appropriate as a measure of whether a
regression model fits the data well (goodness of fit). Recall that R? is defined as

Total variation — Unexplained variation

Total variation

The numerator equals the regression sum of squares, RSS. Thus, R? states RSS as a
—\2
fraction of the total sum of squares, Z;(Yi - Y) . If we add regression variables to

the model, the amount of unexplained variation will decrease; RSS will increase if the
new independent variable explains any of the unexplained variation in the model.
Such a reduction occurs when the new independent variable is even slightly correlated
with the dependent variable and is not a linear combination of other independent
variables in the regression (note that we say that variable y is a linear combination of
variables x and z, or even more variables, if y = ax + bz for some constants a and b).
Consequently, we can increase R? simply by including many additional independent
variables that explain even a slight amount of the previously unexplained variation,
even if the amount they explain is not statistically significant.
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Some financial analysts use an alternative measure of goodness of fit called adjusted

R2, or R2. This measure of fit does not automatically increase when another variable
is added to a regression; it is adjusted for degrees of freedom. Adjusted R? is typically
part of the multiple regression output produced by statistical software packages.

The relation between R2 and R? is

R*=1- (nf—;_J(l - R

where 7 is the number of observations and k is the number of independent variables
(the number of slope coefficients). Note that if k > 1, then R? is strictly greater than

adjusted RZ. When a new independent variable is added, R? can decrease if adding
that variable results in only a small increase in R2. In fact, R? can be negative, although
R? is always nonnegative. When R? is negative, we can effectively consider its value

to be 0. If we use R to compare regression models, it is important that the dependent
variable be defined the same way in both models and that the sample sizes used to
estimate the models are the same. For example, it makes a difference for the value
of R? if the dependent variable is GDP (gross domestic product) or In(GDP), even if
the independent variables are identical. Furthermore, we should be aware that a
high R? does not necessarily indicate that the regression is well specified in the sense
of including the correct set of variables. One reason for caution is that a high R? may
reflect peculiarities of the dataset used to estimate the regression. To evaluate a
regression model, we need to take many other factors into account, as we discuss later
in the section on model specification.

DUMMY VARIABLES IN A MULTIPLE LINEAR
REGRESSION

i. evaluate how well a regression model explains the dependent variable by ana-
lyzing the output of the regression equation and an ANOVA table;

j. formulate and interpret a multiple regression, including qualitative independent
variables;

0. evaluate and interpret a multiple regression model and its results.

Financial analysts often need to use qualitative variables as independent variables in
a regression. One such type of variable that we will focus on is called a dummy vari-
able. It takes on a value of 1 if a particular condition is true and 0 if that condition is
false. We will see that one purpose of using dummy variables is to distinguish between
“groups” or “categories” of data.

3.1 Defining a Dummy Variable
A dummy variable may arise in several ways in datasets:

i. It may reflect an inherent property of the data (e.g., belonging to an industry
or a region). For example, a company belongs to health care industry (dummy
variable = 1) or it does not (dummy variable = 0). The data on such variables
are collected directly along with the rest of the independent variables for each
observation.

85



86

Reading 2 m Multiple Regression

ii. It may be an identified characteristic of the data. We may introduce such a
binary variable by a condition that is either true or false. For example, the date
may be before 2008 (prior to the onset of financial crisis, dummy variable = 0)
or after 2008 (after the onset of the financial crisis, dummy variable = 1).

iii. Alternatively, it may be constructed from some characteristic of the data. The
dummy variable would reflect a condition that is either true or false. Examples
would include satisfying a condition, such as particular company size (dummy =

1 if revenues exceed €1bn, otherwise it equals 0).

We need to exercise care when choosing the number of dummy variables in a
regression. If we want to distinguish among # categories, we need n — I dummy
variables. So, if we use dummy variables to denote companies belonging to one of
11 industries, we would use 10 dummies. We still apply the analysis to 11 categories,
but the one to which we do not assign a dummy will be referred to as the “base” or
“control” group. If, for example, we wish to analyze a dataset with three mutual fund
types, we need two dummies. The reason for the need to use # — 1 dummy variables
is that we must not violate assumption 2 that no exact linear relationship must exist
between two or more of the independent variables. If we were to make the mistake
of including dummy variables for all # categories rather than n — I, the regression
procedure would fail due to the complete violation of assumption 2.

3.2 Visualizing and Interpreting Dummy Variables

One of the most common types of dummy variables are so-called intercept dummies.
Consider a regression model for the dependent variable Y that involves one continuous
independent variable (X) and one dummy variable (D).

Y=>by+dyD+ b X +e. (5)
This single regression model can be shown to estimate two lines of best fit corre-
sponding to the value of the dummy variable:
B If D =0, then the equation becomes Y = by + b1 X + &.
® If D = 1, then the equation becomes Y = (b, + d) + b1 X + e.
Exhibit 4 shows a graphical illustration. This scenario can be interpreted as an
intercept shift shown by the d,, distance. The shift can be positive or negative (it is
positive in the illustration). The line where the dummy takes the value of zero (D = 0)

relates to the base category; the other line where the dummy variable takes the value
of 1 (D = 1) relates to the category to which we apply the dummy variable.
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Exhibit4 Intercept Dummy

VAN

Y = (bg +dy) + 01 X

a4

Intercept b

Y

A different scenario would reflect dummies that allow for slope differences. We
will refer to those as slope dummies. They can be explained using a simple model
with one continuous variable (x) and one dummy variable (D).

Y= b0+b1X+d1(DXX)+8. (6)

The presence of such slope dummy can be interpreted as a change in the slope between
the categories captured by the dummy variable:

If D=0,then Y=0by+ b1 X + e
IfD: 1, then Y= b0+ (bl +d1)X+ E.

As before, the case of D = 0 is the base or control group. The dummy variable allows
for slopes to differ between the two categories. For the base category, the relationship
between x and y is shown by the less steep line Y= by + b X. For the other category, the
relationship between Y and X is shown by the steeper sloping line Y = b, + (b + d1)X.
This difference between slopes may be positive or negative depending on the scenario.
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Exhibit5 Slope Dummy Variables

Y A

Y =by+(d;+by) X

Y =by+ b X

Intercept b,

A4

It is also possible to use dummies in both slope and intercept. To do so we combine
the two previous models. We let the dummy variable “interact” with the continuous
independent variable x.

Y=b0+d0D+b1X+d1(DXX)+S. (7)

If D=0,then Y=0by+ b1 X +e.
If D=1,then Y= (by+dpy) + (by+d)X + e

This allows for both a change in intercept and a change in slope across the two
groups. In this more complex treatment, the difference between the two categories
now depends on both an intercept effect (d;) and a slope effect (d;X) that vary with
the size of the independent variable.

Exhibit6 Slope and Intercept Dummies

Y 4

Y =(bg+dy)+ (b +dy) X

Intercept b,

Y
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Exhibit6 (Continued)

Note: The graph shows a scenario where d; > 0 and d, < 0.

These scenarios are based on only two data categories. We may, however,
have more categories with more dummies and more independent variables. The
graphs would simply show more lines of best fit, one relating to each category.

3.3 Testing for Statistical Significance

One of the purposes of using dummy variables is to distinguish between “groups” or
“categories” of data. To test whether a regression function is different for one group
versus another is straightforward with dummy variables with the help of ¢-tests.
Individual ¢-tests on the dummy variable coefficients indicate if that difference is
significantly different from zero. Exhibit 7 illustrates the use of dummy variables in a
regression using a cross-section of mutual fund data.

Exhibit 7 Analysis of Mutual Funds in Different Categories

William James is a fund analyst at an investment consultancy firm. He has been
tasked with analyzing how mutual fund characteristics affect fund returns mea-
sured as the average returns over the past 5 years. He uses a large database of
US mutual funds that include a number of style classes. The dependent variable
is the average annual return over the last 5 years. The independent variables
that the analyst chose to focus on are fund expense ratio, the natural logarithm
of fund size and fund age, and two dummy variables to denote fund style (style
being Value, Blend, or Growth).

As there are three possible style categories, he uses 7 — 1 = 2 dummy variables.
The dummy variable BLEND has a value of 1 if the observation (the mutual fund)
is “Blend” and a value of 0 if it is not. The GROWTH dummy has a value of 1 if
the fund is labelled as “Growth”; otherwise, it equals zero. The base or “control”
category, for which we do not use a specific dummy, is the “Value” category. In
this regression, for simplicity we are only allowing for an effect on the intercept
of the regression, not the slopes of the independent variables.

He estimates the following cross-sectional regression model:

Fund returns = b, + d;BLEND + d,GROWTH
+ b Expense ratio + b, Portfolio cash
+ byFund age + by Log of assets + e.

The regression output, shown next, suggests that while the R? is relatively
low at 0.12, the slope coefficients are statistically significant. The results suggest
that fund returns are negatively impacted by the level of expenses and cash hold-
ings (coefficients of —0.58 and -0.03, respectively), which we would intuitively
expect. The results also indicate that older funds perform better, with a positive
age coefficient of 0.074.

The estimated coefficients for the dummy variables show the estimated dif-
ference between the returns on different types of funds. At 0.66 and 2.50, the
coefficients of the dummy variables suggest that Blend funds deliver average
returns that exceed those in the Value category by 0.66% per year, while Growth
funds deliver 2.50% over and above the base, “Value,” category. The intercept
coefficient, also statistically significant, suggests that average annual negative
return of 2.91% is unexplained by the independent variables in the model.

(continued)
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Exhibit7 (Continued)

Mutual Funds Regression Output

Regression Statistics

R? 0.1230
Adjusted R? 0.1228
Standard Error 4.224
Observations 23,025

Significance
ANOVA df SS MS F F
Regression 6 57,636.46 9,606 538 0
Residual 23,018 410,816.9 17.85
Total 23,024 468,453.3

Standard
Coefficients Error t-Statistic P-value

Intercept -2.909 0.299 -9.7376 2.30177E-22
Annual expense

ratio -0.586 0.0495 -11.824  3.623E-32
Portfolio cash -0.032 0.0029 -11.168  6.93514E-29
Fund age 0.074 0.0033 22.605 6.3821E-112
Log of assets 0.267 0.0141 18.924  2.92142E-79
Blend dummy 0.661 0.0678 9.749  2.0673E-22
Growth dummy 2.498 0.0748 33.394  8.2581E-239

We can also use the F-test to analyze the null hypothesis that jointly the
independent variables (including the dummies) all equal 0. Regression results
shows the value of the F-statistic at 538, which we compare to the critical
value. Appendix D (the F-distribution table) shows the critical values for this
F-test. If we choose a significance level of 0.01 and look in column 6 (because
the numerator has 6 degrees of freedom), we see that the critical value is 2.96
when the denominator has 120 degrees of freedom. The denominator actually
has 23,024 degrees of freedom, so the critical value of the F-statistic is smaller
than 2.96 (for df = 120) but larger than 2.8 (for an infinite number of degrees
of freedom). The value of the F-test statistic is 538, so we can reject the null
hypothesis that the coefficients jointly are equal to 0.

James decides to extend his study of mutual funds by introducing slope
dummies. The initial results indicated a relationship between returns and fund
age, although the magnitude was small at 0.07% for each year of age. He wonders
whether this relationship between performance and age differs between different
fund types. For example, does the age factor affect Growth or Blend funds more
than it affects Value funds? In other words, is the improvement in performance
with fund age different for the different types of funds?
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To explore this hypothesis—that the impact of Fund age is different across
types of funds—he introduces two additional independent variables, one that
is a multiple of “Fund age x Blend dummy” and the second “Fund age x Growth
dummy” He estimates the following model:

Fund Returns (avg over 5 years) = b, + by Expense ratio + b, Portfolio cash +

bs Fund age + b, Log of assets + d; (Blend dummy) + d, (Growth dummy) +
“Fund age x Blend dummy” + “Fund age x Growth dummy” + &.

When the Blend dummy is equal to 1, the interaction term takes on the
value of “Fund age”” For observations when the Growth dummy is equal to 1,
the second interaction term takes on the value of “Fund age.” The regression
results are as follows:

Regression Statistics

R? 0.123
Adjusted R? 0.123
Standard Error 4.224
Observations 23,025
Significance
ANOVA df SS MsS F F
Regression 8 57,760.46 7,220 404.6 0
Residual 23,016 410,692.9 17.84
Total 23,024 468,453.3
Standard
Coefficients  Error  t-Statistic P-value
Intercept -2.81 0.306 -9.183  4.54531E-20
Annual_expense_ -0.587 0.0496 -11.839 3.0289E-32
ratio
Portfolio_cash -0.032 0.0029 -11.211  4.28797E-29
Fund age 0.065 0.0059 11.012  3.91371E-28
Log of assets 0.267 0.0141 18.906  4.05994E-79
Blend dummy 0.603 0.1088 5.546  2.95478E-08
Growth dummy 2.262 0.1204 18.779  4.27618E-78
Age x Blend 0.0049 0.0077 0.627  0.530817435
Age x Growth 0.0201 0.0081 2478  0.01323

The regression results feature the original intercept and slope coefficient
variables plus the new slope coefficients of the interaction dummies. The val-
ues and statistical significance of the intercept and slope coefficient show little
change. But the revised model provides more information about the Fund age
variable. For our default base or control group—Value funds—we observe the
Fund age slope coeflicient of 0.065, suggesting that those funds see extra return
with the passage of time (i.e., fund age).

In this model, we also have the interaction dummies, of which “Fund age x
Growth” has a statistically significant coefficient. For Growth funds, the extra
annual return with each additional year of age is the sum of the “Age” and “Fund
age x Growth” coefficients (i.e., 0.065 % plus 0.02 %). So, the overall “slope”
coefficient for the performance of Growth (with respect to Age) is the sum of
the two coefficients. One can interpret the overall output as suggesting that
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Growth funds deliver returns that exceed those of Value funds by 2.26% (the
Growth Intercept) plus 0.085% for each year of age. Another way to interpret
this result is to imagine a two-dimensional space similar to the one in Exhibit 6.
The coefficient of the “Fund age x Growth” variable would give the extra slope
implied by growth over and above the slope coefficient of the “Fund Age” variable.

VIOLATIONS OF REGRESSION ASSUMPTIONS:
HETEROSKEDASTICITY

k explain the types of heteroskedasticity and how heteroskedasticity and serial
correlation affect statistical inference;

Earlier we presented the assumptions of the multiple linear regression model. Inference
based on an estimated regression model rests on those assumptions being satisfied.
In applying regression analysis to financial data, analysts need to be able to diagnose
violations of regression assumptions, understand the consequences of violations, and
know the remedial steps to take. In the following sections, we discuss three regression
violations: heteroskedasticity, serial correlation, and multicollinearity.

4.1 Heteroskedasticity

So far, we have made an important assumption that the variance of error in a regres-
sion is constant across observations. In statistical terms, we assumed that the errors
were homoskedastic. Errors in financial data, however, are often heteroskedastic:
The variance of the errors differs across observations. In this section, we discuss how
heteroskedasticity affects statistical analysis, how to test for heteroskedasticity, and
how to correct for it.

We can see the difference between homoskedastic and heteroskedastic errors by
comparing two graphs. Exhibit 8 shows the values of the dependent and indepen-
dent variables and a fitted regression line for a model with homoskedastic errors.
There is no systematic relationship between the value of the independent variable
and the regression residuals (the vertical distance between a plotted point and the
fitted regression line). Exhibit 9 shows the values of the dependent and independent
variables and a fitted regression line for a model with heteroskedastic errors. Here, a
systematic relationship is visually apparent: On average, the regression residuals grow
much larger as the size of the independent variable increases.

4.1.1 The Consequences of Heteroskedasticity

What are the consequences when the assumption of constant error variance is vio-
lated? Although heteroskedasticity does not affect the consistency (Greene 2018) of
the regression parameter estimators, it can lead to mistakes in inference. Informally,
an estimator of a regression parameter is consistent if the probability that estimates
of a regression parameter differ from the true value of the parameter decreases as
the number of observations used in the regression increases. When errors are het-
eroskedastic, the F-test for the overall significance of the regression is unreliable. This
unreliability occurs because the mean squared error is a biased estimator of the true
population variance given heteroskedasticity. Furthermore, ¢-tests for the significance of
individual regression coefficients are unreliable because heteroskedasticity introduces
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bias into estimators of the standard error of regression coefficients. If a regression
shows significant heteroskedasticity, the standard errors and test statistics computed by
regression programs will be incorrect unless they are adjusted for heteroskedasticity.

Exhibit8 Regression with Homoskedasticity
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Exhibit9 Regression with Heteroskedasticity
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In regressions with financial data, the most likely results of heteroskedasticity are
that the estimated standard errors will be underestimated and the ¢-statistics inflated.
When we ignore heteroskedasticity, we tend to find significant relationships where
none actually exist. Sometimes, however, failure to adjust for heteroskedasticity
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results in standard errors that are too large (and ¢-statistics that are too small). The
consequences in practice may be serious if we are using regression analysis in the
development of investment strategies. As Exhibit 10 shows, the issue impinges even
on our understanding of financial models.

Exhibit 10 Heteroskedasticity and Tests of an Asset Pricing Model

MacKinlay and Richardson (1991) examined how heteroskedasticity affects tests
of the capital asset pricing model (CAPM). These authors argued that if the CAPM
is correct, they should find no significant differences between the risk-adjusted
returns for holding small stocks versus large stocks. To implement their test,
MacKinlay and Richardson grouped all stocks on the New York Stock Exchange
and the American Stock Exchange (now called NYSE MKT) by market-value
decile with annual reassignment. They then tested for systematic differences in
risk-adjusted returns across market-capitalization-based stock portfolios. They
estimated the following regression:

Fig =0+ Bl + €

where

r;; = excess return (return above the risk-free rate) to portfolio i in
period ¢
T, = €xcess return to the market as a whole in period ¢

The CAPM formulation hypothesizes that excess returns on a portfolio are
explained by excess returns on the market as a whole. That hypothesis implies
that a; = 0 for every portfolio i; on average, no excess return accrues to any
portfolio after taking into account its systematic (market) risk.

Using data from January 1926 to December 1988 and a market index based
on equal-weighted returns, MacKinlay and Richardson failed to reject the CAPM
at the 0.05 level when they assumed that the errors in the regression model
are normally distributed and homoskedastic. They found, however, that they
could reject the CAPM when they corrected their test statistics to account for
heteroskedasticity. They rejected the hypothesis that there are no size-based,
risk-adjusted excess returns in historical data.

We have stated that effects of heteroskedasticity on statistical inference can be
severe. To be more precise about this concept, we should distinguish between two
broad kinds of heteroskedasticity: unconditional and conditional.

Unconditional heteroskedasticity occurs when heteroskedasticity of the error
variance is not correlated with the independent variables in the multiple regression.
Although this form of heteroskedasticity violates Assumption 4 of the linear regression
model, it creates no major problems for statistical inference.

The type of heteroskedasticity that causes the most problems for statistical infer-
ence is conditional heteroskedasticity—heteroskedasticity in the error variance
that is correlated with (conditional on) the values of the independent variables in the
regression. Fortunately, many statistical software packages easily test and correct for
conditional heteroskedasticity.

4.1.2 Testing for Heteroskedasticity

Because of conditional heteroskedasticity’s consequences on inference, the analyst
must be able to diagnose its presence. The Breusch—Pagan test is widely used in
finance research because of its generality.
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Breusch and Pagan (1979) suggested the following test for conditional heteroske-
dasticity: Regress the squared residuals from the estimated regression equation on the
independent variables in the regression. If no conditional heteroskedasticity exists,
the independent variables will not explain much of the variation in the squared resid-
uals. If conditional heteroskedasticity is present in the original regression, however,
the independent variables will explain a significant portion of the variation in the
squared residuals. The independent variables can explain the variation because each
observation’s squared residual will be correlated with the independent variables if the
independent variables affect the variance of the errors.

Breusch and Pagan showed that under the null hypothesis of no conditional het-
eroskedasticity, 7R? (from the regression of the squared residuals on the independent
variables from the original regression) will be a x? random variable with the number
of degrees of freedom equal to the number of independent variables in the regression
(for more on the Breusch—Pagan test, see Greene 2018). Therefore, the null hypothesis
states that the regression’s squared error term is uncorrelated with the independent
variables. The alternative hypothesis states that the squared error term is correlated
with the independent variables. Exhibit 11 illustrates the Breusch—Pagan test for
conditional heteroskedasticity.

Exhibit 11 Testing for Conditional Heteroskedasticity in the Relation

between Interest Rates and Expected Inflation

Suppose an analyst wants to know how closely nominal interest rates are related
to expected inflation to determine how to allocate assets in a fixed-income
portfolio. The analyst wants to test the Fisher effect, the hypothesis suggested
by Irving Fisher that nominal interest rates increase by 1 percentage point for
every 1 percentage point increase in expected inflation. The Fisher effect assumes
the following relation between nominal interest rates, real interest rates, and
expected inflation:

i=r+n
where

i = the nominal rate
r = the real interest rate (assumed constant)
11° = the expected rate of inflation

To test the Fisher effect using time-series data, we could specify the following
regression model for the nominal interest rate:

i, = by + b + ¢ (8)

Noting that the Fisher effect predicts that the coefficient on the inflation variable
is 1, we can state the null and alternative hypotheses as

HO: bl =1and
Hﬂ: bl # 1.
We might also specify a 0.05 significance level for the test. Before we estimate

Equation 8 we must decide how to measure expected inflation (7; ) and the
nominal interest rate (i,).

The Survey of Professional Forecasters (SPF) has compiled data on the quar-
terly inflation expectations of professional forecasters using annualized median
SPF prediction of current-quarter growth in the GDP deflator. We use those
data as our measure of expected inflation. We use three-month US Treasury bill

(continued)
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Exhibit 11 (Continued)

returns as our measure of the (risk-free) nominal interest rate. We use quarterly
data from the fourth quarter of 1968 to the fourth quarter of 2013 to estimate
Equation 8 The regression results are shown next.

To make the statistical decision on whether the data support the Fisher effect,
we calculate the following ¢-statistic, which we then compare to its critical value:

_bi-h 117441

5, 0.0761

With a 0.05 significance level and 181 — 2 = 179 degrees of freedom, the
critical t-value is about 1.97. If we have conducted a valid test, we can reject at
the 0.05 significance level the hypothesis that the true coefficient in this regres-
sion is 1 and that the Fisher effect holds. The ¢-test assumes that the errors are
homoskedastic. Before we accept the validity of the ¢-test, therefore, we should
test whether the errors are conditionally heteroskedastic. If those errors prove
to be conditionally heteroskedastic, then the test is invalid.

t =229

Results from Regressing T-Bill Returns on Predicted Inflation

Coefficient Standard Error t-Statistic
Intercept 0.0116 0.0033 3.5152
Inflation prediction 1.1744 0.0761 15.4323
Residual standard error 0.0233
Multiple R? 0.5708
Observations 181
Durbin—Watson statistic 0.2980

Note: The Durbin—Watson statistic will be explained in the section on serial correlation.
Source: Federal Reserve Bank of Philadelphia, US Department of Commerce.

We can perform the Breusch-Pagan test for conditional heteroskedasticity
on the squared residuals from the Fisher effect regression. The test regresses the
squared residuals on the predicted inflation rate. The R? in the squared residuals
regression (not shown here) is 0.0666. The test statistic from this regression,
nR2, is 181 x 0.0666 = 12.0546. Under the null hypothesis of no conditional
heteroskedasticity, this test statistic is a x> random variable with one degree of
freedom (because there is only one independent variable).

We should be concerned about heteroskedasticity only for large values of the
test statistic. Therefore, we should use a one-tailed test to determine whether we
can reject the null hypothesis. The critical value of the test statistic for a variable
from a x? distribution with one degree of freedom at the 0.05 significance level is
3.84. The test statistic from the Breusch—Pagan test is 12.0546, so we can reject
the hypothesis of no conditional heteroskedasticity at the 0.05 level. In fact, we
can even reject the hypothesis of no conditional heteroskedasticity at the 0.01
significance level, because the critical value of the test statistic in the case is
6.63. As a result, we conclude that the error term in the Fisher effect regression
is conditionally heteroskedastic. The standard errors computed in the original
regression are not correct, because they do not account for heteroskedasticity.
Therefore, we cannot accept the ¢-test as valid.
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In Exhibit 11, we concluded that a z-test that we might use to test the Fisher effect
was not valid. Does that mean that we cannot use a regression model to investigate
the Fisher effect? Fortunately, no. A methodology is available to adjust regression
coeflicients’ standard error to correct for heteroskedasticity. Using an adjusted stan-

dard error for by, we can reconduct the t-test. As we shall see in the next section,
using this valid ¢-test we will not reject the null hypothesis in Exhibit 11. That is, our
statistical conclusion will change after we correct for heteroskedasticity.

4.1.3 Correcting for Heteroskedasticity

Financial analysts need to know how to correct for heteroskedasticity, because such
a correction may reverse the conclusions about a particular hypothesis test—and
thus affect a particular investment decision. In Exhibit 10, for instance, MacKinlay
and Richardson reversed their investment conclusions after correcting their model’s
significance tests for heteroskedasticity.

We can use two different methods to correct for the effects of conditional het-
eroskedasticity in linear regression models. The first method, computing robust
standard errors, corrects the standard errors of the linear regression model’s esti-
mated coefficients to account for the conditional heteroskedasticity. The second
method, generalized least squares, modifies the original equation to eliminate the
heteroskedasticity. The new, modified regression equation is then estimated under
the assumption that heteroskedasticity is no longer a problem. The technical details
behind these two methods of correcting for conditional heteroskedasticity are outside
the scope of this discussion. Many statistical software packages can easily compute
robust standard errors, however, and we recommend using them. Note that robust
standard errors are also known as heteroskedasticity-consistent standard errors
or White-corrected standard errors.

Returning to the subject of Exhibit 11 concerning the Fisher effect, recall that we
concluded that the error variance was heteroskedastic. If we correct the regression
coefficients’ standard errors for conditional heteroskedasticity, we get the results shown
in Exhibit 12. In comparing the standard errors with those in Exhibit 11, we see that
the standard error for the intercept changes very little but the standard error for the
coefficient on predicted inflation (the slope coefficient) increases by about 22% (from
0.0761 to 0.0931). Note also that the regression coefficients are the same in both tables
because the results correct only the standard errors in Exhibit 11.

Exhibit 12 Results from Regressing T-Bill Returns on Predicted Inflation

(Standard Errors Corrected for Conditional Heteroskedasticity)

Coefficients Standard Error t-Statistic
Intercept 0.0116 0.0034 3.4118
Inflation prediction 1.1744 0.0931 12.6144
Residual standard error 0.0233
Multiple R? 0.5708
Observations 181

Source: Federal Reserve Bank of Philadelphia, US Department of Commerce.

We can now conduct a valid ¢-test of the null hypothesis that the slope coefficient

has a true value of 1 by using the robust standard error for bi. We find that ¢ = (1.1744
- 1)/0.0931 = 1.8733. This number is smaller than the critical value of 1.97 needed to
reject the null hypothesis that the slope equals 1 (remember, this is a two-tailed test).
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So, we can no longer reject the null hypothesis that the slope equals 1 because of the
greater uncertainty (standard error) around the coefficient estimate. Thus, in this
example, correcting for the statistically significant conditional heteroskedasticity had
an effect on the result of the hypothesis test about the slope of the predicted inflation
coefficient. Exhibit 10 concerning tests of the CAPM is a similar case. In other cases,
however, our statistical decision might not change based on using robust standard
errors in the ¢-test.

VIOLATIONS OF REGRESSION ASSUMPTIONS: SERIAL
CORRELATION

k explain the types of heteroskedasticity and how heteroskedasticity and serial
correlation affect statistical inference;

A more common—and potentially more serious—problem than violation of the
homoskedasticity assumption is the violation of the assumption that regression errors
are uncorrelated across observations. Trying to explain a particular financial relation
over a number of periods is risky because errors in financial regression models are
often correlated through time.

When regression errors are correlated across observations, we say that they are
serially correlated (or autocorrelated). Serial correlation most typically arises in
time-series regressions. In this section, we discuss three aspects of serial correlation:
its effect on statistical inference, tests for it, and methods to correct for it.

5.1 The Consequences of Serial Correlation

As with heteroskedasticity, the principal problem caused by serial correlation in a
linear regression is an incorrect estimate of the regression coefficient standard errors
computed by statistical software packages. As long as none of the independent vari-
ables is a lagged value of the dependent variable (a value of the dependent variable
from a previous period), then the estimated parameters themselves will be consistent
and need not be adjusted for the effects of serial correlation. If, however, one of the
independent variables is a lagged value of the dependent variable—for example, if
the T-bill return from the previous month was an independent variable in the Fisher
effect regression—then serial correlation in the error term will cause all the parameter
estimates from linear regression to be inconsistent and they will not be valid estimates
of the true parameters (we will address this later).

In none of the regressions examined so far is an independent variable a lagged value
of the dependent variable. Thus, in these regressions any effect of serial correlation
appears in the regression coefficient standard errors. We will examine here the positive
serial correlation case because that case is so common. Positive serial correlation is
serial correlation in which a positive error for one observation increases the chance
of a positive error for another observation. Positive serial correlation also means
that a negative error for one observation increases the chance of a negative error for
another observation. In contrast, with negative serial correlation, a positive error
for one observation increases the chance of a negative error for another observation,
and a negative error for one observation increases the chance of a positive error for
another. In examining positive serial correlation, we make the common assumption that
serial correlation takes the form of first-order serial correlation, or serial correlation
between adjacent observations. In a time-series context, that assumption means the
sign of the error term tends to persist from one period to the next.
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Although positive serial correlation does not affect the consistency of the esti-
mated regression coefficients, it does affect our ability to conduct valid statistical tests.
First, the F-statistic to test for overall significance of the regression may be inflated
because the mean squared error (MSE) will tend to underestimate the population
error variance. Second, positive serial correlation typically causes the ordinary least
squares (OLS) standard errors for the regression coeflicients to underestimate the true
standard errors. Consequently, if positive serial correlation is present in the regres-
sion, standard linear regression analysis will typically lead us to compute artificially
small standard errors for the regression coefficient. These small standard errors will
cause the estimated t-statistics to be inflated, suggesting significance where perhaps
there is none. The inflated ¢-statistics may, in turn, lead us to incorrectly reject null
hypotheses about population values of the parameters of the regression model more
often than we would if the standard errors were correctly estimated. This Type I error
could lead to improper investment recommendations.

5.2 Testing for Serial Correlation

We can choose from a variety of tests for serial correlation in a regression model (see
Greene 2018), but the most common is based on a statistic developed by Durbin and
Watson (1951); in fact, many statistical software packages compute the Durbin—Watson
statistic automatically. The equation for the Durbin—Watson test statistic is

7 2
Z(éz - §z—1)

DW=12=2__ 9)

where £ is the regression residual for period £. We can rewrite this equation as

1
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If the variance of the error is constant through time, then we expect Var (ét) = 8§

A2
for all £, where we use O¢ to represent the estimate of the constant error variance. If

the errors are also not serially correlated, then we expect Cov (ﬁt,ét_l) = 0. In that

case, the Durbin—Watson statistic is approximately equal to

~2 ~2
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This equation tells us that if the errors are homoskedastic and not serially cor-
related, then the Durbin—Watson statistic will be close to 2. Therefore, we can test
the null hypothesis that the errors are not serially correlated by testing whether
the Durbin—Watson statistic differs significantly from 2.If the sample is very large,
the Durbin—Watson statistic will be approximately equal to 2(1 - r), where 7 is the
sample correlation between the regression residuals from one period and those from
the previous period. This approximation is useful because it shows the value of the
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Durbin—Watson statistic for differing levels of serial correlation. The Durbin—Watson
statistic can take on values ranging from O (in the case of serial correlation of +1) to
4 (in the case of serial correlation of —1):

B If the regression has no serial correlation, then the regression residuals will be
uncorrelated through time and the value of the Durbin—Watson statistic will be
equal to 2(1 - 0) = 2.

B If the regression residuals are positively serially correlated, then the Durbin—
Watson statistic will be less than 2. For example, if the serial correlation of the
errors is 1, then the value of the Durbin—Watson statistic will be 0.

B [f the regression residuals are negatively serially correlated, then the Durbin—
Watson statistic will be greater than 2. For example, if the serial correlation of
the errors is —1, then the value of the Durbin—Watson statistic will be 4.

Returning to Exhibit 11, which explored the Fisher effect, the Durbin—Watson sta-
tistic for the OLS regression is 0.2980. This result means that the regression residuals
are positively serially correlated:

DW = 0.2980
~2(1-r)
r~1-DW/2
=1-0.2980/2

= 0.8510

This outcome raises the concern that OLS standard errors may be incorrect because
of positive serial correlation. Does the observed Durbin—Watson statistic (0.2980)
provide enough evidence to warrant rejecting the null hypothesis of no positive serial
correlation?

We should reject the null hypothesis of no serial correlation if the Durbin—Watson
statistic is below a critical value, d*. Unfortunately, Durbin and Watson also showed
that for a given sample we cannot know the true critical value, d*. Instead, we can
determine only that d* lies either between two values, d,, (an upper value) and d; (a
lower value), or outside those values. Exhibit 13 depicts the upper and lower values
of d* as they relate to the results of the Durbin—Watson statistic.

Exhibit 13 Value of the Durbin-Watson Statistic

| Inconclusive

‘ dI du
Reject hypothesis of Fail to reject
no serial correlation null hypothesis

From Exhibit 13 we learn the following:

B When the Durbin—Watson (DW) statistic is less than dj, we reject the null
hypothesis of no positive serial correlation.

When the DW statistic falls between d; and d,, the test results are inconclusive.

B When the DW statistic is greater than d,,, we fail to reject the null hypothe-
sis of no positive serial correlation (sometimes serial correlation in a regres-
sion model is negative rather than positive). For a null hypothesis of no serial
correlation, the null hypothesis is rejected if DW < d, indicating significant pos-
itive serial correlation) or if DW > 4 - ) indicating significant negative serial
correlation).
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Returning to Exhibit 11, the Fisher effect regression has one independent variable
and 181 observations. The Durbin—Watson statistic is 0.2980. We can reject the null
hypothesis of no correlation in favor of the alternative hypothesis of positive serial
correlation at the 0.05 level because the Durbin—Watson statistic is far below d, for
k =1 and n = 100 (1.65). The level of d; would be even higher for a sample of 181
observations. This finding of significant positive serial correlation suggests that the
OLS standard errors in this regression probably significantly underestimate the true
standard errors.

5.3 Correcting for Serial Correlation

We have two alternative remedial steps when a regression has significant serial cor-
relation. First, we can adjust the coefficient standard errors for the linear regression
parameter estimates to account for the serial correlation. Second, we can modify the
regression equation itself to eliminate the serial correlation. We recommend using
the first method for dealing with serial correlation; the second method may result in
inconsistent parameter estimates unless implemented with extreme care.

Two of the most prevalent methods for adjusting standard errors were developed
by Hansen (1982) and Newey and West (1987). These methods are standard features
in many statistical software packages and the correction is known by various names,
including serial-correlation consistent standard errors, serial correlation and heteroske-
dasticity adjusted standard errors, and robust standard errors. An additional advantage
of these methods is that they simultaneously correct for conditional heteroskedasticity.

Exhibit 14 shows the results of correcting the standard errors from Exhibit 11 for
serial correlation and heteroskedasticity using the Newey—West method. Note that
the coefficients for both the intercept and the slope are the same as in the original
regression. The robust standard errors are now much larger, however—more than
twice the OLS standard errors in Exhibit 11. Because of the severe serial correlation in
the regression error, OLS greatly underestimates the uncertainty about the estimated
parameters in the regression.

Note also that the serial correlation has not been eliminated, but the standard
error has been corrected to account for the serial correlation.

Exhibit 14 Results from Regressing T-Bill Returns on Predicted Inflation

(Standard Errors Corrected for Conditional Heteroskedasticity
and Serial Correlation)

Coefficient Standard Error t-Statistic
Intercept 0.0116 0.0067 1.7313
Inflation prediction 1.1744 0.1751 6.7070
Residual standard error 0.0233
Multiple R? 0.5708
Observations 181

Source: Federal Reserve Bank of Philadelphia, US Department of Commerce.
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Now suppose we want to test our original null hypothesis (the Fisher effect) that
the coefficient on the predicted inflation term equals 1 (H: b; = 1) against the alter-
native that the coefficient on the inflation term is not equal to 1 (H,: by = 1). With
the corrected standard errors, the value of the test statistic for this null hypothesis is

by—b _ 11744 -1

53, 0.1751

=0.996

The critical values for both the 0.05 and 0.01 significance level are much larger than
0.996 (the t-test statistic), so we cannot reject the null hypothesis. This conclusion is the
same as that reached in Exhibit 10, where the correction was only for heteroskedasticity.

This shows that for some hypotheses, serial correlation and conditional heteroske-
dasticity could have a big effect on whether we accept or reject those hypotheses. In
addition, serial correlation can also affect forecast accuracy.

VIOLATIONS OF REGRESSION ASSUMPTIONS:
MULTICOLLINEARITY

l. describe multicollinearity, and explain its causes and effects in regression
analysis;

The second assumption of the multiple linear regression model is that no exact linear
relationship exists between two or more of the independent variables. When one of the
independent variables is an exact linear combination of other independent variables,
it becomes mechanically impossible to estimate the regression. Suppose we tried to
explain a company’s credit ratings with a regression that included net sales, cost of
goods sold, and gross profit as independent variables. Because Gross profit = Net
sales — Cost of goods sold, by definition there is an exact linear relationship between
these variables. This type of blunder is relatively obvious (and easy to avoid). The
problem just described, known as perfect collinearity, is much less of a practical con-
cern than multicollinearity. Multicollinearity occurs when two or more independent
variables (or combinations of independent variables) are highly (but not perfectly)
correlated with each other. With multicollinearity we can estimate the regression, but
the interpretation of the regression output becomes problematic. Multicollinearity is
a serious practical concern because approximate linear relationships among financial
variables are common.

6.1 The Consequences of Multicollinearity

Although the presence of multicollinearity does not affect the consistency of the OLS
estimates of the regression coefficients, the estimates become extremely imprecise and
unreliable. Furthermore, it becomes practically impossible to distinguish the individual
impacts of the independent variables on the dependent variable. These consequences
are reflected in inflated OLS standard errors for the regression coefficients. With
inflated standard errors, t-tests on the coefficients have little power (ability to reject
the null hypothesis).

6.2 Detecting Multicollinearity

In contrast to the cases of heteroskedasticity and serial correlation, we shall not provide
a formal statistical test for multicollinearity. In practice, multicollinearity is often a
matter of degree rather than of absence or presence.
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The analyst should be aware that using the magnitude of pairwise correlations
among the independent variables to assess multicollinearity, as has occasionally
been suggested, is generally inadequate. Although very high pairwise correlations
among independent variables can indicate multicollinearity, it is not necessary for
such pairwise correlations to be high for there to be a problem of multicollinearity.
Stated another way, high pairwise correlations among the independent variables are
not a necessary condition for multicollinearity, and low pairwise correlations do not
mean that multicollinearity is not a problem. Even if pairs of independent variables
have low correlation, there may be linear combinations of the independent variables
that are very highly correlated, creating a multicollinearity problem. The only case
in which correlation between independent variables may be a reasonable indicator
of multicollinearity occurs in a regression with exactly two independent variables.

The classic symptom of multicollinearity is a high R? (and significant F-statistic),
even though the ¢-statistics on the estimated slope coefficients are not significant. The
insignificant ¢-statistics reflect inflated standard errors. Although the coefficients might
be estimated with great imprecision, as reflected in low ¢-statistics, the independent
variables as a group may do a good job of explaining the dependent variable. A high
R? would reflect this effectiveness. Exhibit 15 illustrates this diagnostic.

Exhibit 15 Multicollinearity in Explaining Returns to the Fidelity Select

Technology Portfolio

In Exhibit 3 we regressed returns to the Fidelity Select Technology Portfolio
(FSPTX) on returns to the S&P 500 Growth Index and the S&P 500 Value Index
using data from August 2014 through August 2019. The regression results are
reproduced next. The ¢-statistic of 11.88 on the growth index return is greater
than 2, indicating that the coefficient on the growth index differs significantly
from 0 at standard significance levels. The ¢-statistic on the value index return is
-2.93 and is therefore also statistically significant. This result suggests that the
returns to the FSPTX are linked to the returns to the growth index and negatively
associated with the returns to the value index. Note that the coefficient on the
growth index, however, is 1.585. This result implies that returns on the FSPTX
are more volatile than are returns on the growth index.

Results from Regressing the FSPTX Returns on the S&P 500 Growth and Value
Indexes

Coefficient Standard Error t-Statistic

Intercept 0.0011 0.0025 0.4406
S&P 500 Growth Index 1.5850 0.1334 11.8843
S&P 500 Value Index -0.3902 0.1332 -2.93
ANOVA df SS MsSS F Significance F
Regression 2 0.1198 0.0599 178 0.000
Residual 57 0.0192 0.0003

Total 59 0.1390

Residual standard error 0.0183

(continued)
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Exhibit 15 (Continued)

ANOVA df SS MSS F Significance F
Multiple R? 0.862
Observations 60

Source: Finance.yahoo.com.

Note also that this regression explains a significant amount of the variation
in the returns to the FSPTX. Specifically, the R? from this regression is 0.8627.
Thus, approximately 86% of the variation in the returns to the FSPTX is explained
by returns to the S&P 500 Growth and S&P 500 Value Indexes.

Now suppose we run another linear regression that adds returns to the S&P
500 itself to the returns to the S&P 500 Growth and S&P 500 Value Indexes.
The S&P 500 includes the component stocks of these two style indexes, so we
are introducing a severe multicollinearity problem.

The regression results are shown next. Note that the R? in this regression has
changed almost imperceptibly from the R? in the previous regression (increasing
from 0.8620 to 0.8624), but now the standard errors of the coefficients of the
independent variables are much larger. Adding the return to the S&P 500 to the
previous regression does not explain any more of the variance in the returns to
the FSPTX than the previous regression did, but now none of the coefficients
is statistically significant. This is the classic case of multicollinearity.

Results from Regressing the FSPTX Returns on Returns to the S&P 500
Growth and S&P 500 Value Indexes and the S&P 500 Index

Coefficient Standard Error t-Statistic

Intercept 0.0008 0.0025 0.4047
S&P 500 Growth Index -0.1873 4.1890 -0.0447
S&P 500 Value Index -1.8717 3.7387 -0.5274
S&P 500 Index 3.3522 7.9194 -0.4233
ANOVA df SS MsSS F Significance F
Regression 3 0.1198 0.0399 117.02 4.26E-24.
Residual 56 0.0191 0.0003

Total 59 0.1389

Residual standard error 0.0185

Multiple R? 0.8624

Observations 60

Source: finance.yahoo.com.

Multicollinearity may be a problem even when we do not observe the classic symp-
tom of insignificant ¢-statistics but a highly significant F-test. Advanced textbooks
provide further tools to help diagnose multicollinearity (Greene 2018).
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6.3 Correcting for Multicollinearity

The most direct solution to multicollinearity is excluding one or more of the regression
variables. In the previous example, we can see that the S&P 500 total returns should
not be included if both the S&P 500 Growth and S&P 500 Value Indexes are included
because the returns to the entire S&P 500 Index are a weighted average of the return to
growth stocks and value stocks. In many cases, however, no easy solution is available
to the problem of multicollinearity, and you will need to experiment with including or
excluding different independent variables to determine the source of multicollinearity.

6.4 Heteroskedasticity, Serial Correlation, Multicollinearity:
Summarizing the Issues

We have discussed some of the problems that heteroskedasticity, serial correlation,
and multicollinearity may cause in interpreting regression results. These violations of
regression assumptions, we have noted, all lead to problems in making valid inferences.
The analyst should check that model assumptions are fulfilled before interpreting
statistical tests.

Exhibit 16 gives a summary of these problems, the effect they have on the linear
regression results (an analyst can see these effects using regression software), and the
solutions to these problems.

Exhibit 16 Problems in Linear Regression and Their Solutions

Problem Effect Solution
Heteroskedasticity =~ Incorrect standard errors Use robust standard errors
(corrected for conditional
heteroskedasticity)
Serial correlation Incorrect standard errors Use robust standard
(additional problems if a errors (corrected for serial

lagged value of the dependent correlation)
variable is used as an inde-
pendent variable)
Multicollinearity High R? and low t-statistics Remove one or more inde-

pendent variables; often no
solution based in theory

MODEL SPECIFICATION ERRORS

m describe how model misspecification affects the results of a regression analysis,
and describe how to avoid common forms of misspecification;

i evaluate how well a regression model explains the dependent variable by ana-
lyzing the output of the regression equation and an ANOVA table;

o evaluate and interpret a multiple regression model and its results.

Until now, we have assumed that whatever regression model we estimate is correctly
specified. Model specification refers to the set of variables included in the regression
and the regression equation’s functional form. In the following, we first give some
broad guidelines for correctly specifying a regression. Then, we turn to three types of
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model misspecification: misspecified functional form, regressors that are correlated
with the error term, and additional time-series misspecification. Each of these types
of misspecification invalidates statistical inference using OLS; most of these misspec-
ifications will cause the estimated regression coefficients to be inconsistent.

7.1 Principles of Model Specification

In discussing the principles of model specification, we need to acknowledge that there
are competing philosophies about how to approach model specification. Furthermore,
our purpose for using regression analysis may affect the specification we choose. The
following principles have fairly broad application, however.

The model should be grounded in cogent economic reasoning. We should be
able to supply the economic reasoning behind the choice of variables, and the
reasoning should make sense. When this condition is fulfilled, we increase the
chance that the model will have predictive value with new data. This approach
contrasts to the variable-selection process known as data mining. With data
mining, the investigator essentially develops a model that maximally exploits
the characteristics of a specific dataset. “Data mining” is used in the different
sense of discovering patterns in large datasets.

The functional form chosen for the variables in the regression should be appro-
priate given the nature of the variables. As one illustration, consider studying
mutual fund market timing based on fund and market returns alone. One
might reason that for a successful timer, a plot of mutual fund returns against
market returns would show curvature because a successful timer would tend

to increase (decrease) beta when market returns were high (low). The model
specification should reflect the expected nonlinear relationship. In other cases,
we may transform the data such that a regression assumption is better satisfied.

The model should be parsimonious. In this context, “parsimonious” means
accomplishing a lot with a little. We should expect each variable included in a
regression to play an essential role.

The model should be examined for violations of regression assumptions before
being accepted. We have already discussed detecting the presence of heteroske-
dasticity, serial correlation, and multicollinearity. As a result of such diagnos-
tics, we may conclude that we need to revise the set of included variables and/
or their functional form.

The model should be tested and be found useful out of sample before being
accepted. The term “out of sample” refers to observations outside the dataset on
which the model was estimated. A plausible model may not perform well out of
sample because economic relationships have changed since the sample period.
That possibility is itself useful to know. A second explanation, however, may be
that relationships have not changed but that the model explains only a specific
dataset.

Having given some broad guidance on model specification, we turn to a discussion

of specific model specification errors. Understanding these errors will help an analyst
develop better models and be a more informed consumer of investment research.
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7.2 Misspecified Functional Form

Whenever we estimate a regression, we must assume that the regression has the
correct functional form. This assumption can fail in several ways:

B Omitted variable(s). One or more important variables could be omitted from
regression.

B Inappropriate variable scaling. One or more of the regression variables may
need to be transformed (for example, by taking the natural logarithm of the
variable) before estimating the regression.

B Inappropriate data pooling. The regression model pools data from different
samples that should not be pooled.

First, consider the effects of omitting an important independent variable from a
regression (omitted variable bias). If the true regression model was

)/i = bo + lell- + b2X2l + €l', (10)
but we estimate the model
Yi = ﬂo + alXIi + Si’

then our regression model would be misspecified (note the different notation when
X,; is omitted, because the intercept term and slope coefficient on X;; will generally
not be the same as when X, is included). What is wrong with the model?

If the omitted variable (X,) is correlated with the remaining variable (X;), then
the error term in the model will be correlated with (X;) and the estimated values of
the regression coefficients 4, and a; would be biased and inconsistent. In addition,
the estimates of the standard errors of those coefficients will also be inconsistent.
So, we can use neither the coefficient estimates nor the estimated standard errors to
make statistical tests.

Exhibit 17 Omitted Variable Bias and the Bid-Ask Spread

In this example, we extend our examination of the bid—ask spread to show the
effect of omitting an important variable from a regression. In Example 1, we
showed that the natural logarithm of the ratio [(Bid—ask spread)/Price] was
significantly related to both the natural logarithm of the number of market
makers and the natural logarithm of the market capitalization of the company.
We repeat the regression results from Exhibit 1 next.

Results from Regressing In(Bid—Ask Spread/Price) on In(Number of Market

Makers) and In(Market Capitalization) (repeated)

Coefficients Standard Error t-Statistic
Intercept 1.5949 0.2275 7.0105
In(Number of NASDAQ market -1.5186 0.0808 -18.7946
makers)
In(Company’s market -0.3790 0.0151 -25.0993
capitalization)
ANOVA df SS MSS F Significance F
Regression 2 3,728.1334 1,864.0667 2,216.7505 0.00
Residual 2,584  2,172.8870 0.8409

(continued)
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Exhibit 17 (Continued)

ANOVA df SS MSS F Significance F
Total 2,586  5,901.0204

Residual standard error 0.9170

Multiple R? 0.6318

Observations 2,587

Source: Center for Research in Security Prices, University of Chicago.

If we did not include the natural log of market capitalization as an indepen-
dent variable in the regression and regressed the natural logarithm of the ratio
[(Bid—ask spread)/Price] only on the natural logarithm of the number of market
makers for the stock, the results would be as shown next.

Results from Regressing In(Bid—-Ask Spread/Price) on In(Number of Market

Makers)

Coefficients Standard Error  t-Statistic

Intercept 5.0707 0.2009 25.2399
In(Number of NASDAQ market -3.1027 0.0561 -55.3066
makers)

ANOVA df SS MSS F Significance F
Regression 1 3,200.3918 3,200.3918 3,063.3655 0.00
Residual 2,585 2,700.6287 1.0447

Total 2,586 5,901.0204

Residual standard error 1.0221

Multiple R? 0.5423

Observations 2,587

Source: Center for Research in Security Prices, University of Chicago.

Note that the coefficient on In(Number of NASDAQ market makers) changed
from -1.5186 in the original (correctly specified) regression to —3.1027 in the
misspecified regression. Also, the intercept changed from 1.5949 in the correctly
specified regression to 5.0707 in the misspecified regression. These results illus-
trate that omitting an independent variable that should be in the regression can
cause the remaining regression coefficients to be inconsistent.

A second common cause of misspecification in regression models is the use of
the wrong form of the data in a regression when a transformed version of the data is
appropriate. For example, sometimes analysts fail to account for curvature or non-
linearity in the relationship between the dependent variable and one or more of the
independent variables, instead specifying a linear relation among variables. When we
are specifying a regression model, we should consider whether economic theory sug-
gests a nonlinear relation. We can often confirm the nonlinearity by plotting the data,
as we will illustrate in Example 2. If the relationship between the variables becomes
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linear when one or more of the variables is represented as a proportional change in
the variable, we may be able to correct the misspecification by taking the natural
logarithm of the variable(s) we want to represent as a proportional change. Other
times, analysts use unscaled data in regressions when scaled data (such as dividing
net income or cash flow by sales) are more appropriate. In Exhibit 1, we scaled the
bid—ask spread by stock price because what a given bid—ask spread means in terms
of transactions costs for a given size investment depends on the price of the stock. If
we had not scaled the bid—ask spread, the regression would have been misspecified.

EXAMPLE 2

Nonlinearity and the Bid-Ask Spread

In Exhibit 1, we showed that the natural logarithm of the ratio [(Bid—ask spread)/
Price] was significantly related to both the natural logarithm of the number of
market makers and the natural logarithm of the company’s market capitalization.
But why did we take the natural logarithm of each of the variables in the regres-
sion? We began a discussion of this question in Exhibit 1, which we continue now.

What does theory suggest about the nature of the relationship between the
ratio (Bid—ask spread)/Price, or the percentage bid—ask spread, and its deter-
minants (the independent variables)? Stoll (1978) builds a theoretical model of
the determinants of percentage bid—ask spread in a dealer market. In his model,
the determinants enter multiplicatively in a particular fashion. In terms of the
independent variables introduced in Exhibit 1, the functional form assumed is

[(Bid—ask spread)/ Pricel, = ¢(Number of market makers)f1

x (Market capitalization)[,’2
1

where c is a constant. The relationship of the percentage bid—ask spread with the
number of market makers and market capitalization is not linear in the original
variables (the form of the model is analogous to the Cobb—Douglas production
function in economics). If we take the natural log of both sides of this model,
however, we have a log-log regression that is linear in the transformed variables:

)/l' = bo Tr bIX].l + b2le Tr 8i’
where

Y; = the natural logarithm of the ratio (Bid—ask spread)/Price for stock i
by = a constant that equals In(c)
X;; = the natural logarithm of the number of market makers for stock i
X,; = the natural logarithm of the market capitalization of company i
g; = the error term (note: added to the model)

As mentioned in Exhibit 1, a slope coefficient in the log-log model is interpreted
as an elasticity—precisely, the partial elasticity of the dependent variable with
respect to the independent variable (“partial” means holding the other indepen-
dent variables constant).

We can plot the data to assess whether the variables are linearly related after
the logarithmic transformation. For example, in Exhibit 18 we show a scatterplot
of the natural logarithm of the number of market makers for a stock (on the X
axis) and the natural logarithm of (Bid—ask spread)/Price (on the Y axis) as well
as a regression line showing the linear relation between the two transformed
variables. The relation between the two transformed variables is clearly linear.
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Exhibit 18 Linear Regression When Two Variables Have a Linear

Relation

Ln ((Bid-Ask)/Price)
0

-1k

-2+

-3 +

0 0.5 1.0 1.5 2.0 2.5 3 35 4.0 4.5 5.0
Ln (# of Market Makers)

Exhibit 19 Linear Regression When Two Variables Have a Nonlinear
Relation

(Bid—Ask)/Price
40.0

20.0 -

7005 1 1 1 1 1 1 1 1 1
0.0 0.5 1.0 1.5 2.0 2.5 3 3.5 4.0 4.5 5.0

Ln (# of Market Makers)

If we do not take log of the ratio (Bid—ask spread)/Price, the plot is not linear.
Exhibit 19 shows a plot of the natural logarithm of the number of market mak-
ers for a stock (on the X axis) and the ratio (Bid—ask spread)/Price expressed as
a percentage (on the Y axis) as well as a regression line that attempts to show
a linear relation between the two variables. We see that the relation between
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the two variables is very nonlinear. Note that the relation between (Bid—ask
spread)/Price and In(Market cap) is also nonlinear, while the relation between
In(Bid—ask spread)/Price and In(Market cap) is linear; we omit these scatterplots
to save space. Consequently, we should not estimate a regression with (Bid—ask
spread)/Price as the dependent variable. Consideration of the need to ensure that
predicted bid—ask spreads are positive would also lead us to not use (Bid—ask
spread)/Price as the dependent variable. If we use the non-transformed ratio
(Bid—ask spread)/Price as the dependent variable, the estimated model could
predict negative values of the bid—ask spread. This result would be nonsensical;
in reality, no bid—ask spread is negative (it is hard to motivate traders to simulta-
neously buy high and sell low), so a model that predicts negative bid—ask spreads
is certainly misspecified. In our data sample, the bid—ask spread for each of the
2,587 companies is positive. We illustrate the problem of negative values of the
predicted bid—ask spreads now.

Exhibit 20 shows the results of a regression with (Bid—ask spread)/ Price
as the dependent variable and the natural logarithm of the number of market
makers and the natural logarithm of the company’s market capitalization as the
independent variables.

Exhibit 20 Results from Regressing Bid-Ask Spread/Price on

In(Number of Market Makers) and In(Market Cap)

Coefficients Standard Error  t-Statistic

Intercept 0.0674 0.0035 19.2571
In(Number of NASDAQ market -0.0142 0.0012 -11.8333
makers)

In(Company’s market cap) -0.0016 0.0002 -8.0000
ANOVA df SS MSS F Significance F
Regression 2 0.1539 0.0770 392.3338 0.00
Residual 2,584  0.5068 0.0002

Total 2,586  0.6607

Residual standard error 0.0140

Multiple R? 0.2329

Observations 2,587

Source: Center for Research in Security Prices, University of Chicago.

1 Suppose that for a particular NASDAQ-listed stock, the number of
market makers is 50 and the market capitalization is $6 billion. What is
the predicted ratio of bid—ask spread to price for this stock based on the
model just shown?
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Solution to 1:

The natural log of the number of market makers equals In 50 = 3.9120, and the
natural log of the stock’s market capitalization (in millions) is In 6,000 = 8.6995.
In this case, the predicted ratio of bid—ask spread to price is 0.0674 + (-0.0142 x
3.9120) + (-0.0016 x 8.6995) = —0.0021. Therefore, the model predicts that the
ratio of bid—ask spread to stock price is —0.0021 or —0.21% of the stock price.

2 Does the predicted bid—ask spread for this stock make sense? If not, how
could this problem be avoided?

Solution to 2:

The predicted bid—ask spread is negative, which does not make economic sense.
This problem could be avoided by using log of (Bid—ask spread)/Price as the
dependent variable. Whether the natural log of the percentage bid—ask spread,
Y, is positive or negative, the percentage bid—ask spread found as e! is positive
because a positive number raised to any power is positive. The constant e is
positive (e = 2.7183).

Often, analysts must decide whether to scale variables before they compare data across
companies. For example, in financial statement analysis, analysts often compare com-
panies using common size statements. In a common size income statement, all the
line items in a company’s income statement are divided by the company’s revenues.
Common size statements make comparability across companies much easier. An
analyst can use common size statements to quickly compare trends in gross margins
(or other income statement variables) for a group of companies.

Issues of comparability also appear for analysts who want to use regression analysis
to compare the performance of a group of companies. Exhibit 21 illustrates this issue.

Exhibit 21 Scaling and the Relation between Cash Flow from Operations

and Free Cash Flow

Suppose we go back to the year 2001 and want to explain free cash flow to the
firm as a function of cash flow from operations in 2001 for 11 family clothing
stores in the United States with market capitalizations of more than $100 million
as of the end of 2001.

To investigate this issue, the analyst might use free cash flow as the depen-
dent variable and cash flow from operations as the independent variable in
single-independent-variable linear regression. Next, we show the results of that
regression. Note that the ¢-statistic for the slope coefficient for cash flow from
operations is quite high (6.5288), the significance level for the F-statistic for the
regression is very low (0.0001), and the R? is quite high. We might be tempted
to believe that this regression is a success and that for a family clothing store,
if cash flow from operations increased by $1.00, we could confidently predict
that free cash flow to the firm would increase by $0.3579.

Results from Regressing the Free Cash Flow on Cash Flow from Operations for

Family Clothing Stores

Coefficients Standard Error t-Statistic

Intercept 0.7295 27.7302 0.0263
Cash flow from operations 0.3579 0.0548 6.5288
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Exhibit 21 (Continued)

ANOVA df SS MSS F Significance F
Regression 1 245,093.7836  245,093.7836 42.6247 0.0001
Residual 9 51,750.3139 5,750.0349

Total 10 296,844.0975

Residual standard error 75.8290

Multiple R? 0.8257

Observations 11

Source: Compustat.

But is this specification correct? The regression does not account for size dif-
ferences among the companies in the sample.

We can account for size differences by using common size cash flow results
across companies. We scale the variables by dividing cash flow from operations
and free cash flow to the firm by the company’s sales before using regression
analysis. We will use (Free cash flow to the firm/Sales) as the dependent variable
and (Cash flow from operations/Sales) as the independent variable. The results
are shown next. Note that the ¢-statistic for the slope coefficient on (Cash flow
from operations/Sales) is 1.6262, so it is not significant at the 0.05 level. Note
also that the significance level of the F-statistic is 0.1383, so we cannot reject at
the 0.05 level the hypothesis that the regression does not explain variation in
(Free cash flow/Sales) among family clothing stores. Finally, note that the R? in
this regression is much lower than that of the previous regression.

Results from Regressing the Free Cash Flow/Sales on Cash Flow from
Operations/Sales for Family Clothing Stores

Coefficient  Standard Error  t-Statistic

Intercept -0.0121 0.0221 -0.5497
Cash flow from operations/Sales 0.4749 0.2920 1.6262
ANOVA df SS MSS F Significance F
Regression 1 0.0030 0.0030 2.6447 0.1383
Residual 9 0.0102 0.0011

Total 10 0.0131

Residual standard error 0.0336

Multiple R2 0.2271

Observations 11

Source: Compustat.
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Which regression makes more sense? Usually, the scaled regression makes
more sense. We want to know what happens to free cash flow (as a fraction of
sales) if a change occurs in cash flow from operations (as a fraction of sales).
Without scaling, the results of the regression can be based solely on scale differ-
ences across companies rather than on the companies’ underlying economics.

A third common form of misspecification in regression models is pooling data
from different samples that should not be pooled. This type of misspecification can
best be illustrated graphically. Exhibit 22 shows two clusters of data on variables X
and Y with a fitted regression line. The data could represent the relationship between
two financial variables at two different time periods, for example.

Exhibit 22 Plot of Two Series with Changing Means

Series Y
10

Series X

In each cluster of data on X and Y, the correlation between the two variables is
virtually 0. Because the means of both X and Y are different for the two clusters of data
in the combined sample, X and Y are highly correlated. The correlation is spurious
(misleading), however, because it reflects differences in the relationship between X
and Y during two different time periods.

7.3 Time-Series Misspecification (Independent Variables
Correlated with Errors)

In the previous section, we discussed the misspecification that arises when a relevant
independent variable is omitted from a regression. In this section, we discuss prob-
lems that arise from the kinds of variables included in the regression, particularly in a
time-series context. In models that use time-series data to explain the relations among
different variables, it is particularly easy to violate Regression Assumption 3: that the
error term has mean 0, conditioned on the independent variables. If this assumption
is violated, the estimated regression coefficients will be biased and inconsistent.
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Three common problems that create this type of time-series misspecification are:

B including lagged dependent variables as independent variables in regressions
with serially correlated errors;

B including a function of a dependent variable as an independent variable, some-
times as a result of the incorrect dating of variables; and

B independent variables that are measured with error.

The next examples demonstrate these problems.

Suppose that an analyst includes the first lagged value of the dependent variable in
a multiple regression that, as a result, has significant serial correlation in the errors.
For example, the analyst might use the regression equation

Yt = bo + lelt + bZYt—l + St‘ (11)

Because we assume that the error term is serially correlated, by definition the error
term is correlated with the dependent variable. Consequently, the lagged dependent
variable, Y;_;, will be correlated with the error term, violating the assumption that the
independent variables are uncorrelated with the error term. As a result, the estimates
of the regression coefficients will be biased and inconsistent.

Exhibit 23  Fisher Effect with a Lagged Dependent Variable

In our discussion of serial correlation, we concluded from a test using the
Durbin—Watson test that the error term in the Fisher effect equation (Equation 8)
showed positive (first-order) serial correlation, using three-month T-bill returns
as the dependent variable and inflation expectations of professional forecasters
as the independent variable. Observations on the dependent and independent
variables were quarterly. We now modify that regression by including the previ-
ous quarter’s three-month T-bill returns as an additional independent variable.

Results from Regressing T-Bill Returns on Predicted Inflation and Lagged

T-Bill Returns
Coefficient Standard Error t-Statistic

Intercept -0.0005 0.0014 -0.3571
Inflation prediction 0.1843 0.0455 4.0505
Lagged T-bill return 0.8796 0.0295 29.8169
Residual standard error 0.0095

Multiple R? 0.9285

Observations 181

Source: Federal Reserve Bank of Philadelphia, US Department of Commerce.

At first glance, these regression results look very interesting: The coeffi-
cient on the lagged T-bill return appears to be highly significant. But on closer
consideration, we must ignore these regression results because the regression
is fundamentally misspecified. As long as the error term is serially correlated,
including lagged T-bill returns as an independent variable in the regression will
cause all the coefficient estimates to be biased and inconsistent. Therefore, this
regression is not usable for either testing a hypothesis or for forecasting.
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A second common time-series misspecification in investment analysis is to forecast
the past. What does that mean? If we forecast the future (say we predict at time ¢ the
value of variable Y in period ¢ + 1), we must base our predictions on information we
knew at time ¢. We could use a regression to make that forecast using the equation

Yi=bo+ b1 Xqp + g1 (12)

In this equation, we predict the value of Yin time ¢ + 1 using the value of X in time ¢.
The error term, g, , is unknown at time ¢ and thus should be uncorrelated with X;,.

Unfortunately, analysts sometimes use regressions that try to forecast the value of
a dependent variable at time ¢ + 1 based on independent variable(s) that are functions
of the value of the dependent variable at time ¢ + 1. In such a model, the independent
variable(s) would be correlated with the error term, so the equation would be mis-
specified. As an example, an analyst may try to explain the cross-sectional returns for
a group of companies during a particular year using the market-to-book ratio and the
market capitalization for those companies at the end of the year. (“Market-to-book ratio”
is the ratio of price per share divided by book value per share.) If the analyst believes
that such a regression predicts whether companies with high market-to-book ratios
or high market capitalizations will have high returns, the analyst is mistaken. This is
because for any given period, the higher the return during the period, the higher the
market capitalization and the market-to-book period will be at the end of the period.
In this case, if all the cross-sectional data come from period ¢ + 1, a high value of the
dependent variable (returns) actually causes a high value of the independent vari-
ables (market capitalization and the market-to-book ratio) rather than the other way
around. In this type of misspecification, the regression model effectively includes the
dependent variable on both the right-and left-hand sides of the regression equation.

The third common time-series misspecification arises when an independent
variable is measured with error. Suppose a financial theory tells us that a particular
variable X, such as expected inflation, should be included in the regression model.
But we cannot directly observe X; instead, we can observe actual inflation, Z, = X, +
u;, where we assume u, is an error term that is uncorrelated with X;. Even in this best
of circumstances, using Z, in the regression instead of X, will cause the regression
coefficient estimates to be biased and inconsistent. To see why, assume we want to
estimate the regression

Yt = bo + bIXt + St’
but we substitute Z, for X;. Then we would estimate
Yy=by+ b1 Z;+ (-bju; + &),

But Z, = X, + u, Z, is correlated with the error term (-b;u, + ¢,). Therefore, our
estimated model violates the assumption that the error term is uncorrelated with
the independent variable. Consequently, the estimated regression coefficients will be
biased and inconsistent.

Exhibit 24 The Fisher Effect with Measurement Error

Recall from Exhibit 11 on the Fisher effect that based on our initial analysis
in which we did not correct for heteroskedasticity and serial correlation, we
rejected the hypothesis that three-month T-bill returns moved one-for-one
with expected inflation.
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Exhibit 24 (Continued)

Results from Regressing T-Bill Returns on Predicted Inflation (repeated)

Coefficient Standard Error t-Statistic
Intercept 0.0116 0.0033 3.5152
Inflation prediction 1.1744 0.0761 15.4323
Residual standard error 0.0223
Multiple R? 0.5708
Observations 181
Durbin—Watson statistic 0.2980

Source: Federal Reserve Bank of Philadelphia, US Department of Commerce.

What if we used actual inflation instead of expected inflation as the inde-
pendent variable? Note first that

="+,
where

1t = actual rate of inflation

].[e

expected rate of inflation

v = the difference between actual and expected inflation

Because actual inflation measures expected inflation with error, the estimators
of the regression coefficients using T-bill yields as the dependent variable and
actual inflation as the independent variable will not be consistent. (Note that a
consistent estimator is one for which the probability of estimates close to the
value of the population parameter increases as sample size increases.)

The following regression output shows the results of using actual inflation
as the independent variable. The estimates in this exhibit are quite different
from those presented in the previous exhibit. Note that the slope coefficient on
actual inflation is much lower than the slope coefficient on predicted inflation
in the previous regression. This result is an illustration of a general proposition:
In a single-independent-variable regression, if we select a version of that inde-
pendent variable that is measured with error, the estimated slope coefficient
on that variable will be biased toward 0. Note that this proposition does not
generalize to regressions with more than one independent variable. Of course,
we ignore serially-correlated errors in this example, but because the regression
coefficients are inconsistent (due to measurement error), testing or correcting
for serial correlation is not worthwhile.

Results from Regressing T-Bill Returns on Actual Inflation

Coefficient Standard Error t-Statistic
Intercept 0.0227 0.0034 6.6765
Actual inflation 0.8946 0.0761 11.7556
Residual standard error 0.0267

(continued)
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Coefficient Standard Error t-Statistic
Multiple R? 0.4356
Observations 181

Source: Federal Reserve Bank of Philadelphia, US Department of Commerce.

7.4 Other Types of Time-Series Misspecification

By far the most frequent source of misspecification in linear regressions that use
time series from two or more different variables is nonstationarity. Very roughly,
nonstationarity means that a variable’s properties, such as mean and variance, are
not constant through time. We will postpone our discussion about stationarity to the
later coverage on time-series analysis, but we can list some examples in which we need
to use stationarity tests before we use regression statistical inference.

B Relations among time series with trends (for example, the relation between
consumption and GDP).

B Relations among time series that may be random walks (time series for which
the best predictor of next period’s value is this period’s value). Exchange rates
are often random walks.

The time-series examples in our discussion were carefully chosen such that nonsta-
tionarity was unlikely to be an issue for any of them. But nonstationarity can be a
very severe problem for analyzing the relations among two or more time series in
practice. Analysts must understand these issues before they apply linear regression
to analyzing the relations among time series. Otherwise, they may rely on invalid
statistical inference.

MULTIPLE LINEAR REGRESSION WITH QUALITATIVE
DEPENDENT VARIABLES

n interpret an estimated logistic regression;

i evaluate how well a regression model explains the dependent variable by ana-
lyzing the output of the regression equation and an ANOVA table;

o evaluate and interpret a multiple regression model and its results.

In this section, we explain what qualitative dependent variables are, how the regres-
sion models that feature such variables work, and how the regression results can be
interpreted.

8.1 Models with Qualitative Dependent Variables

Qualitative dependent variables (also called categorical dependent variables) are
outcome variables that describe data that fit into categories. For example, to predict
whether or not a company will go bankrupt, we need to use a qualitative dependent
variable (bankrupt or not) as the dependent variable and use data on the company’s
financial performance (e.g., return on equity, debt-to-equity ratio, or debt rating) as
independent variables. The qualitative dependent variable in this example here is a
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binary variable. This is one of many potential scenarios in which financial analysts need
to be able to explain the outcomes of a qualitative dependent variable that describes
data that belong to two categories. It is also possible to carry out analysis where the
dependent variable can fall into more than two categories. For example, Moody’s Bank
Financial Strength Rating is a qualitative variable that indicates the Moody’s rating or
category—A, B, C, D, or E—of a bank.

In contrast to a linear regression, the dependent variable here is not continuous in
nature but is discrete and in the simple scenario has two categories. Unfortunately, for
estimating such a model, linear regression is not the best statistical method to use. If
we use the qualitative dependent variable Y = {bankrupt (= 1) or not bankrupt (= 0)}
as the dependent variable in a regression with financial variables as the independent
variables, then we are estimating a linear probability model:

li = bo + leli + bzle + b3X3L + SL" (13)

Unfortunately, the predicted value of the dependent variable could be much greater
than 1 or much lower than 0 depending on the estimated coefficients b; and the value of
observed X;s. Of course, these results would be invalid. The probability of bankruptcy
(or of anything, for that matter) cannot be greater than 1.0 or less than 0. Another
issue with the use of linear regression is that it assumes the relationship between
the probability of bankruptcy and each financial variable to be linear throughout the
range of the financial variable. However, we may not expect that. For example, we
may expect that the probability of bankruptcy and debt-to-equity ratio are not linearly
related for very low or high levels of debt-to-equity ratio.

To address these issues associated with linear regression, we should apply a non-
linear transformation to the probability of bankruptcy and relate the transformed
probabilities linearly to the independent variables. There are many possible transfor-
mations, which are closely related except when the probability is quite low or high.

The most commonly used transformation is the logistic transformation. Denote

by “p” the probability that a company goes bankrupt, or more generally, a condition

. The ratio

1-p 1-p
is a ratio of probabilities—the probability that the event of interest happens (p) divided
by the probability that it does not happen (1 - p). This ratio is called the odds of an
event happening. For example, if the probability of a company going bankrupt is 0.75,

is fulfilled or an event happens. The logistic transformation is In

then P
1

is 0.75/(1 - 0.75) = 0.75/0.25 = 3. So, the odds of bankruptcy is 3, which

indicates that the probability of bankruptcy is three times as large as the probability
of the company not going bankrupt. The natural logarithm of the odds of an event
happening is called log odds or logit.

The logistic transformation tends to linearize the relationship between the depen-
dent and independent variables. Instead of a linear regression to estimate the proba-
bility of bankruptcy, we should use logistic regression (logit model) or discriminant
analysis for this kind of estimation.

Logistic regression models are used to estimate the probability of a discrete outcome
given the values of the independent variables used to explain that outcome. Logistic
regression is widely used in machine learning where the objective is classification.
Logistic regression involves using the logistic transformation of the event probability
as the dependent variable:

h{l L ] = by + B X| + by Xy + by X3 + & (14)
-p
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The event probability can be derived from Equation 7 as:

1
P 1+ exp[—(bo + lel + b2X2 + ij:;)]

(15)

Exhibit 25 Linear Probability Models versus Logit Models

A. Linear Probability Model B. Logit Model
Probability (Y=1) Probability (Y=1)
A A
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This nonlinear function takes on the sigmoidal shape shown in Exhibit 25. The
shape is approximately linear except when probability estimates are close to zero or
one. One can see in the exhibit that the nonlinear transformation constrains proba-
bility estimates to be between 0 and 1. We can also see that mathematically. As (b, +
b X, + byX, + b3X3) approaches positive infinity, p approaches 1; and as (b + b1 X +
byX, + b3X3) approaches negative infinity, p approaches 0. Logistic regression assumes
a logistic distribution for the error term; this distribution is similar in shape to the
normal distribution but has heavier tails.

I-p
logistic regression coeflicients are estimated by maximum likelihood method rather
than by least squares. The maximum likelihood method estimates logistic regression
coefficients that make it most likely that the choices in the sample would have occurred
by maximizing the likelihood function for the data. We need to assume the probability
distribution of p to construct the likelihood function. Because p is binary, the Bernoulli
distribution is chosen as its probability distribution. Maximum likelihood method is
an iterative method in which the goal is to maximize log likelihood. Each iteration
results in a higher log likelihood, and the iterating process stops when the difference
in the log likelihood of two successive iterations is quite small.

Because the logit model has the logistic transformation of event probability as the
dependent variable, the interpretation of regression coefficients is not as simple or
intuitive as an ordinary linear regression. In a linear regression, the slope coefficient
of an independent variable is the change in the dependent variable per unit change
in the independent variable, holding all other independent variables constant. In the
logit model, the slope coefficient is the change in the “log odds” that the event happens
per unit change in the independent variable, holding all other independent variables
constant. The exponent of the slope coefficient is the “odds ratio,” which is the ratio
of odds that the event happens with a unit increase in the independent variable to the
odds that the event happens without the increase in the independent variable. The
test of the hypothesis that a logit regression coefficient is significantly different from
zero is similar to the test in an ordinary linear regression.

For a binary p, ln[ j is undefined for both p = 0 and p = 1. In such a case,
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We can evaluate the overall performance of a logit regression by examining the
likelihood ratio chi-square test statistic. Most statistical analysis packages report this
statistic along with the p-value or the probability of obtaining this statistic if there is
no collective effect of the independent variables on the probability of the event. The
p-value helps us evaluate the overall statistical significance of the model.

There is no equivalent measure in logistic regression of the R? statistic of an
ordinary linear regression since logistic regression cannot be fitted using a least
square approach. However, researchers have proposed different measures for logistic
regression to capture the explained variation. These measures are called pseudo-R?
and must be interpreted with caution. The pseudo-R? in logistic regression may be
used to compare different specifications of the same model but is not appropriate for
comparing models based on different datasets.

Qualitative dependent variable models can be useful not only for portfolio man-
agement but also for business management. For example, we might want to predict
whether a client is likely to continue investing in a company or to withdraw assets
from the company. We might also want to explain how particular demographic char-
acteristics might affect the probability that a potential investor will sign on as a new
client or evaluate the effectiveness of a particular direct-mail advertising campaign
based on the demographic characteristics of the target audience. These issues can be
analyzed with a logit model. Logistic regression also plays an important role in Big
Data analysis—for example, in binary classification problems in machine learning and
in neural networks, a topic explained at a later stage.

Exhibit 26 Explaining Financing Choice

Grundy and Verwijmeren (2019) investigate what investment characteristics
determine the financing choice of a company. We can employ a logit model
to address the question. The sample consists of 680 investments financed with
debt or equity by US firms between 1995 and 2017 for which the information on
investments’ characteristics could be obtained. Because the dependent variable
in the regression analysis is a binary variable, a logit model is used.
(continued)
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Exhibit 26 (Continued)

The variables in the logit model are as follows:

Dependent variable:
EQUITY = a binary variable that takes on
a value of 1 if equity is used to
finance an investment and 0 if
debt is used
Independent variables:
TANGIBLE & NON-UNIQUE = a binary variable that takes on a
value of 1 if the investment is in
a tangible asset and the asset is
redeployable
R&D = a binary variable that takes on a
value of 1 if the investment has
R&D-like characteristics
LN(INVESTMENT LIFE) = natural log of the expected life
span of the investment in years
TIME UNTIL PAYOFES = an ordered categorical variable
to capture the time until posi-
tive payoffs from the investment
begin
INVESTMENT LIFE UNCERTAINTY = a binary variable that takes on a
value of 1 if the investment has a
relatively uncertain lifespan
VOLATILITY = a binary variable that takes on
a value of 1 if the investment is
relatively more risky
NEED FOR MONITORING = an ordered categorical vari-
able based on an assessment of
the need for monitoring of the
investment. Takes one of three
values: low, medium, or high.

The authors of the study are examining whether the choice of financing type,
either equity or debt, is related to characteristics of the investment being financed.
One hypothesis is that equity is more likely to be used when the investment being
undertaken has more uncertainty associated with its payoffs. Correspondingly,
debt financing is more likely to be used for investments in tangible or invest-
ments with a greater need for monitoring. Neither of these hypotheses provides
a clear prediction regarding the relationship between investment life and the
financing method used. The following table shows an excerpt from the results
of the logit estimation: Model 1 of Table II of Grundy and Verwijmeren (2019).

Explaining Financing Choice Using a Logit Model

DEPENDENT VARIABLE EQUITY
INDEPENDENT VARIABLES Coefficient Standard Error z-Statistic

TANGIBLE & NON-UNIQUE -1.18 0.29 -4.07
R&D 0.90 0.46 1.96
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Exhibit 26 (Continued)

DEPENDENT VARIABLE EQUITY

INDEPENDENT VARIABLES Coefficient Standard Error z-Statistic
LN(INVESTMENT LIFE) -0.39 0.26 -1.50
TIME UNTIL PAYOFFS 1.49 0.31 4.81
INVESTMENT LIFE 0.13 0.39 0.33
UNCERTAINTY

VOLATILITY 1.29 0.35 3.69
NEED FOR MONITORING -0.98 0.31 -3.16
Pseudo-R? 0.28

Notes: The research paper does not include the z-statistics. However, we can compute them as the
ratio of Coefficient and Standard Error)

As the results in the table indicate, the absolute value of z-statistics for
TANGIBLE & NON-UNIQUE, R&D, TIME UNTIL PAYOFFS, VOLATILITY,
and NEED FOR MONITORING is equal to or higher than the critical value at
the 0.05 level for the z-statistic (1.96). For each of these variables at the 0.05
level of significance, we can reject the null hypothesis that the coefficient equals
0 in favor of the alternative hypothesis that the coefficient is not equal to 0.
The statistically significant coefficients suggest that investments with R&D-like
characteristics, more time until positive payoffs begin, and more volatility are
likely to be equity-financed; investments in tangible and non-unique assets and
investments with greater need for monitoring are more likely to be debt-financed.
Thus, both of the original hypotheses are confirmed with respect to the factors
that determine the choice of financing by a firm.

Neither of the two remaining independent variables is statistically significant
at the 0.05 level in this logit analysis. The absolute values of z-statistics on these
two variables are 1.50 or less, so neither one reaches the critical value of 1.96
needed to reject the null hypothesis (that the associated coefficient is signifi-
cantly different from 0). This result shows that once we take into account the
factors included in the analysis, the other factors—life of the investment and
uncertainty of investment life—have no power to explain the financing choice.

The estimated regression coefficient for an independent variable is the
change in “log odds” that the investment is financed by equity per unit change
in that independent variable, holding all other independent variables constant.
Consider an investment that does not have R&D-like characteristics. So, R&D
takes a value of 0. Suppose that for this investment, after we input the values of
R&D and all the other independent variables in the estimated logit model, we
get —0.6577. So, the log odds for this investment, that is not R&D-like, being
financed by equity equal —0.6577.

The estimated regression coefficient of 0.90 for R&D implies that if this
investment had R&D-like characteristics while other characteristics were held
constant, the log odds for this investment being financed by equity would increase
to —0.6577 + 0.90 = 0.2423. Therefore, the odds of this investment with R&D-like
characteristics being financed by equity would be exp(0.2423) = 1.2742. In other
words, the probability of equity financing is about 1.27 times as large as the
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probability of debt financing: 1L = 1.2742, where p is the probability of the
-p

investment being financed by equity. Solving this equation for p results in 0.5603
or 56.03%. We could have also computed this using Equation 8:
b= 1
1 + exp[—(0.2423)]

= 0.5603.

The exponent of estimated regression coefficient of 0.90 for R&D = exp(0.90)
= 2.4596 (or 1.2742 / 0,5180). This “odds ratio” is the ratio of odds that the
investment is equity financed if it has R&D-like characteristics to the odds that
the investment is equity financed if it does not have R&D-like characteristics.

EXAMPLE 3

Explaining CEO Awards

Use the following information to answer Questions 1-8.

CEOs receive substantial attention in the media. Various publications, such
as Bloomberg Businessweek and Forbes, confer prestigious business awards to a
small number of CEOs. Studies, such as those by Malmendier and Tate (2009),
find that after receiving an award, the performance of the CEO, as measured
by the firm’s stock return and return on assets, declines. They also find that
award-winning CEOs spend more time on activities outside their companies and
underperform relative to non-winning CEOs. Kim Dalton is a financial analyst
interested in determining which CEOs are likely to win an award. Her sample
consists of observations of company characteristics for each month in which an
award is given to CEOs of companies in the S&P 1500 index for a 10-year period
in the 2000s. Dalton employs a logistic regression for her analysis.

The dependent variable in the logistic regression is the logistic transforma-
tion of AWARD, a binary variable that takes on a value of 1 for a CEO winning
an award in the award month and 0 for non-winning CEOs. The independent
variables include BOOK-TO-MARKET (the ratio of the company’s book equity
and market capitalization); LNSIZE (the natural log of the market value of the
company’s equity); RETURN-1TO3, RETURN-4TO6, RETURN-7TO12 (total
return during months 1-3, 4-6, and 7-12 prior to the award month, respec-
tively); LNTENURE (the natural log of the CEO’s tenure with a firm in number
of years); and FEMALE (a dummy variable that takes on a value of 1 if the CEO
is a female).

In this attempt to explain CEO award winning, Dalton is examining whether
CEOs of companies with a low book-to-market ratio, larger companies (as
captured by their market values), and companies with higher returns in recent
months are more likely to win an award. Dalton is also examining if female CEOs
and older CEOs are more likely to receive an award. The following table shows
the results of the logit estimation.
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Explaining CEO Award Winning Using a Logit Model

Standard

Coefficient Error z-Statistic p-Value
Intercept -2.5169 2.2675 -1.11 0.267
BOOK-TO- -0.0618 0.0243 -2.54 0.011
MARKET
LNSIZE 1.3515 0.5201 2.60 0.009
RETURN-1TO3 0.3684 0.5731 0.64 0.520
RETURN-4TO6 0.1734 0.5939 0.29 0.770
RETURN-7TO12 0.9345 0.2250 4.15 0.000
LNTENURE 1.2367 0.5345 2.31 0.021
FEMALE 0.8100 0.3632 2.23 0.026
Likelihood ratio chi-square 323.16
Prob > chi-square 0.000
Pseudo R? 0.226

1 Which of the following is the reason for Kim Dalton choosing a logit
regression for her analysis?

A AWARD is a binary variable.
B FEMALE is a binary variable.
C Two binary variables are in the model.

2 CEOs of which of the following companies are most likely to win an
award?

A Large companies with a high book-to-market ratio that have achieved
high stock returns in months 7—12 before the award month.

B Large companies with a low book-to-market ratio that have achieved
high stock returns in months 4—6 before the award month.

C Large companies with a low book-to-market ratio that have achieved
high stock returns in months 7—12 before the award month.

3 Which of the following types of CEOs are most likely to win an award?
A Females with a long tenure with the company.
B Females with a short tenure with the company.
C Males with a long tenure with the company.

4 Consider a company for which the log odds of its CEO winning an award
based on the estimated regression model work out to —2.3085. The CEO
of the company is a male. What would be the log odds of the CEO win-
ning an award if the CEO was a female, while all the other variables are
held constant?

A -4.0154
B -3.1185
¢ -1.4985

5 What are the odds of the male CEO mentioned in the previous question
winning an award?

A 0.0807
B 0.0994
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C 0.2235

6 Assuming the odds of the male CEO winning an award are 0.0994, what is
the probability of the male CEO winning an award?

A 9.04%
B 9.94%
C 18.27%

7 What is the ratio of odds that a female CEO wins an award to the odds
that a male CEO wins an award?

A 0.0807
B 0.4449
C 2.2479

8 In estimating the logit regression model, Dalton has used returns
expressed in fractions. For example, a return of 10% is entered as 0.10.
Therefore, one unit is 1 or 100%. Consider the company with a male CEO
discussed earlier. For this company, the total return during months 7 to 12
prior to the award month was 11%. We know that the log odds of its CEO
winning an award based on the estimated regression model work out to
-2.3085. What would be the log odds of its CEO winning an award if the
total return during months 7 to 12 prior to the award month was 12%?

A -1.3740
B -2.2991
¢ -23178

Solution to 1

A is correct. AWARD being a binary dependent variable requires that we use a
nonlinear estimation model, such as logit.

B is incorrect because FEMALE is an independent variable. Having a binary
independent variable does not make ordinary linear regression inappropriate
for estimating the model.

C is incorrect. The total number of binary variables in the model is not rel-
evant to the choice of the estimation procedure. What matters in the context of
this question is whether the dependent variable is binary or not.

Solution to 2

C is correct. LNSIZE and RETURN-7TO12 have a significantly positive rela-
tionship, while BOOK-TO-MARKET has a significantly negative relationship
with log odds of a CEO winning an award.

A is incorrect because the book-to-market ratio has a significantly negative
relationship with log odds of a CEO winning an award.

B is incorrect because RETURN-4TO6 has a z-statistic of only 0.29 and is
not statistically significant at the 10% level of significance.

Solution to 3

A is correct. The binary variable FEMALE is positive and statistically signifi-
cant, indicating that female CEOs are more likely to win an award than male
CEOs. LNTENURE is also positive and statistically significant, indicating that
CEOs with a longer tenure with the company are more likely to win an award.
Therefore, female CEOs with longer tenure are most likely to win an award.
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Solution to 4

C is correct. The binary variable FEMALE has a slope coefficient of 0.8100.
Therefore, the log odds for a female CEO instead of a male CEO, while other
variables are held constant, will be —2.3085 + 0.8100 = —1.4985.

Solution to 5

B is correct. The log odds of the CEO winning an award are —2.3085. This means
that the odds of the CEO winning an award are exp(—2.3085) = 0.0994.

Solution to 6

A is correct. Given that the odds (of the CEO winning an award) are 0.0994, we
know that p/(1 - p) = 0.0994, where p is the probability of the CEO winning an
award. Solving this equation for p results in 0.0904 or 9.04%. We could have also
computed this using Equation 15: p = 1/(1 + exp[-(2.3085)]) = 0.0904.

Solution to 7

C is correct. The binary variable FEMALE has a slope coefficient of 0.8100.
Therefore, the odds ratio for a female CEO winning an award to a male CEO
winning an award is exp(0.8100) = 2.2479. In other words, the odds of a female
CEO winning an award are about 2.25 times the odds of a male CEO winning
an award.

Solution to 8

B is correct. The variable RETURN-7TO12 has a slope coefficient of 0.9345.
Therefore, for every 1 unit or 100% increase in this variable, log odds increase
by 0.9345. In the previous question, the variable increases by 0.01 unit or 1%.
Accordingly, log odds would increase by 0.01 x 0.9345 = 0.009345. So, the log
odds would be the —2.3085 + 0.009345 = —-2.2991.

SUMMARY

We have presented the multiple linear regression model and discussed violations of
regression assumptions, model specification and misspecification, and models with
qualitative variables.

B The general form of a multiple linear regression model is Y; = by + b1 Xy; + by X5;

+ o+ DXy + g

B We conduct hypothesis tests concerning the population values of regression
coefficients using ¢-tests of the form

S};j
The lower the p-value reported for a test, the more significant the result.

The assumptions of classical normal multiple linear regression model are as
follows:

1 A linear relation exists between the dependent variable and the independent
variables.

2 The independent variables are not random. Also, no exact linear relation
exists between two or more of the independent variables.
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3 The expected value of the error term, conditioned on the independent vari-
ables, is 0.

4 The variance of the error term is the same for all observations.
5 The error term is uncorrelated across observations.
6 'The error term is normally distributed.

To make a prediction using a multiple linear regression model, we take the
following three steps:

1 Obtain estimates of the regression coefficients.
2 Determine the assumed values of the independent variables.
3 Compute the predicted value of the dependent variable.

When predicting the dependent variable using a linear regression model, we
encounter two types of uncertainty: uncertainty in the regression model itself,
as reflected in the standard error of estimate, and uncertainty about the esti-
mates of the regression coefficients.

The F-test is reported in an ANOVA table. The F-statistic is used to test
whether at least one of the slope coefficients on the independent variables is
significantly different from 0.

RSS/k _ Mean regression sum of squares

- SSE/ [n —(k+ 1)] Mean squared error

Under the null hypothesis that all the slope coefficients are jointly equal to 0,
this test statistic has a distribution of Fy ,,_ (+,1), where the regression has n
observations and k independent variables. The F-test measures the overall sig-
nificance of the regression.

R? is nondecreasing in the number of independent variables, so it is less reliable
as a measure of goodness of fit in a regression with more than one independent
variable than in a one-independent-variable regression.

Analysts often choose to use adjusted R? because it does not necessarily
increase when one adds an independent variable.

Dummy variables in a regression model can help analysts determine whether a
particular qualitative independent variable explains the model’s dependent vari-
able. A dummy variable takes on the value of 0 or 1. If we need to distinguish
among # categories, the regression should include # — 1 dummy variables.

When using intercept dummies, the intercept of the regression measures the
average value of the dependent variable of the omitted category, and the coeffi-
cient on each dummy variable measures the average incremental effect of that
dummy variable on the dependent variable.

When using slope dummies, the coefficient on each dummy measures the aver-
age incremental effect on the slope coefficient of the independent variable.

If a regression shows significant conditional heteroskedasticity, the standard
errors and test statistics computed by regression programs will be incorrect
unless they are adjusted for heteroskedasticity.

One simple test for conditional heteroskedasticity is the Breusch—Pagan test.
Breusch and Pagan showed that, under the null hypothesis of no conditional
heteroskedasticity, #R? (from the regression of the squared residuals on the
independent variables from the original regression) will be a x? random variable
with the number of degrees of freedom equal to the number of independent
variables in the regression.
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B The principal effect of serial correlation in a linear regression is that the stan-
dard errors and test statistics computed by regression programs will be incor-
rect unless adjusted for serial correlation. Positive serial correlation typically
inflates the ¢-statistics of estimated regression coefficients as well as the
F-statistic for the overall significance of the regression.

B The most commonly used test for serial correlation is based on the Durbin—
Watson statistic. If the Durbin—Watson statistic differs sufficiently from 2, then
the regression errors have significant serial correlation.

B Multicollinearity occurs when two or more independent variables (or combi-
nations of independent variables) are highly (but not perfectly) correlated with
each other. With multicollinearity, the regression coefficients may not be indi-
vidually statistically significant even when the overall regression is significant,
as judged by the F-statistic.

B Model specification refers to the set of variables included in the regression and
the regression equation’s functional form. The following principles can guide
model specification:

® The model should be grounded in cogent economic reasoning.

® The functional form chosen for the variables in the regression should be
appropriate given the nature of the variables.

The model should be parsimonious.

The model should be examined for violations of regression assumptions
before being accepted.

® The model should be tested and found useful out of sample before being
accepted.

B If aregression is misspecified, then statistical inference using OLS is invalid and
the estimated regression coefficients may be inconsistent.

B Assuming that a model has the correct functional form when in fact it does not
is one example of misspecification. This assumption may be violated in several
ways:
® One or more important variables could be omitted from the regression.

® One or more of the regression variables may need to be transformed before
estimating the regression.

® The regression model pools data from different samples that should not be
pooled.

B Another type of misspecification occurs when independent variables are cor-
related with the error term. This is a violation of Regression Assumption 3, that
the error term has a mean of 0, and causes the estimated regression coefficients
to be biased and inconsistent. Three common problems that create this type of
time-series misspecification are:

® including lagged dependent variables as independent variables in regres-
sions with serially correlated errors;

® including a function of the dependent variable as an independent variable,
sometimes as a result of the incorrect dating of variables; and

® independent variables that are measured with error.

B Logit models estimate the probability of a discrete outcome (the value of a qual-
itative dependent variable, such as whether a company enters bankruptcy) given
the values of the independent variables used to explain that outcome. The logit
model, which is based on the logistic distribution, estimates the probability that
Y =1 (a condition is fulfilled) given the values of the independent variables.
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Practice Problems

PRACTICE PROBLEMS

1 With many US companies operating globally, the effect of the US dollar’s
strength on a US company’s returns has become an important investment issue.
You would like to determine whether changes in the US dollar’s value and over-
all US equity market returns affect an asset’s returns. You decide to use the S&P
500 Index to represent the US equity market.

A Write a multiple regression equation to test whether changes in the value of
the dollar and equity market returns affect an asset’s returns. Use the nota-
tions below.

R;, = return on the asset in period ¢
Ry, = return on the S&P 500 in period ¢
AX; = change in period ¢ in the log of a trade-weighted index of the for-
eign exchange value of US dollar against the currencies of a broad
group of major US trading partners.

B You estimate the regression for Archer Daniels Midland Company (NYSE:
ADM). You regress its monthly returns for the period January 1990 to
December 2002 on S&P 500 Index returns and changes in the log of the
trade-weighted exchange value of the US dollar. The table below shows the
coefficient estimates and their standard errors.

Coefficient Estimates from Regressing ADM'’s Returns:

Monthly Data, January 1990-December 2002

Coefficient Standard Error
Intercept 0.0045 0.0062
Ry 0.5373 0.1332
AX,; -0.5768 0.5121

n =156

Source: FactSet, Federal Reserve Bank of Philadelphia.

Determine whether S&P 500 returns affect ADM'’s returns. Then determine
whether changes in the value of the US dollar affect ADM’s returns. Use a
0.05 significance level to make your decisions.

C Based on the estimated coefficient on R, is it correct to say that “for a
1 percentage point increase in the return on the S&P 500 in period £, we
expect a 0.5373 percentage point increase in the return on ADM”?

2 One of the most important questions in financial economics is what factors
determine the cross-sectional variation in an asset’s returns. Some have argued
that book-to-market ratio and size (market value of equity) play an important
role.

A Write a multiple regression equation to test whether book-to-market ratio
and size explain the cross-section of asset returns. Use the notations below.

(B/M), = book-to-market ratio for asset i

© 2017 CFA Institute. All rights reserved.
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R; = return on asset i in a particular month

Size; = natural log of the market value of equity for asset i

B The table below shows the results of the linear regression for a cross-section
of 66 companies. The size and book-to-market data for each company are
for December 2001. The return data for each company are for January 2002.

Results from Regressing Returns on the Book-to-Market

Ratio and Size

Coefficient Standard Error
Intercept 0.0825 0.1644
(B/M), -0.0541 0.0588
Size; -0.0164 0.0350

n =66

Source: FactSet.

Determine whether the book-to-market ratio and size are each useful for
explaining the cross-section of asset returns. Use a 0.05 significance level to
make your decision.

3 There is substantial cross-sectional variation in the number of financial analysts
who follow a company. Suppose you hypothesize that a company’s size (market
cap) and financial risk (debt-to-equity ratios) influence the number of financial
analysts who follow a company. You formulate the following regression model:

(Analyst following); = by + b;Size; + by(D/E); + ¢;
where

(Analyst following); = the natural log of (1 + 1), where #, is the number
of analysts following company i
Size; = the natural log of the market capitalization of
company i in millions of dollars
(D/E); = the debt-to-equity ratio for company i

In the definition of Analyst following, 1 is added to the number of analysts
following a company because some companies are not followed by any analysts,
and the natural log of 0 is indeterminate. The following table gives the coeffi-
cient estimates of the above regression model for a randomly selected sample of
500 companies. The data are for the year 2002.

Coefficient Estimates from Regressing Analyst Following on Size and Debt-to-

Equity Ratio

Coefficient Standard Error t-Statistic

Intercept -0.2845 0.1080 -2.6343
Size; 0.3199 0.0152 21.0461
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(Continued)

Coefficient Standard Error t-Statistic

(D/E); -0.1895 0.0620 -3.0565
n = 500

Source: First Call/Thomson Financial, Compustat.

A Consider two companies, both of which have a debt-to-equity ratio of 0.75.
The first company has a market capitalization of $100 million, and the sec-
ond company has a market capitalization of $1 billion. Based on the above
estimates, how many more analysts will follow the second company than the
first company?

B Suppose the p-value reported for the estimated coefficient on (D/E); is
0.00236. State the interpretation of 0.00236.

4 In early 2001, US equity marketplaces started trading all listed shares in mini-
mal increments (ticks) of $0.01 (decimalization). After decimalization, bid—ask
spreads of stocks traded on the NASDAQ tended to decline. In response,
spreads of NASDAQ stocks cross-listed on the Toronto Stock Exchange
(TSE) tended to decline as well. Researchers Oppenheimer and Sabherwal
(2003) hypothesized that the percentage decline in TSE spreads of cross-listed
stocks was related to company size, the predecimalization ratio of spreads
on NASDAQ to those on the TSE, and the percentage decline in NASDAQ
spreads. The following table gives the regression coefficient estimates from
estimating that relationship for a sample of 74 companies. Company size is
measured by the natural logarithm of the book value of company’s assets in
thousands of Canadian dollars.

Coefficient Estimates from Regressing Percentage Decline in TSE Spreads

on Company Size, Predecimalization Ratio of NASDAQ to TSE Spreads, and
Percentage Decline in NASDAQ Spreads

Coefficient t-Statistic
Intercept -0.45 -1.86
Size; 0.05 2.56
(Ratio of spreads); -0.06 -3.77
(Decline in NASDAQ spreads); 0.29 2.42

n="74

Source: Oppenheimer and Sabherwal (2003).

The average company in the sample has a book value of assets of C$900 mil-
lion and a predecimalization ratio of spreads equal to 1.3. Based on the above
model, what is the predicted decline in spread on the TSE for a company with
these average characteristics, given a 1 percentage point decline in NASDAQ
spreads?

5 The “neglected-company effect” claims that companies that are followed by
fewer analysts will earn higher returns on average than companies that are
followed by many analysts. To test the neglected-company effect, you have
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collected data on 66 companies and the number of analysts providing earnings
estimates for each company. You decide to also include size as an independent
variable, measuring size as the log of the market value of the company’s equity,
to try to distinguish any small-company effect from a neglected-company effect.
The small-company effect asserts that small-company stocks may earn average
higher risk-adjusted returns than large-company stocks.

The table below shows the results from estimating the model R; = by + b;Size; +
by(Number of analysts); + ¢; for a cross-section of 66 companies. The size and
number of analysts for each company are for December 2001. The return data

are for January 2002.
Results from Regressing Returns on Size and Number of Analysts
Coefficient Standard Error t-Statistic
Intercept 0.0388 0.1556 0.2495
Size; -0.0153 0.0348 -0.4388
(Number of analysts); 0.0014 0.0015 0.8995
ANOVA df SS MSS
Regression 2 0.0094 0.0047
Residual 63 0.6739 0.0107
Total 65 0.6833
Residual standard error 0.1034
R-squared 0.0138
Observations 66

Source: First Call/Thomson Financial, FactSet.

A What test would you conduct to see whether the two independent variables
are jointly statistically related to returns (Hy: by = by = 0)?
B What information do you need to conduct the appropriate test?

Determine whether the two variables jointly are statistically related to
returns at the 0.05 significance level.

D Explain the meaning of adjusted R? and state whether adjusted R? for the
regression would be smaller than, equal to, or larger than 0.0138.

6 Some developing nations are hesitant to open their equity markets to foreign
investment because they fear that rapid inflows and outflows of foreign funds
will increase volatility. In July 1993, India implemented substantial equity mar-
ket reforms, one of which allowed foreign institutional investors into the Indian
equity markets. You want to test whether the volatility of returns of stocks
traded on the Bombay Stock Exchange (BSE) increased after July 1993, when
foreign institutional investors were first allowed to invest in India. You have col-
lected monthly return data for the BSE from February 1990 to December 1997.
Your dependent variable is a measure of return volatility of stocks traded on the
BSE; your independent variable is a dummy variable that is coded 1 if foreign
investment was allowed during the month and 0 otherwise.

You believe that market return volatility actually decreases with the opening up
of equity markets. The table below shows the results from your regression.
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Results from Dummy Regression for Foreign Investment in India with a

Volatility Measure as the Dependent Variable

Coefficient Standard Error t-Statistic
Intercept 0.0133 0.0020 6.5351
Dummy -0.0075 0.0027 -2.7604

n=95

Source: FactSet.

A State null and alternative hypotheses for the slope coefficient of the dummy
variable that are consistent with testing your stated belief about the effect of
opening the equity markets on stock return volatility.

B Determine whether you can reject the null hypothesis at the 0.05 signifi-
cance level (in a one-sided test of significance).

C According to the estimated regression equation, what is the level of return
volatility before and after the market-opening event?

7 Both researchers and the popular press have discussed the question as to which
of the two leading US political parties, Republicans or Democrats, is better for
the stock market.

A Write a regression equation to test whether overall market returns, as
measured by the annual returns on the S&P 500 Index, tend to be higher
when the Republicans or the Democrats control the White House. Use the
notations below.

R,; = return on the S&P 500 in period ¢

Party, = the political party controlling the White House (1 for a
Republican president; 0 for a Democratic president) in period ¢

B The table below shows the results of the linear regression from Part A using
annual data for the S&P 500 and a dummy variable for the party that con-
trolled the White House. The data are from 1926 to 2002.

Results from Regressing S&P 500 Returns on a Dummy Variable for the Party

That Controlled the White House, 1926-2002

Coefficient Standard Error t-Statistic
Intercept 0.1494 0.0323 4.6270
Party, -0.0570 0.0466 -1.2242
ANOVA df SS MSS F Significance F
Regression 1 0.0625 0.0625 1.4987 0.2247
Residual 75 3.1287 0.0417
Total 76 3.1912
Residual standard error 0.2042

(continued)
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(Continued)

ANOVA df SS MSS F Significance F
R-squared 0.0196
Observations 77

Source: FactSet.

Based on the coefficient and standard error estimates, verify to two decimal
places the t-statistic for the coefficient on the dummy variable reported in
the table.

C Determine at the 0.05 significance level whether overall US equity market
returns tend to differ depending on the political party controlling the White
House.

8 Problem 3 addressed the cross-sectional variation in the number of financial
analysts who follow a company. In that problem, company size and debt-to-
equity ratios were the independent variables. You receive a suggestion that
membership in the S&P 500 Index should be added to the model as a third
independent variable; the hypothesis is that there is greater demand for analyst
coverage for stocks included in the S&P 500 because of the widespread use of
the S&P 500 as a benchmark.

A Write a multiple regression equation to test whether analyst following is
systematically higher for companies included in the S&P 500 Index. Also
include company size and debt-to-equity ratio in this equation. Use the
notations below.

(Analyst following); = natural log of (1 + Number of analysts following
company i)
Size; = natural log of the market capitalization of com-
pany i in millions of dollars
(D/E); = debt-to-equity ratio for company i
S&P; = inclusion of company i in the S&P 500 Index (1 if
included, 0 if not included)

In the above specification for analyst following, 1 is added to the number of
analysts following a company because some companies are not followed by
any analyst, and the natural log of 0 is indeterminate.

B State the appropriate null hypothesis and alternative hypothesis in a two-
sided test of significance of the dummy variable.

C The following table gives estimates of the coefficients of the above regres-
sion model for a randomly selected sample of 500 companies. The data are
for the year 2002. Determine whether you can reject the null hypothesis at
the 0.05 significance level (in a two-sided test of significance).

Coefficient Estimates from Regressing Analyst Following on

Size, Debt-to-Equity Ratio, and S&P 500 Membership, 2002

Coefficient Standard Error t-Statistic

Intercept -0.0075 0.1218 -0.0616
Size; 0.2648 0.0191 13.8639
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(Continued)

Coefficient Standard Error t-Statistic
(D/E); -0.1829 0.0608 -3.0082
S&P; 0.4218 0.0919 4.5898

n =500

Source: First Call/Thomson Financial, Compustat.

D Consider a company with a debt-to-equity ratio of 2/3 and a market capital-
ization of $10 billion. According to the estimated regression equation, how
many analysts would follow this company if it were not included in the S&P
500 Index, and how many would follow if it were included in the index?

E In Problem 3, using the sample, we estimated the coefficient on the size
variable as 0.3199, versus 0.2648 in the above regression. Discuss whether
there is an inconsistency in these results.

9 You believe there is a relationship between book-to-market ratios and subse-
quent returns. The output from a cross-sectional regression and a graph of the
actual and predicted relationship between the book-to-market ratio and return
are shown below.

Results from Regressing Returns on the Book-to-Market Ratio

Coefficient Standard Error t-Statistic

Intercept 12.0130 3.5464 3.3874
( Book value j

Market value : -9.2209 8.4454 -1.0918
ANOVA df SS MSS F Significance F
Regression 1 154.9866 154.9866 1.1921 0.2831
Residual 32 4162.1895 130.0684
Total 33 4317.1761
Residual standard error 11.4048
R-squared 0.0359
Observations 34

(continued)
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Book-to-Market Ratio

A You are concerned with model specification problems and regression
assumption violations. Focusing on assumption violations, discuss symp-
toms of conditional heteroskedasticity based on the graph of the actual and
predicted relationship.

B Describe in detail how you could formally test for conditional heteroskedas-
ticity in this regression.

C Describe a recommended method for correcting for conditional
heteroskedasticity.

10 You are examining the effects of the January 2001 NYSE implementation of the

1

trading of shares in minimal increments (ticks) of $0.01 (decimalization). In
particular, you are analyzing a sample of 52 Canadian companies cross-listed
on both the NYSE and the Toronto Stock Exchange (TSE). You find that the
bid—ask spreads of these shares decline on both exchanges after the NYSE
decimalization. You run a linear regression analyzing the decline in spreads on
the TSE, and find that the decline on the TSE is related to company size, pre-
decimalization ratio of NYSE to TSE spreads, and decline in the NYSE spreads.
The relationships are statistically significant. You want to be sure, however, that
the results are not influenced by conditional heteroskedasticity. Therefore, you
regress the squared residuals of the regression model on the three independent
variables. The R? for this regression is 14.1 percent. Perform a statistical test to
determine if conditional heteroskedasticity is present.

You are analyzing if institutional investors such as mutual funds and pension
funds prefer to hold shares of companies with less volatile returns. You have the
percentage of shares held by institutional investors at the end of 1998 for a ran-
dom sample of 750 companies. For these companies, you compute the standard
deviation of daily returns during that year. Then you regress the institutional
holdings on the standard deviation of returns. You find that the regression is
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12

13

significant at the 0.01 level and the F-statistic is 12.98. The R? for this regression
is 1.7 percent. As expected, the regression coefficient of the standard deviation
of returns is negative. Its ¢-statistic is —3.60, which is also significant at the 0.01
level. Before concluding that institutions prefer to hold shares of less volatile
stocks, however, you want to be sure that the regression results are not influ-
enced by conditional heteroskedasticity. Therefore, you regress the squared
residuals of the regression model on the standard deviation of returns. The R?
for this regression is 0.6 percent.

A Perform a statistical test to determine if conditional heteroskedasticity is
present at the 0.05 significance level.

B In view of your answer to Part A, what remedial action, if any, is
appropriate?

In estimating a regression based on monthly observations from January 1987

to December 2002 inclusive, you find that the coefficient on the independent

variable is positive and significant at the 0.05 level. You are concerned, how-

ever, that the ¢-statistic on the independent variable may be inflated because of

serial correlation between the error terms. Therefore, you examine the Durbin—

Watson statistic, which is 1.8953 for this regression.

A Based on the value of the Durbin—Watson statistic, what can you say about
the serial correlation between the regression residuals? Are they positively
correlated, negatively correlated, or not correlated at all?

B Compute the sample correlation between the regression residuals from one
period and those from the previous period.

C Perform a statistical test to determine if serial correlation is present. Assume
that the critical values for 192 observations when there is a single indepen-
dent variable are about 0.09 above the critical values for 100 observations.

The book-to-market ratio and the size of a company’s equity are two factors

that have been asserted to be useful in explaining the cross-sectional variation

in subsequent returns. Based on this assertion, you want to estimate the follow-
ing regression model:

Book
Market

Ri = bo + bl[ ) + sziZel' + €
1

where

R; = Return of company i’s shares (in the following period)

Book ” .
= company i’s book-to-market ratio
Market ;

Size; = Market value of company i’s equity

A colleague suggests that this regression specification may be erroneous,
because he believes that the book-to-market ratio may be strongly related to
(correlated with) company size.

A To what problem is your colleague referring, and what are its consequences
for regression analysis?

B With respect to multicollinearity, critique the choice of variables in the
regression model above.
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Regression of Return on Book-to-Market and Size

Coefficient Standard Error t-Statistic
Intercept 14.1062 4.220 3.3427
[ Book )

Market ), -12.1413 9.0406 -1.3430
Size; -0.00005502 0.00005977 -0.92047
R-squared 0.06156
Observations 34

Correlation Matrix

Book-to-Market Ratio Size
Book-to-Market Ratio 1.0000
Size -0.3509 1.0000

C State the classic symptom of multicollinearity and comment on that basis
whether multicollinearity appears to be present, given the additional fact
that the F-test for the above regression is not significant.

14 You are analyzing the variables that explain the returns on the stock of the
Boeing Company. Because overall market returns are likely to explain a part of
the returns on Boeing, you decide to include the returns on a value-weighted
index of all the companies listed on the NYSE, AMEX, and NASDAQ as an
independent variable. Further, because Boeing is a large company, you also
decide to include the returns on the S&P 500 Index, which is a value-weighted
index of the larger market-capitalization companies. Finally, you decide to
include the changes in the US dollar’s value. To conduct your test, you have
collected the following data for the period 1990-2002.

R, = monthly return on the stock of Boeing in month ¢
R 411+ = monthly return on a value-weighted index of all the companies
listed on the NYSE, AMEX, and NASDAQ in month ¢
Rgp; = monthly return on the S&P 500 Index in month ¢
AX, = change in month ¢ in the log of a trade-weighted index of the
foreign exchange value of the US dollar against the currencies of a
broad group of major US trading partners

The following table shows the output from regressing the monthly return on
Boeing stock on the three independent variables.

Regression of Boeing Returns on Three Explanatory Variables: Monthly Data,

January 1990-December 2002

Coefficient Standard Error t-Statistic

Intercept 0.0026 0.0066 0.3939
Rarre -0.1337 0.6219 -0.2150
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(Continued)

Coefficient Standard Error t-Statistic
Rgp; 0.8875 0.6357 1.3961
AX; 0.2005 0.5399 0.3714
ANOVA df SS MSS
Regression 3 0.1720 0.0573
Residual 152 0.8947 0.0059
Total 155 1.0667
Residual standard error 0.0767
R-squared 0.1610
Observations 156

Source: FactSet, Federal Reserve Bank of Philadelphia.

From the ¢-statistics, we see that none of the explanatory variables is statisti-
cally significant at the 5 percent level or better. You wish to test, however, if the
three variables jointly are statistically related to the returns on Boeing.

A Your null hypothesis is that all three population slope coefficients equal 0—
that the three variables jointly are statistically not related to the returns on
Boeing. Conduct the appropriate test of that hypothesis.

B Examining the regression results, state the regression assumption that may
be violated in this example. Explain your answer.

C State a possible way to remedy the violation of the regression assumption
identified in Part B.

15 You are analyzing the cross-sectional variation in the number of financial
analysts that follow a company (also the subject of Problems 3 and 8). You
believe that there is less analyst following for companies with a greater debt-to-
equity ratio and greater analyst following for companies included in the S&P
500 Index. Consistent with these beliefs, you estimate the following regression
model.

(Analysts following); = by + by (D/E); + by(S&P); + g;

where

(Analysts following); = natural log of (1 + Number of analysts following
company )
(D/E); = debt-to-equity ratio for company i
S&P; = inclusion of company i in the S&P 500 Index (1 if
included; 0 if not included)

In the preceding specification, 1 is added to the number of analysts following
a company because some companies are not followed by any analysts, and

the natural log of 0 is indeterminate. The following table gives the coefficient
estimates of the above regression model for a randomly selected sample of 500
companies. The data are for the year 2002.
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Coefficient Estimates from Regressing Analyst Following on Debt-to-Equity

Ratio and S&P 500 Membership, 2002

Coefficient Standard Error t-Statistic
Intercept 1.5367 0.0582 26.4038
(D/E)i -0.1043 0.0712 -1.4649
S&P; 1.2222 0.0841 14.5327
n =500

Source: First Call/Thomson Financial, Compustat.

You discuss your results with a colleague. She suggests that this regression spec-
ification may be erroneous, because analyst following is likely to be also related
to the size of the company.

A What is this problem called, and what are its consequences for regression
analysis?

B To investigate the issue raised by your colleague, you decide to collect data
on company size also. You then estimate the model after including an addi-
tional variable, Size i, which is the natural log of the market capitalization of
company / in millions of dollars. The following table gives the new coeffi-
cient estimates.

Coefficient Estimates from Regressing Analyst Following on Size, Debt-to-

Equity Ratio, and S&P 500 Membership, 2002

Coefficient Standard Error t-Statistic
Intercept -0.0075 0.1218 -0.0616
Size; 0.2648 0.0191 13.8639
(D/E); -0.1829 0.0608 -3.0082
S&P; 0.4218 0.0919 4.5898
n =500

Source: First Call/Thomson Financial, Compustat.

What do you conclude about the existence of the problem mentioned by your
colleague in the original regression model you had estimated?

16 You have noticed that hundreds of non-US companies are listed not only on a
stock exchange in their home market but also on one of the exchanges in the
United States. You have also noticed that hundreds of non-US companies are
listed only in their home market and not in the United States. You are trying to
predict whether or not a non-US company will choose to list on a US exchange.
One of the factors that you think will affect whether or not a company lists in
the United States is its size relative to the size of other companies in its home
market.

A What kind of a dependent variable do you need to use in the model?
B What kind of a model should be used?
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The following information relates to Questions
17-22

Gary Hansen is a securities analyst for a mutual fund specializing in small-capitalization
growth stocks. The fund regularly invests in initial public offerings (IPOs). If the fund
subscribes to an offer, it is allocated shares at the offer price. Hansen notes that IPOs
frequently are underpriced, and the price rises when open market trading begins. The
initial return for an IPO is calculated as the change in price on the first day of trading
divided by the offer price. Hansen is developing a regression model to predict the
initial return for IPOs. Based on past research, he selects the following independent
variables to predict IPO initial returns:

Underwriter rank = 1-10, where 10 is highest rank

Pre-offer price adjustment?

(Offer price — Initial filing price)/Initial filing price

Offer size ($ millions)

Shares sold x Offer price

Fraction retained? = Fraction of total company shares retained by
insiders

3Expressed as a decimal
Hansen collects a sample of 1,725 recent IPOs for his regression model. Regression
results appear in Exhibit 1, and ANOVA results appear in Exhibit 2.

Exhibit1 Hansen’s Regression Results Dependent Variable: IPO Initial

Return (Expressed in Decimal Form, i.e., 1% = 0.01)

Variable Coefficient (b)) Standard Error t-Statistic
Intercept 0.0477 0.0019 25.11
Underwriter rank 0.0150 0.0049 3.06
Pre-offer price adjustment 0.4350 0.0202 21.53
Offer size -0.0009 0.0011 -0.82
Fraction retained 0.0500 0.0260 1.92

Exhibit2 Selected ANOVA Results for Hansen’s Regression

Degrees of Freedom (df)  Sum of Squares (SS)

Regression 4 51.433
Residual 1,720 91.436
Total 1,724 142.869

Multiple R-squared = 0.36

Hansen wants to use the regression results to predict the initial return for an
upcoming IPO. The upcoming IPO has the following characteristics:

B underwriter rank = 6;

B pre-offer price adjustment = 0.04;
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B offer size = $40 million;

B fraction retained = 0.70.

Because he notes that the pre-offer price adjustment appears to have an important
effect on initial return, Hansen wants to construct a 95 percent confidence interval
for the coefficient on this variable. He also believes that for each 1 percent increase
in pre-offer price adjustment, the initial return will increase by less than 0.5 percent,
holding other variables constant. Hansen wishes to test this hypothesis at the 0.05
level of significance.

Before applying his model, Hansen asks a colleague, Phil Chang, to review its
specification and results. After examining the model, Chang concludes that the model
suffers from two problems: 1) conditional heteroskedasticity, and 2) omitted variable
bias. Chang makes the following statements:

Statement 1 “Conditional heteroskedasticity will result in consistent coeffi-
cient estimates, but both the ¢-statistics and F-statistic will be
biased, resulting in false inferences.”

Statement 2 “If an omitted variable is correlated with variables already
included in the model, coefficient estimates will be biased and
inconsistent and standard errors will also be inconsistent.”

Selected values for the ¢-distribution and F-distribution appear in Exhibits 3 and
4, respectively.

Exhibit 3 Selected Values for the t-Distribution (df = o)

Area in Right Tail t-Value
0.050 1.645
0.025 1.960
0.010 2.326
0.005 2.576

Exhibit4 Selected Values for the F-Distribution (a =0.01)

(df1/df2: Numerator/Denominator Degrees of

Freedom)
dfl
4 o
4 16.00 13.50
df2
oo 3.32 1.00

17 Based on Hansen’s regression, the predicted initial return for the upcoming IPO
is closest to:

A 0.0943.
B 0.1064.
C 0.1541.
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18 The 95 percent confidence interval for the regression coefficient for the pre-
offer price adjustment is closest to:

A 0.156 to 0.714.
B 0.395to 0.475.
C 0.402 to 0.468.

19 The most appropriate null hypothesis and the most appropriate conclusion
regarding Hansen’s belief about the magnitude of the initial return relative to
that of the pre-offer price adjustment (reflected by the coefficient b)) are:

Conclusion about b;

Null Hypothesis (0.05 Level of Significance)
A Ho: b; = 0.5 Reject Hy
B Ho: b;2 0.5 Fail to reject H,
C Ho: b;2 0.5 Reject Hy

20 The most appropriate interpretation of the multiple R-squared for Hansen’s
model is that:

A unexplained variation in the dependent variable is 36 percent of total
variation.

B correlation between predicted and actual values of the dependent variable is

0.36.
C correlation between predicted and actual values of the dependent variable is
0.60.
21 Is Chang’s Statement 1 correct?
A Yes.

B No, because the model’s F-statistic will not be biased.
C No, because the model’s ¢-statistics will not be biased.
22 Is Chang’s Statement 2 correct?
A Yes.
B No, because the model’s coefficient estimates will be unbiased.

C No, because the model’s coefficient estimates will be consistent.

The following information relates to Questions
23-28

Adele Chiesa is a money manager for the Bianco Fund. She is interested in recent
findings showing that certain business condition variables predict excess US stock
market returns (one-month market return minus one-month T-bill return). She is also
familiar with evidence showing how US stock market returns differ by the political
party affiliation of the US President. Chiesa estimates a multiple regression model to
predict monthly excess stock market returns accounting for business conditions and
the political party affiliation of the US President:

Excess stock market return, = gy + a;Default spread;_; + a,Term spread;_; +
asPres party dummy,_; + e,
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Default spread is equal to the yield on Baa bonds minus the yield on Aaa bonds. Term
spread is equal to the yield on a 10-year constant-maturity US Treasury index minus
the yield on a 1-year constant-maturity US Treasury index. Pres party dummy is equal
to 1 if the US President is a member of the Democratic Party and 0 if a member of
the Republican Party.

Chiesa collects 432 months of data (all data are in percent form, i.e., 0.01 = 1 per-
cent). The regression is estimated with 431 observations because the independent
variables are lagged one month. The regression output is in Exhibit 1. Exhibits 2
through 5 contain critical values for selected test statistics.

Exhibit1 Multiple Regression Output (the Dependent Variable Is the One-

Month Market Return in Excess of the One-Month T-Bill Return)

Coefficient t-Statistic p-Value
Intercept -4.60 -4.36 <0.01
Default spread,_; 3.04 4.52 <0.01
Term spread;_; 0.84 3.41 <0.01
Pres party dummy,_; 3.17 4.97 <0.01
Number of observations 431
Test statistic from Breusch—Pagan (BP) test 7.35
R? 0.053
Adjusted R? 0.046
Durbin—Watson (DW) 1.65
Sum of squared errors (SSE) 19,048
Regression sum of squares (SSR) 1,071

An intern working for Chiesa has a number of questions about the results in
Exhibit 1:

Question 1 How do you test to determine whether the overall regression
model is significant?

Question 2 Does the estimated model conform to standard regression
assumptions? For instance, is the error term serially correlated, or
is there conditional heteroskedasticity?

Question 3 How do you interpret the coefficient for the Pres party dummy
variable?

Question 4 Default spread appears to be quite important. Is there some way
to assess the precision of its estimated coefficient? What is the
economic interpretation of this variable?

After responding to her intern’s questions, Chiesa concludes with the following
statement: “Predictions from Exhibit 1 are subject to parameter estimate uncertainty,
but not regression model uncertainty”
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Exhibit2 Critical Values for the Durbin-Watson Statistic (a
=0.05)

420 1.825 1.854
430 1.827 1.855
440 1.829 1.857

Exhibit3 Table of the Student’s t-Distribution (One-Tailed

Probabilities for df = )

P t
0.10 1.282
0.05 1.645
0.025 1.960
0.01 2.326
0.005 2.576

Exhibit4 Values of x2

Probability in Right Tail

df 0.975 0.95 0.05 0.025
1 0.0001 0.0039 3.841 5.024
2 0.0506 0.1026 5.991 7.378
3 0.2158 0.3518 7.815 9.348
4 0.4840 0.7110 9.488 11.14

Exhibit 5 Table of the F-Distribution (Critical Values for Right-Hand Tail

Area Equal to 0.05) Numerator: df1 and Denominator: df2

df1
df2 1 2 3 4 427
1 161 200 216 225 254
2 18.51 19.00 19.16 19.25 19.49
3 10.13 9.55 9.28 9.12 8.53

(continued)
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Exhibit5 (Continued)

df1
df2 1 2 3 4 427
4 7.71 6.94 6.59 6.39 5.64
427 3.86 3.02 2.63 2.39 1.17

23

24

25

26

27

28

Regarding the intern’s Question 1, is the regression model as a whole significant
at the 0.05 level?

A No, because the calculated F-statistic is less than the critical value for F.
B Yes, because the calculated F-statistic is greater than the critical value for F.

C  Yes, because the calculated X2 statistic is greater than the critical value for
X

Which of the following is Chiesa’s best response to Question 2 regarding serial

correlation in the error term? At a 0.05 level of significance, the test for serial

correlation indicates that there is:

A no serial correlation in the error term.

B positive serial correlation in the error term.

C negative serial correlation in the error term.

Regarding Question 3, the Pres party dummy variable in the model indicates

that the mean monthly value for the excess stock market return is:

A 1.43 percent larger during Democratic presidencies than Republican
presidencies.

B 3.17 percent larger during Democratic presidencies than Republican
presidencies.

C 3.17 percent larger during Republican presidencies than Democratic
presidencies.

In response to Question 4, the 95 percent confidence interval for the regression
coefficient for the default spread is closest to:

A 0.13 to 5.95.
B 1.72 to 4.36.
C 1.93 to 4.15.

With respect to the default spread, the estimated model indicates that when
business conditions are:

A strong, expected excess returns will be higher.
B weak, expected excess returns will be lower.
C weak, expected excess returns will be higher.

Is Chiesa’s concluding statement correct regarding parameter estimate uncer-
tainty and regression model uncertainty?

A Yes.
B No, predictions are not subject to parameter estimate uncertainty.

C No, predictions are subject to regression model uncertainty and parameter
estimate uncertainty.
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The following information relates to Questions
29-36

Doris Honoré is a securities analyst with a large wealth management firm. She and
her colleague Bill Smith are addressing three research topics: how investment fund
characteristics affect fund total returns, whether a fund rating system helps predict
fund returns, and whether stock and bond market returns explain the returns of a
portfolio of utility shares run by the firm.

To explore the first topic, Honoré decides to study US mutual funds using a sample
of 555 large-cap US equity funds. The sample includes funds in style classes of value,
growth, and blend (i.e., combining value and growth characteristics). The dependent
variable is the average annualized rate of return (in percent) over the past five years.
The independent variables are fund expense ratio, portfolio turnover, the natural
logarithm of fund size, fund age, and three dummy variables. The multiple manager
dummy variable has a value of 1 if the fund has multiple managers (and a value of 0
if it has a single manager). The fund style is indicated by a growth dummy (value of
1 for growth funds and 0 otherwise) and a blend dummy (value of 1 for blend funds
and 0 otherwise). If the growth and blend dummies are both zero, the fund is a value
fund. The regression output is given in Exhibit 1.

Exhibit1 Multiple Regression Output for Large-Cap Mutual Fund Sample

Coefficient Standard Error t-Statistic
Intercept 10.9375 1.3578 8.0551
Expense ratio (%) -1.4839 0.2282 -6.5039
Portfolio turnover (%) 0.0017 0.0016 1.0777
In (fund size in $) 0.1467 0.0612 2.3976
Manager tenure (years) -0.0098 0.0102 -0.9580
Multiple manager dummy 0.0628 0.1533 0.4100
Fund age (years) -0.0123 0.0047 -2.6279
Growth dummy 2.4368 0.1886 12.9185
Blend dummy 0.5757 0.1881 3.0611
ANOVA df SS MsSS
Regression 8 714.169 89.2712
Residual 546 1583.113 2.8995
Total 554 2297.282
Multiple R 0.5576
R? 0.3109
Adjusted R? 0.3008
Standard error (%) 1.7028
Observations 555

Based on the results shown in Exhibit 1, Honoré wants to test the hypothesis that
all of the regression coefficients are equal to zero. For the 555 fund sample, she also
wants to compare the performance of growth funds with the value funds.
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Honoré is concerned about the possible presence of multicollinearity in the
regression. She states that adding a new independent variable that is highly correlated
with one or more independent variables already in the regression model, has three
potential consequences:

1 The R? is expected to decline.
2 The regression coefficient estimates can become imprecise and unreliable.

3 The standard errors for some or all of the regression coefficients will become
inflated.

Another concern for the regression model (in Exhibit 1) is conditional heteroske-
dasticity. Honoré is concerned that the presence of heteroskedasticity can cause both
the F-test for the overall significance of the regression and the ¢-tests for significance
of individual regression coefficients to be unreliable. She runs a regression of the
squared residuals from the model in Exhibit 1 on the eight independent variables,
and finds the R? is 0.0669.

As a second research project, Honoré wants to test whether including Morningstar’s
rating system, which assigns a one- through five-star rating to a fund, as an indepen-
dent variable will improve the predictive power of the regression model. To do this,
she needs to examine whether values of the independent variables in a given period
predict fund return in the next period. Smith suggests three different methods of
adding the Morningstar ratings to the model:

B  Method 1: Add an independent variable that has a value equal to the number of
stars in the rating of each fund.

Method 2: Add five dummy variables, one for each rating.
B Method 3: Add dummy variables for four of the five ratings.

As a third research project, Honoré wants to establish whether bond market
returns (proxied by returns of long-term US Treasuries) and stock market returns
(proxied by returns of the S&P 500 Index) explain the returns of a portfolio of utility
stocks being recommended to clients. Exhibit 2 presents the results of a regression
of 10 years of monthly percentage total returns for the utility portfolio on monthly
total returns for US Treasuries and the S&P 500.

Exhibit2 Regression Analysis of Utility Portfolio Returns

Standard

Coefficient Error t-Statistic p-Value
Intercept -0.0851 0.2829 -0.3008 0.7641
US Treasury 0.4194 0.0848 4.9474 <0.0001
S&P 500 0.6198 0.0666 9.3126 <0.0001
ANOVA df SS MSS F Significance F
Regression 2 827.48 413.74 46.28 <0.0001
Residual 117 1045.93 8.94
Total 119 1873.41
Multiple R 0.6646
R? 0.4417
Adjusted R? 0.4322
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Exhibit2 (Continued)

ANOVA df SS MSS F Significance F
Standard error (%) 2.99
Observations 120

For the time-series model in Exhibit 2, Honoré says that positive serial correlation
would not require that the estimated coefficients be adjusted, but that the standard
errors of the regression coefficients would be underestimated. This issue would
cause the z-statistics of the regression coefficients to be inflated. Honoré tests the
null hypothesis that the there is no serial correlation in the regression residuals and
finds that the Durbin—Watson statistic is equal to 1.81. The critical values at the 0.05
significance level for the Durbin—Watson statistic are d; = 1.63 and d,, = 1.72.

Smith asks whether Honoré should have estimated the models in Exhibit 1 and
Exhibit 2 using a probit or logit model instead of using a traditional regression analysis.

29 Considering Exhibit 1, the F-statistic is closest to:

A 3.22.
B 8.06.
¢ 30.79.

30 Based on Exhibit 1, the difference between the predicted annualized returns of
a growth fund and an otherwise similar value fund is closest to:

A 1.86%.
B 2.44%.
C 3.01%.

31 Honoré describes three potential consequences of multicollinearity. Are all
three consequences correct?

A Yes
B No, 1 is incorrect
C No, 2 is incorrect

32 Which of the three methods suggested by Smith would best capture the ability
of the Morningstar rating system to predict mutual fund performance?

A Method 1
B Method 2
C( Method 3

33 Honoré is concerned about the consequences of heteroskedasticity. Is she cor-
rect regarding the effect of heteroskedasticity on the reliability of the F-test and
I-tests?

A Yes
B No, she is incorrect with regard to the F-test
C No, she is incorrect with regard to the ¢-tests

34 Is Honoré’s description of the effects of positive serial correlation (in Exhibit 2)
correct regarding the estimated coefficients and the standard errors?

A Yes

B No, she is incorrect about only the estimated coefficients
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C No, she is incorrect about only the standard errors of the regression
coefficients

35 Based on her estimated Durbin—Watson statistic, Honoré should:
A fail to reject the null hypothesis.

B reject the null hypothesis because there is significant positive serial
correlation.

C reject the null hypothesis because there is significant negative serial
correlation.

36 Should Honoré have estimated the models in Exhibit 1 and Exhibit 2 using pro-
bit or logit models instead of traditional regression analysis?

A Both should be estimated with probit or logit models.
B Neither should be estimated with probit or logit models.
C  Only the analysis in Exhibit 1 should be done with probit or logit models.

The following information relates to Questions
37-45

Brad Varden, a junior analyst at an actively managed mutual fund, is responsible for
research on a subset of the 500 large-cap equities the fund follows. Recently, the fund
has been paying close attention to management turnover and to publicly available
environmental, social, and governance (ESG) ratings. Varden is given the task of inves-
tigating whether any significant relationship exists between a company’s profitability
and either of these two characteristics. Colleen Quinni, a senior analyst at the fund,
suggests that as an initial step in his investigation, Varden should perform a multiple
regression analysis on the variables and report back to her.

Varden knows that Quinni is an expert at quantitative research, and she once
told Varden that after you get an idea, you should formulate a hypothesis, test the
hypothesis, and analyze the results. Varden expects to find that ESG rating is negatively
related to ROE and CEO tenure is positively related to ROE. He considers a relation-
ship meaningful when it is statistically significant at the 0.05 level. To begin, Varden
collects values for ROE, CEO tenure, and ESG rating for a sample of 40 companies
from the large-cap security universe. He performs a multiple regression with ROE
(in percent) as the dependent variable and ESG rating and CEO tenure (in years) as
the independent variables: Y; = by + b1 X{; + by X,; + €;.

Exhibit 1 shows the regression results.

Exhibit1 Regression Statistics

Yi = 9.442 + 0.069.X; + 0.681X;

Standard
Coefficient Error t-Statistic p-Value
Intercept 9.442 3.343 2.824 0.008
b, (ESG variable) 0.069 0.058 1.201 0.238

b, (Tenure variable) 0.681 0.295 2.308 0.027
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Exhibit1 (Continued)

ANOVA df SS MSS F Significance F
Regression 2 240.410  120.205 4.161 0.023
Residual 37 1069.000  28.892

Total 39 1309.410

Multiple R 0.428

R? 0.183

Adjusted R? 0.139

Standard error (%) 5.375

Observations 40

DF Associates is one of the companies Varden follows. He wants to predict its
ROE using his regression model. DF Associates’ corporate ESG rating is 55, and the
company’s CEO has been in that position for 10.5 years.

Varden also wants to check on the relationship between these variables and the
dividend growth rate (divgr), so he completes the correlation matrix shown in Exhibit 2.

Exhibit2 Correlation Matrix

ROE ESG Tenure Divgr
ROE 1.0
ESG 0.446 1.0
Tenure 0.369 0.091 1.0
Divgr 0.117 0.046 0.028 1.0

Investigating further, Varden determines that dividend growth is not a linear
combination of CEO tenure and ESG rating. He is unclear about how additional inde-
pendent variables would affect the significance of the regression, so he asks Quinni,
“Given this correlation matrix, will both R? and adjusted R? automatically increase if
I add dividend growth as a third independent variable?”

The discussion continues, and Quinni asks two questions.

1 What does your F-statistic of 4.161 tell you about the regression?
2 In interpreting the overall significance of your regression model, which statistic

do you believe is most relevant: R?, adjusted R?, or the F-statistic?

Varden answers both questions correctly and says he wants to check two more
ideas. He believes the following:

1 ROE is less correlated with the dividend growth rate in firms whose CEO has
been in office more than 15 years, and

2 CEO tenure is a normally distributed random variable.
Later, Varden includes the dividend growth rate as a third independent variable

and runs the regression on the fund’s entire group of 500 large-cap equities. He finds
that the adjusted R? is much higher than the results in Exhibit 1. He reports this
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to Quinni and says, “Adding the dividend growth rate gives a model with a higher
adjusted R?. The three-variable model is clearly better” Quinni cautions, “I don’t think
you can conclude that yet”

37

38

39

40

4

42

43

44

45

Based on Exhibit 1 and given Varden’s expectations, which is the best null
hypothesis and conclusion regarding CEO tenure?

A b,y < 0; reject the null hypothesis
B b, = 0; cannot reject the null hypothesis
C by 2 0; reject the null hypothesis

At a significance level of 1%, which of the following is the best interpretation of
the regression coefficients with regard to explaining ROE?

A ESG is significant, but tenure is not.
B Tenure is significant, but ESG is not.
C Neither ESG nor tenure is significant.

Based on Exhibit 1, which independent variables in Varden’s model are signifi-
cant at the 0.05 level?

A ESG only

B Tenure only

C Neither ESG nor tenure

Based on Exhibit 1, the predicted ROE for DF Associates is closest to:
A 10.957%.

B 16.593%.

C  20.388%.

Based on Exhibit 2, Quinni’s best answer to Varden’s question about the effect
of adding a third independent variable is:

A no for R? and no for adjusted R2.

B yes for R? and no for adjusted R2.

C vyes for R? and yes for adjusted R2.

Based on Exhibit 1, Varden’s best answer to Quinni’s question about the
F-statistic is:

A both independent variables are significant at the 0.05 level.

B neither independent variable is significant at the 0.05 level.

C atleast one independent variable is significant at the 0.05 level.
Varden’s best answer to Quinni’s question about overall significance is:
A R2

B adjusted R

C the F-statistic.

If Varden’s beliefs about ROE and CEO tenure are true, which of the following
would violate the assumptions of multiple regression analysis?

A The assumption about CEO tenure distribution only
B The assumption about the ROE/dividend growth correlation only

C  The assumptions about both the ROE/dividend growth correlation and CEO
tenure distribution

The best rationale for Quinni’s caution about the three-variable model is that
the:

A dependent variable is defined differently.
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B sample sizes are different in the two models.

C dividend growth rate is positively correlated with the other independent
variables.
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SOLUTIONS

A
B

A

Rit = bO + b]_RMt + bZAXt + €

We can test whether the coefficient on the S&P 500 Index returns is statisti-
cally significant. Our null hypothesis is that the coefficient is equal to 0 (H:
b, = 0); our alternative hypothesis is that the coefficient is not equal to 0
(H,: by = 0). We construct the ¢-test of the null hypothesis as follows:

bi—b _ 053730

53, 0.1332

= 4.0338

where

~

b1 = regression estimate of b;
b, = the hypothesized value of the coefficient (here, 0)

Sp, = the estimated standard error of 61

Because this regression has 156 observations and three regression coeffi-
cients, the ¢-test has 156 — 3 = 153 degrees of freedom. At the 0.05 signifi-
cance level, the critical value for the test statistic is between 1.98 and 1.97.
The absolute value of the test statistic is 4.0338; therefore, we can reject the
null hypothesis that b; = 0.

Similarly, we can test whether the coefficient on the change in the value of
the US dollar is statistically significant in this regression. Our null hypothe-
sis is that the coefficient is equal to 0 (Hy: by = 0); our alternative hypothesis
is that the coefficient is not equal to 0 (H: b, = 0). We construct the ¢-test
as follows:

by —b, 057680

= = -1.1263

53, 0.5121

As before, the t-test has 153 degrees of freedom, and the critical value for
the test statistic is between 1.98 and 1.97 at the 0.05 significance level. The
absolute value of the test statistic is 1.1263; therefore, we cannot reject the
null hypothesis that b, = 0.

Based on the above ¢-tests, we conclude that S&P 500 Index returns do
affect ADM’s returns but that changes in the value of the US dollar do not
affect ADM’s returns.

The statement is not correct. To make it correct, we need to add the qualifi-
cation “holding AX constant” to the end of the quoted statement.
Ri = bo + bl(B/M)l + sziZei + Si
We can test whether the coefficients on the book-to-market ratio and size
are individually statistically significant using ¢-tests. For the book-to-market
ratio, our null hypothesis is that the coefficient is equal to 0 (Hy: b; = 0); our
alternative hypothesis is that the coefficient is not equal to 0 (H: by = 0).
We can test the null hypothesis using a ¢-test constructed as follows:

by —b  —0.0541-0

= = -0.9201

5, 0.0588
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where

b1 = regression estimate of b;

b, = the hypothesized value of the coefficient (here, 0)

8p, = the estimated standard error of 61

This regression has 66 observations and three coefficients, so the ¢-test has
66 — 3 = 63 degrees of freedom. At the 0.05 significance level, the critical
value for the test statistic is about 2.0. The absolute value of the test statistic
is 0.9201; therefore, we cannot reject the null hypothesis that 5; = 0. We can
conclude that the book-to-market ratio is not useful in explaining the cross-
sectional variation in returns for this sample.

We perform the same analysis to determine whether size (as measured by
the log of the market value of equity) can help explain the cross-sectional
variation in asset returns. Our null hypothesis is that the coefficient is equal
to 0 (Hy: by = 0); our alternative hypothesis is that the coefficient is not
equal to 0 (H,: by = 0). We can test the null hypothesis using a ¢-test con-
structed as follows:

by —b, —0.0164-0

= = —0.4686

Sh, 0.0350

where

b2 = regression estimate of b,

by = the hypothesized value of the coefficient (here, 0)

8p, = the estimated standard error of b2

Again, because this regression has 66 observations and three coefficients,
the ¢-test has 66 — 3 = 63 degrees of freedom. At the 0.05 significance level,
the critical value for the test statistic is about 2.0. The absolute value of the
test statistic is 0.4686; therefore, we cannot reject the null hypothesis that b,
= 0. We can conclude that asset size is not useful in explaining the cross-
sectional variation of asset returns in this sample.

3 A The estimated regression is (Analyst following); = —-0.2845 + 0.3199Size; —
0.1895(D/E); + ¢;. Therefore, the prediction for the first company is

(Analyst following); = —0.2845 + 0.3199(In 100) — 0.1895(0.75)
= -0.2845 + 1.4732 - 0.1421 = 1.0466

Recalling that (Analyst following); is the natural log of (1 + #;), where #, is
the number of analysts following company i; it follows that 1 + n; = ¢1:0466
= 2.848, approximately. Therefore, ; = 2.848 — 1 = 1.848, or about two ana-
lysts. Similarly, the prediction for the second company is as follows:

(Analyst following); = —0.2845 + 0.3199(In 1,000) — 0.1895(0.75)
=-0.2845 + 2.2098 - 0.1421
=1.7832

Thus, 1 + ny = e17832 = 5,949, approximately. Therefore, 1, = 5.949 - 1 =
4.949, or about five analysts.

The model predicts that 5 — 2 = 3 more analysts will follow the second com-
pany than the first company.
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B We would interpret the p-value of 0.00236 as the smallest level of signifi-
cance at which we can reject a null hypothesis that the population value of
the coeflicient is 0, in a two-sided test. Clearly, in this regression the debt-
to-equity ratio is a highly significant variable.

4 The estimated model is

Percentage decline in TSE spread of company i = —0.45 + 0.05Size; —
0.06(Ratio of spreads); + 0.29(Decline in NASDAQ spreads);

Therefore, the prediction is

Percentage decline in TSE spread = —-0.45 + 0.05(In 900,000) -
0.06(1.3) + 0.29(1)
=-0.45 + 0.69 - 0.08 + 0.29
=0.45

The model predicts that for a company with average sample characteristics, the
spread on the TSE declines by 0.45 percent for a 1 percent decline in NASDAQ
spreads.
5 A To test the null hypothesis that all the slope coefficients in the regression
model are equal to 0 (H,: b; = b, = 0) against the alternative hypothesis that
at least one slope coefficient is not equal to 0, we must use an F-test.

B To conduct the F-test, we need four inputs, all of which are found in the
ANOVA section of the table in the statement of the problem:
i. total number of observations, #

ii. total number of regression coefficients to be estimated, k + 1

n

~A\2
iii. sum of squared errors or residuals, Z(Y -Y ,') abbreviated SSE, and

i
i=l1

LN —\2
iv. regression sum of squares, Z(Y i =Y ) abbreviated RSS
i=1
C The F-test formula is
_ RSS/k _ 0.0094/2
SSE/[n—(k+1)]  0.6739/[66 — (2 +1)]

=0.4394

The F-statistic has degrees of freedom Fik, [n — (k + 1)]} = F(2, 63). From the
F-test table, for the 0.05 significance level, the critical value for F(2, 63) is
about 3.15, so we cannot reject the hypothesis that the slope coefficients are
both 0. The two independent variables are jointly statistically unrelated to
returns.

D Adjusted R? is a measure of goodness of fit that takes into account the
number of independent variables in the regression, in contrast to R2. We can
assert that adjusted R? is smaller than R? = 0.0138 without the need to per-
form any calculations. (However, adjusted R? can be shown to equal -0.0175
using an expression in the text on the relationship between adjusted R? and
R2)

6 A You believe that opening markets actually reduces return volatility; if that
belief is correct, then the slope coefficient would be negative, b; < 0. The
null hypothesis is that the belief is not true: Hy: b; > 0. The alternative
hypothesis is that the belief is true: H,: b; < 0.

B The critical value for the ¢-statistic with 95 — 2 = 93 degrees of freedom at
the 0.05 significance level in a one-sided test is about 1.66. For the one-
sided test stated in Part A, we reject the null hypothesis if the ¢-statistic on
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the slope coefficient is less than —1.66. As the ¢-statistic of -2.7604 < -1.66,
we reject the null. Because the dummy variable takes on a value of 1 when
foreign investment is allowed, we can conclude that the volatility was lower
with foreign investment.

C According to the estimated regression, average return volatility was 0.0133
(the estimated value of the intercept) before July 1993 and 0.0058 (= 0.0133
- 0.0075) after July 1993.

7 A The appropriate regression model is Ry, = by + b; Party, + ;.

The t-statistic reported in the table for the dummy variable tests whether
the coefficient on Party, is significantly different from 0. It is computed as

follows:
b —b _ -0.0570 -0 _m
83 0.0466
1
where

by = regression estimate of b;
b, = the hypothesized value of the coefficient (here, 0)

8j, = the estimated standard error of 61

To two decimal places, this value is the same as the ¢-statistic reported in
the table for the dummy variable, as expected. The problem specified two
decimal places because the reported regression output reflects rounding; for
this reason, we often cannot exactly reproduce reported ¢-statistics.

C Because the regression has 77 observations and two coefficients, the ¢-test
has 77 — 2 = 75 degrees of freedom. At the 0.05 significance level, the critical
value for the two-tailed test statistic is about 1.99. The absolute value of the
test statistic is 1.2242; therefore, we do not reject the null hypothesis that b,
= 0. We can conclude that the political party in the White House does not,
on average, affect the annual returns of the overall market as measured by
the S&P 500.

8 A The regression model is as follows:

(Analyst following); = by + b;Size; + by(D/E); + b3S&P; + ¢;

where (Analyst following); is the natural log of (1 + number of analysts
following company i); Size; is the natural log of the market capitalization
of company i in millions of dollars; (D/E), is the debt-to-equity ratio for
company i, and S&P; is a dummy variable with a value of 1 if the company i
belongs to the S&P 500 Index and 0 otherwise.

B The appropriate null and alternative hypotheses are Hy: b3 = 0 and H: by =
0, respectively.
C The ¢-statistic to test the null hypothesis can be computed as follows:
by —by  0.4218-0

= = 4.5898

5p,s 0.0919

This value is, of course, the same as the value reported in the table. The
regression has 500 observations and 4 regression coefficients, so the ¢-test
has 500 — 4 = 496 degrees of freedom. At the 0.05 significance level, the crit-
ical value for the test statistic is between 1.96 and 1.97. Because the value of
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the test statistic is 4.5898 we can reject the null hypothesis that b5 = 0. Thus
a company’s membership in the S&P 500 appears to significantly influence
the number of analysts who cover that company.

The estimated model is

(Analyst following), = ~0.0075 + 0.2648Size; — 0.1829(D/E),
+ 042188&P| + &

Therefore the prediction for number of analysts following the indicated
company that is not part of the S&P 500 Index is

(Analyst following); = -0.0075 + 0.2648(In 10,000) — 0.1829(2/3) +
0.4218(0)
=-0.0075 + 2.4389 - 0.1219 + 0
= 2.3095

Recalling that (Analyst following); is the natural log of (1 + #,), where #; is
the number of analysts following company i; it ensues (coding the company
under consideration as 1) that 1 + 1, = 2399 = 10.069, approximately.
Therefore, the prediction is that #; = 10.069 — 1 = 9.069, or about nine

analysts.

Similarly, the prediction for the company that is included in the S&P 500
Index is

(Analyst following); = -0.0075 + 0.2648(In 10,000) — 0.1829(2/3) +
0.4218(1)
= -0.0075 + 2.4389 - 0.1219 + 0.4218
=2.7313

Coding the company that does belong to the S&P 500 as 2, 1 + 1, = 27313 =
15.353. Therefore, the prediction is that n, = 15.353 — 1 = 14.353, or about
14 analysts.

There is no inconsistency in the coefficient on the size variable differing
between the two regressions. The regression coefficient on an independent
variable in a multiple regression model measures the expected net effect on
the expected value of the dependent variable for a one-unit increase in that
independent variable, after accounting for any effects of the other indepen-
dent variables on the expected value of the dependent variable. The earlier
regression had one fewer independent variable; after the effect of S&P 500
membership on the expected value of the dependent variable is taken into
account, it is to be expected that the effect of the size variable on the depen-
dent variable will change. What the regressions appear to indicate is that the
net effect of the size variable on the expected analyst following diminishes
when S&P 500 membership is taken into account.

In a well-specified regression, the differences between the actual and pre-
dicted relationship should be random; the errors should not depend on the
value of the independent variable. In this regression, the errors seem larger
for smaller values of the book-to-market ratio. This finding indicates that
we may have conditional heteroskedasticity in the errors, and consequently,
the standard errors may be incorrect. We cannot proceed with hypothesis
testing until we test for and, if necessary, correct for heteroskedasticity.

A test for heteroskedasticity is to regress the squared residuals from the esti-
mated regression equation on the independent variables in the regression.
As seen in Section 4.1.2, Breusch and Pagan showed that, under the null
hypothesis of no conditional heteroskedasticity, # x R? (from the regression
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of the squared residuals on the independent variables from the original
regression) will be a x> random variable, with the number of degrees of free-
dom equal to the number of independent variables in the regression.

C  One method to correct for heteroskedasticity is to use robust standard
errors. This method uses the parameter estimates from the linear regres-
sion model but corrects the standard errors of the estimated parameters to
account for the heteroskedasticity. Many statistical software packages can
easily compute robust standard errors.

10 The test statistic is #R2, where 7 is the number of observations and R? is the R?
of the regression of squared residuals. So, the test statistic is 52 x 0.141 = 7.332.
Under the null hypothesis of no conditional heteroskedasticity, this test statis-
tic is a x> random variable. There are three degrees of freedom, the number of
independent variables in the regression. Appendix C, at the end of this volume,
shows that for a one-tailed test, the test statistic critical value for a variable
from a x? distribution with 3 degrees of freedom at the 0.05 significance level
is 7.815. The test statistic from the Breusch—Pagan test is 7.332. So, we can-
not reject the hypothesis of no conditional heteroskedasticity at the 0.05 level.
Therefore, we do not need to correct for conditional heteroskedasticity.

11 A The test statistic is 7R2, where # is the number of observations and R? is
the R2 of the regression of squared residuals. So, the test statistic is 750 x
0.006 = 4.5. Under the null hypothesis of no conditional heteroskedastic-
ity, this test statistic is a x> random variable. Because the regression has
only one independent variable, the number of degrees of freedom is equal
to 1. Appendix C, at the end of this volume, shows that for a one-tailed
test, the test statistic critical value for a variable from a x? distribution
with one degree of freedom at the 0.05 significance level is 3.841. The test
statistic is 4.5. So, we can reject the hypothesis of no conditional heteroske-
dasticity at the 0.05 level. Therefore, we need to correct for conditional
heteroskedasticity.

B Two different methods can be used to correct for the effects of conditional
heteroskedasticity in linear regression models. The first method involves
computing robust standard errors. This method corrects the standard
errors of the linear regression model’s estimated parameters to account
for the conditional heteroskedasticity. The second method is generalized
least squares. This method modifies the original equation in an attempt to
eliminate the heteroskedasticity. The new, modified regression equation is
then estimated under the assumption that heteroskedasticity is no longer a
problem.

Many statistical software packages can easily compute robust standard
errors (the first method), and we recommend using them.

12 A Because the value of the Durbin—Watson statistic is less than 2, we can say
that the regression residuals are positively correlated. Because this statistic
is fairly close to 2, however, we cannot say without a statistical test if the
serial correlation is statistically significant.

B From January 1987 through December 2002, there are 16 years, or 16 x 12 =
192 monthly returns. Thus the sample analyzed is quite large. Therefore, the
Durbin—Watson statistic is approximately equal to 2(1 - r), where 7 is the
sample correlation between the regression residuals from one period and
those from the previous period.

DW =1.8953 ~ 2(1 - r)
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So,r=1-DW/2 =1 - 1.8953/2 = 0.0524. Consistent with our answer to
Part A, the correlation coefficient is positive.

Appendix E indicates that the critical values &; and d,, for 100 observations
when there is one independent variable are 1.65 and 1.69, respectively.
Based on the information given in the problem, the critical values d; and

d,, for about 200 observations when there is one independent variable are
about 1.74 and 1.78, respectively. Because the DW statistic of 1.8953 for our
regression is above d,,, we fail to reject the null hypothesis of no positive
serial correlation. Therefore, we conclude that there is no evidence of posi-
tive serial correlation for the error term.

This problem is known as multicollinearity. When some linear combinations
of the independent variables in a regression model are highly correlated, the
standard errors of the independent coefficient estimates become quite large,
even though the regression equation may fit rather well.

The choice of independent variables presents multicollinearity concerns
because market value of equity appears in both variables.

The classic symptom of multicollinearity is a high R? (and significant
F-statistic) even though the ¢-statistics on the estimated slope coefficients
are insignificant. Here a significant F-statistic does not accompany the insig-
nificant ¢-statistics, so the classic symptom is not present.

To test the null hypothesis that all of the regression coefficients except for
the intercept in the multiple regression model are equal to 0 (Hy: b = b, =
by = 0) against the alternative hypothesis that at least one slope coefficient is
not equal to 0, we must use an F-test.

~ RSSk 0.1720/3
~SSE/[n—(k+1)]  0.8947/[156 - (3 +1)]

= 9.7403

The F-statistic has degrees of freedom Fik, [n - (k + 1)]} = F(3, 152). From
the F-test table, the critical value for F(3, 120) = 2.68 and F(3, 152) will be
less than F(3, 120), so we can reject at the 0.05 significance level the null
hypothesis that the slope coefficients are all 0. Changes in the three inde-
pendent variables are jointly statistically related to returns.

None of the ¢-statistics are significant, but the F-statistic is significant. This
suggests the possibility of multicollinearity in the independent variables.

The apparent multicollinearity is very likely related to the inclusion of both
the returns on the S&P 500 Index and the returns on a value-weighted index
of all the companies listed on the NYSE, AMEX, and NASDAQ as indepen-
dent variables. The value-weighting of the latter index, giving relatively high
weights to larger companies such as those included in the S&P 500, may
make one return series an approximate linear function of the other. By drop-
ping one or the other of these two variables, we might expect to eliminate
the multicollinearity.

Your colleague is indicating that you have omitted an important variable
from the regression. This problem is called the omitted variable bias. If the
omitted variable is correlated with an included variable, the estimated values
of the regression coefficients would be biased and inconsistent. Moreover,
the estimates of standard errors of those coefficients would also be incon-
sistent. So, we cannot use either the coefficient estimates or the estimates of
their standard errors to perform statistical tests.
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B A comparison of the new estimates with the original estimates clearly
indicates that the original model suffered from the omitted variable bias due
to the exclusion of company size from that model. As the ¢-statistics of the
new model indicate, company size is statistically significant. Further, for the
debt-to-equity ratio, the absolute value of the estimated coefficient sub-
stantially increases from 0.1043 to 0.1829, while its standard error declines.
Consequently, it becomes significant in the new model, in contrast to the
original model, in which it is not significant at the 5 percent level. The value
of the estimated coefficient of the S&P 500 dummy substantially declines
from 1.2222 to 0.4218. These changes imply that size should be included in
the model.

A You need to use a qualitative dependent variable. You could give a value of 1
to this dummy variable for a listing in the United States and a value of 0 for
not listing in the United States.

B Because you are using a qualitative dependent variable, linear regression
is not the right technique to estimate the model. One possibility is to use
either a probit or a logit model. Both models are identical, except that the
logit model is based on logistic distribution while the probit model is based
on normal distribution. Another possibility is to use discriminant analysis.

C is correct. The predicted initial return (IR) is:

IR = 0.0477 + (0.0150 x 6) + (0.435 x 0.04) — (0.0009 x 40) + (0.05 x
0.70)
= 0.1541

B is correct. The 95% confidence interval is 0.435 + (0.0202 x 1.96) = (0.395,
0.475).

C is correct. To test Hansen’s belief about the direction and magnitude of the
initial return, the test should be a one-tailed test. The alternative hypothesis is
H;: b; < 0.5, and the null hypothesis is Hy: b; > 0.5. The correct test statistic is:

t = (0.435 - 0.50)/0.0202 = —-3.22, and the critical value of the ¢-statistic for a
one-tailed test at the 0.05 level is —1.645. The test statistic is significant, and the
null hypothesis can be rejected at the 0.05 level of significance.

C is correct. The multiple R-squared for the regression is 0.36; thus, the model
explains 36 percent of the variation in the dependent variable. The correlation
between the predicted and actual values of the dependent variable is the square
root of the R-squared or J0.36 = 0.60.

A is correct. Chang is correct because the presence of conditional heteroske-
dasticity results in consistent parameter estimates, but biased (up or down)
standard errors, ¢-statistics, and F-statistics.

A is correct. Chang is correct because a correlated omitted variable will result
in biased and inconsistent parameter estimates and inconsistent standard
errors.

B is correct.

The F-test is used to determine if the regression model as a whole is significant.
F = Mean square regression (MSR) + Mean squared error (MSE)
MSE = SSE/[n - (k + 1)] = 19,048 + 427 = 44.60
MSR = SSR/k = 1071 + 3 = 357
F =357 + 44.60 = 8.004
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The critical value for degrees of freedom of 3 and 427 with a = 0.05 (one-tail) is
F = 2.63 from Exhibit 5. The calculated F is greater than the critical value, and
Chiesa should reject the null hypothesis that all regression coefficients are equal
to zero.

B is correct. The Durbin—Watson test used to test for serial correlation in the
error term, and its value reported in Exhibit 1 is 1.65. For no serial correlation,
DW is approximately equal to 2. If DW < dj, the error terms are positively seri-
ally correlated. Because the DW = 1.65 is less than d; = 1.827 for n = 431 (see
Exhibit 2), Chiesa should reject the null hypothesis of no serial correlation and
conclude that there is evidence of positive serial correlation among the error
terms.

B is correct. The coefficient for the Pres party dummy variable (3.17) represents
the increment in the mean value of the dependent variable related to the
Democratic Party holding the presidency. In this case, the excess stock market
return is 3.17 percent greater in Democratic presidencies than in Republican
presidencies.

B is correct. The confidence interval is computed as a; * s(a;) x £(95%,). From
Exhibit 1, a; = 3.04 and t(a,) = 4.52, resulting in a standard error of a; = s(a;)

= 3.04/4.52 = 0.673. The critical value for ¢ from Exhibit 3 is 1.96 for p = 0.025.
The confidence interval for a; is 3.04 + 0.673 x 1.96 = 3.04 + 1.31908 or from
1.72092 to 4.35908.

C is correct. The default spread is typically larger when business conditions
are poor, i.e., a greater probability of default by the borrower. The positive sign
for default spread (see Exhibit 1) indicates that expected returns are positively
related to default spreads, meaning that excess returns are greater when busi-
ness conditions are poor.

C is correct. Predictions in a multiple regression model are subject to both
parameter estimate uncertainty and regression model uncertainty.

C is correct. The F-statistic is

RSS/k 714.169/8  89.2712
- - - =30.79
SSE/[n—(k+1)] 1583.113/546  2.8995

Because F = 30.79 exceeds the critical F of 1.96, the null hypothesis that the
regression coefficients are all 0 is rejected at the 0.05 significance level.

B is correct. The estimated coefficients for the dummy variables show the esti-
mated difference between the returns on different types of funds. The growth
dummy takes the value of 1 for growth funds and O for the value fund. Exhibit 1
shows a growth dummy coefficient of 2.4368. The estimated difference between
the return of growth funds and value funds is thus 2.4368.

B is correct. The R2 is expected to increase, not decline, with a new indepen-
dent variable. The other two potential consequences Honoré describes are
correct.

C is correct. Using dummy variables to distinguish among n categories would
best capture the ability of the Morningstar rating system to predict mutual
fund performance. We need # — 1 dummy variables to distinguish among »
categories. In this case, there are five possible ratings and we need four dummy
variables. Adding an independent variable that has a value equal to the number
of stars in the rating of each fund is not appropriate because if the coefficient
for this variable is positive, this method assumes that the extra return for a
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two-star fund is twice that of a one-star fund, the extra return for a three-star
fund is three times that of a one-star fund, and so forth, which is not a reason-
able assumption.

A is correct. Heteroskedasticity causes the F-test for the overall significance of
the regression to be unreliable. It also causes the ¢-tests for the significance of
individual regression coefficients to be unreliable because heteroskedasticity
introduces bias into estimators of the standard error of regression coefficients.

A is correct. The model in Exhibit 2 does not have a lagged dependent variable.
Positive serial correlation will, for such a model, not affect the consistency of
the estimated coefficients. Thus, the coefficients will not need to be corrected
for serial correlation. Positive serial correlation will, however, cause the stan-
dard errors of the regression coefficients to be understated; thus, the corre-
sponding ¢-statistics will be inflated.

A is correct. The critical Durbin—Watson (D—W) values are d; = 1.63 and d,, =
1.72. Because the estimated D—W value of 1.81 is greater than 4, = 1.73 (and
less than 2), she fails to reject the null hypothesis of no serial correlation.

B is correct. Probit and logit models are used for models with qualitative depen-
dent variables, such as models in which the dependent variable can have one of
two discreet outcomes (i.e., 0 or 1). The analysis in the two exhibits are explain-
ing security returns, which are continuous (not 0 or 1) variables.

A is correct. Varden expects to find that CEO tenure is positively related to

the firm’s ROE. If he is correct, the regression coefficient for tenure, b,, will be
greater than zero (b, > 0) and statistically significant. The null hypothesis sup-
poses that the “suspected” condition is not true, so the null hypothesis should
state the variable is less than or equal to zero. The ¢-statistic for tenure is 2.308,
significant at the 0.027 level, meeting Varden’s 0.05 significance requirement.
Varden should reject the null hypothesis.

C is correct. The t-statistic for tenure is 2.308, indicating significance at the
0.027 level but not the 0.01 level. The ¢-statistic for ESG is 1.201, with a p-value
of 0.238, which means we fail to reject the null hypothesis for ESG at the 0.01
significance level.

B is correct. The ¢-statistic for tenure is 2.308, which is significant at the 0.027
level. The ¢-statistic for ESG is 1.201, with a p-value of 0.238. This result is not
significant at the 0.05 level.

C is correct. The regression equation is as follows:

Yi=9.442 + 0.069X; + 0.681X,,

ROE = 9.442 + 0.069(ESG) + 0.681(Tenure)
=9.442 + 0.069(55) + 0.681(10.5)
=9.442 + 3.795 + 7.151
= 20.388.

B is correct. When you add an additional independent variable to the regression
model, the amount of unexplained variance will decrease, provided the new
variable explains any of the previously unexplained variation. This result occurs
as long as the new variable is even slightly correlated with the dependent vari-
able. Exhibit 2 indicates the dividend growth rate is correlated with the depen-
dent variable, ROE. Therefore, R? will increase.
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Adjusted R?, however, may not increase and may even decrease if the relation-
ship is weak. This result occurs because in the formula for adjusted R?, the new
variable increases k (the number of independent variables) in the denominator,
and the increase in R? may be insufficient to increase the value of the formula.

adjusted R*=1- (n—_lj(l - Rz)
n—k-1

C is correct. Exhibit 1 indicates that the F-statistic of 4.161 is significant at the
0.05 level. A significant F-statistic means at least one of the independent vari-
ables is significant.

C is correct. In a multiple linear regression (as compared with simple regres-
sion), R? is less appropriate as a measure of whether a regression model fits the
data well. A high adjusted R? does not necessarily indicate that the regression
is well specified in the sense of including the correct set of variables. The F-test
is an appropriate test of a regression’s overall significance in either simple or
multiple regressions.

C is correct. Multiple linear regression assumes that the relationship between
the dependent variable and each of the independent variables is linear. Varden
believes that this is not true for dividend growth because he believes the rela-
tionship may be different in firms with a long-standing CEO. Multiple linear
regression also assumes that the independent variables are not random. Varden
states that he believes CEO tenure is a random variable.

B is correct. If we use adjusted R? to compare regression models, it is important
that the dependent variable be defined the same way in both models and that
the sample sizes used to estimate the models are the same. Varden’s first model
was based on 40 observations, whereas the second model was based on 500.



READING

Time-Series Analysis

by Richard A. DeFusco, PhD, CFA, Dennis W. McLeavey, DBA, CFA,
Jerald E. Pinto, PhD, CFA, and David E. Runkle, PhD, CFA

Richard A. DeFusco, PhD, CFA, is at the University of Nebraska-Lincoln (USA). Dennis W.
McLeavey, DBA, CFA, is at the University of Rhode Island (USA). Jerald E. Pinto, PhD,
CFA, is at CFA Institute (USA). David E. Runkle, PhD, CFA, is at Jacobs Levy Equity
Management (USA).

LEARNING OUTCOMES

Mastery

The candidate should be able to:

[
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a. calculate and evaluate the predicted trend value for a time series,
modeled as either a linear trend or a log-linear trend, given the
estimated trend coefficients;

b. describe factors that determine whether a linear or a log-linear
trend should be used with a particular time series and evaluate
limitations of trend models;

c. explain the requirement for a time series to be covariance
stationary and describe the significance of a series that is not
stationary;

d. describe the structure of an autoregressive (AR) model of order
p and calculate one- and two-period-ahead forecasts given the
estimated coefficients;

e. explain how autocorrelations of the residuals can be used to test
whether the autoregressive model fits the time series;

f. explain mean reversion and calculate a mean-reverting level;
g. contrast in-sample and out-of-sample forecasts and compare the

forecasting accuracy of different time-series models based on the
root mean squared error criterion;

h. explain the instability of coefficients of time-series models;
i. describe characteristics of random walk processes and contrast
them to covariance stationary processes;

j. describe implications of unit roots for time-series analysis,
explain when unit roots are likely to occur and how to test for
them, and demonstrate how a time series with a unit root can be
transformed so it can be analyzed with an AR model;

(continued)
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LEARNING OUTCOMES

Mastery | The candidate should be able to:

] k. describe the steps of the unit root test for nonstationarity and
explain the relation of the test to autoregressive time-series
models;

] . explain how to test and correct for seasonality in a time-series

model and calculate and interpret a forecasted value using an AR
model with a seasonal lag;

] m. explain autoregressive conditional heteroskedasticity (ARCH)
and describe how ARCH models can be applied to predict the
variance of a time series;

] n. explain how time-series variables should be analyzed for
nonstationarity and/or cointegration before use in a linear
regression; and

] o. determine an appropriate time-series model to analyze a given
investment problem and justify that choice.

INTRODUCTION TO TIME-SERIES ANALYSIS AND
CHALLENGES OF WORKING WITH TIME SERIES

As financial analysts, we often use time-series data to make investment decisions. A
time series is a set of observations on a variable’s outcomes in different time periods:
the quarterly sales for a particular company during the past five years, for example, or
the daily returns on a traded security. In this reading, we explore the two chief uses
of time-series models: to explain the past and to predict the future of a time series.
We also discuss how to estimate time-series models, and we examine how a model
describing a particular time series can change over time. The following two examples
illustrate the kinds of questions we might want to ask about time series.

Suppose it is the beginning of 2020 and we are managing a US-based investment
portfolio that includes Swiss stocks. Because the value of this portfolio would decrease
if the Swiss franc depreciates with respect to the dollar, and vice versa, holding all else
constant, we are considering whether to hedge the portfolio’s exposure to changes
in the value of the franc. To help us in making this decision, we decide to model the
time series of the franc/dollar exchange rate. Exhibit 1 shows monthly data on the
franc/dollar exchange rate. The data are monthly averages of daily exchange rates. Has
the exchange rate been more stable since 1987 than it was in previous years? Has the
exchange rate shown a long-term trend? How can we best use past exchange rates to
predict future exchange rates?
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Exhibit 1 Swiss Franc/US Dollar Exchange Rate, Monthly Average of Daily

Data
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Source: Board of Governors of the Federal Reserve System.

As another example, suppose it is the beginning of 2020. We cover retail stores for
a sell-side firm and want to predict retail sales for the coming year. Exhibit 2 shows
monthly data on US retail sales. The data are not seasonally adjusted, hence the spikes
around the holiday season at the turn of each year. Because the reported sales in the
stores’ financial statements are not seasonally adjusted, we model seasonally unadjusted
retail sales. How can we model the trend in retail sales? How can we adjust for the
extreme seasonality reflected in the peaks and troughs occurring at regular intervals?
How can we best use past retail sales to predict future retail sales?

Exhibit2 Monthly US Retail Sales
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Source: US Department of Commerce, Census Bureau.
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Some fundamental questions arise in time-series analysis: How do we model
trends? How do we predict the future value of a time series based on its past values?
How do we model seasonality? How do we choose among time-series models? And
how do we model changes in the variance of time series over time? We address each
of these issues in this reading.

We first describe typical challenges in applying the linear regression model to time-
series data. We present linear and log-linear trend models, which describe, respectively,
the value and the natural log of the value of a time series as a linear function of time.
We then present autoregressive time-series models—which explain the current value
of a time series in terms of one or more lagged values of the series. Such models are
among the most commonly used in investments, and the section addresses many
related concepts and issues. We then turn our attention to random walks. Because
such time series are not covariance stationary, they cannot be modeled using autore-
gressive models unless they can be transformed into stationary series. We therefore
explore appropriate transformations and tests of stationarity. The subsequent sections
address moving-average time-series models and discuss the problem of seasonality
in time series and how to address it. We also cover autoregressive moving-average
models, a more complex alternative to autoregressive models. The last two topics are
modeling changing variance of the error term in a time series and the consequences
of regression of one time series on another when one or both time series may not be
covariance stationary.

1.1 Challenges of Working with Time Series

Throughout the reading, our objective will be to apply linear regression to a given
time series. Unfortunately, in working with time series, we often find that the assump-
tions of the linear regression model are not satisfied. To apply time-series analysis,
we need to assure ourselves that the linear regression model assumptions are met.
When those assumptions are not satisfied, in many cases we can transform the time
series or specify the regression model differently, so that the assumptions of the linear
regression model are met.

We can illustrate assumption difficulties in the context of a common time-series
model, an autoregressive model. Informally, an autoregressive model is one in which
the independent variable is a lagged (that is, past) value of the dependent variable,
such as the model %, = by + byx,_; + €, (we could also write the equation as y, = b
+ b1y,_1 + €,). Specific problems that we often encounter in dealing with time series
include the following:

B The residual errors are correlated instead of being uncorrelated. In the calcu-
lated regression, the difference between x, and b + byx,_; is called the residual
error (g;). The linear regression assumes that this error term is not correlated
across observations. The violation of that assumption is frequently more critical
in terms of its consequences in the case of time-series models involving past
values of the time series as independent variables than for other models (such
as cross-sectional models) in which the dependent and independent variables
are distinct. As we discussed in the reading on multiple regression, in a regres-
sion in which the dependent and independent variables are distinct, serial
correlation of the errors in this model does not affect the consistency of our
estimates of intercept or slope coeflicients. By contrast, in an autoregressive
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time-series regression, such as x; = by + byx;_1 + €, serial correlation in the
error term causes estimates of the intercept (by) and slope coefficient (b;) to be
inconsistent.

B The mean or variance of the time series changes over time. Regression results
are invalid if we estimate an autoregressive model for a time series with mean
or variance that changes over time.

Before we try to use time series for forecasting, we may need to transform the
time-series model so that it is well specified for linear regression. With this objective in
mind, you will observe that time-series analysis is relatively straightforward and logical.

LINEAR TREND MODELS 2

a calculate and evaluate the predicted trend value for a time series, modeled as
either a linear trend or a log-linear trend, given the estimated trend coefficients;

Estimating a trend in a time series and using that trend to predict future values of the
time series is the simplest method of forecasting. For example, we saw in Exhibit 2
that monthly US retail sales show a long-term pattern of upward movement—that is,
a trend. In this section, we examine two types of trends—linear trends and log-linear
trends—and discuss how to choose between them.

2.1 Linear Trend Models

The simplest type of trend is a linear trend, one in which the dependent variable
changes at a constant rate with time. If a time series, y,, has a linear trend, then we
can model the series using the following regression equation:

Ye=by+bit+e,t=1,2,...,7T, (1)
where

y; = the value of the time series at time ¢ (value of the dependent variable)
by = the y-intercept term
b, = the slope coefficient
t = time, the independent or explanatory variable
g; = a random error term

In Equation 1, the trend line, by + bt, predicts the value of the time series at time
t (where ¢ takes on a value of 1 in the first period of the sample and increases by 1 in
each subsequent period). Because the coefficient by is the slope of the trend line, we
refer to b, as the trend coefficient. We can estimate the two coefficients, b, and b,
using ordinary least squares, denoting the estimated coefficients as bo and by. Recall
that ordinary least squares is an estimation method based on the criterion of mini-
mizing the sum of a regression’s squared residuals.

Now we demonstrate how to use these estimates to predict the value of the time
series in a particular period. Recall that ¢ takes on a value of 1 in Period 1. Therefore,

the predicted or fitted value of y, in Period 1 is y, = bo + 131(1). Similarly, in a subse-
quent period—say, the sixth period—the fitted value is )A/é = bo + by (6). Now suppose

that we want to predict the value of the time series for a period outside the sample—

say, period T + 1. The predicted value of y, for period T + 1 is )A/TH = bo + l;l(T +1).
For example, if bo is 5.1 and by is 2, then at £ = 5 the predicted value of ys is 15.1 and
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at t = 6 the predicted value of y, is 17.1. Note that each consecutive observation in

this time series increases by by =2, irrespective of the level of the series in the previous
period.

EXAMPLE 1

The Trend in the US Consumer Price Index

It is January 2020. As a fixed-income analyst in the trust department of a bank,
Lisette Miller is concerned about the future level of inflation and how it might
affect portfolio value. Therefore, she wants to predict future inflation rates. For
this purpose, she first needs to estimate the linear trend in inflation. To do so,
she uses the monthly US Consumer Price Index (CPI) inflation data, expressed
as an annual percentage rate, (1% is represented as 1.0) shown in Exhibit 3. The
data include 228 months from January 1995 through June 2019, and the model
to be estimated is y, = by + byt + €, t = 1, 2, . .., 294. The table in Exhibit 4
shows the results of estimating this equation. With 294 observations and two
parameters, this model has 292 degrees of freedom. At the 0.05 significance

level, the critical value for a t-statistic is 1.97. The intercept (60 = 2.7845) is
statistically significant because the value of the ¢-statistic for the coefficient is
well above the critical value. The trend coefficient is negative (61 = —0.0037),

suggesting a slightly declining trend in inflation during the sample time period.
However, the trend is not statistically significant because the absolute value of
the ¢-statistic for the coefficient is below the critical value. The estimated regres-
sion equation can be written as

¥y = 2.7845 — 0.0037¢.

Exhibit3 Monthly CPI Inflation, Not Seasonally Adjusted
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Source: Bureau of Labor Statistics.
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Exhibit4 Estimating a Linear Trend in Inflation: Monthly

Observations, January 1995-June 2019

Regression Statistics

R? 0.0099
Standard error 3.1912
Observations 294
Durbin—Watson 1.2145

Coefficient Standard Error t-Statistic
Intercept 2.7845 0.3732 7.4611
t (Trend) -0.0037 0.0022 -1.68

Source: US Bureau of Labor Statistics.

Because the trend line slope is estimated to be —0.0037, Miller concludes
that the linear trend model’s best estimate is that the annualized rate of inflation
declined at a rate of about 37 bps per month during the sample time period. The
decline is not statistically significantly different from zero.

In January 1995, the first month of the sample, the predicted value of inflation

is 91 =2.7845 - 0.0037(1) = 2.7808%. In June 2019, the 294th, or last, month of

the sample, the predicted value of inflation is 9228 = 2.7845 - 0.0037(294) =

1.697%. Note, though, that these predicted values are for in-sample periods. A
comparison of these values with the actual values indicates how well Miller’s
model fits the data; however, a main purpose of the estimated model is to predict
the level of inflation for out-of-sample periods. For example, for June 2020 (12
months after the end of the sample), t = 294 + 12 = 306, and the predicted level

of inflation is Y3, = 2.7845 — 0.0037(306) = 1.6523%.

Exhibit 5 shows the inflation data along with the fitted trend. Consistent with
the negative but small and statistically insignificant trend coefficient, the fitted
trend line is slightly downward sloping. Note that inflation does not appear to
be above or below the trend line for a long period of time. No persistent differ-
ences exist between the trend and actual inflation. The residuals (actual minus
trend values) appear to be unpredictable and uncorrelated in time. Therefore,
using a linear trend line to model inflation rates from 1995 through 2019 does
not appear to violate the assumptions of the linear regression model. Note also
that the R? in this model is quite low, indicating great uncertainty in the infla-
tion forecasts from this model. In fact, the estimated model explains only 0.99%
of the variation in monthly inflation. Although linear trend models have their
uses, they are often inappropriate for economic data. Most economic time series
reflect trends with changing slopes and/or intercepts over time. The linear trend
model identifies the slope and intercept that provides the best linear fit for all
past data. The model’s deviation from the actual data can be greatest near the
end of a data series, which can compromise forecasting accuracy. Later in this
reading, we will examine whether we can build a better model of inflation than
a model that uses only a trend line.
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Exhibit5 Monthly CPI Inflation with Trend
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Source: US Bureau of Labor Statistics.

LOG-LINEAR TREND MODELS

a calculate and evaluate the predicted trend value for a time series, modeled as
either a linear trend or a log-linear trend, given the estimated trend coefficients;

b describe factors that determine whether a linear or a log-linear trend should be
used with a particular time series and evaluate limitations of trend models;

Sometimes a linear trend does not correctly model the growth of a time series. In those
cases, we often find that fitting a linear trend to a time series leads to persistent rather
than uncorrelated errors. If the residuals from a linear trend model are persistent, then
we need to employ an alternative model satisfying the conditions of linear regression.
For financial time series, an important alternative to a linear trend is a log-linear
trend. Log-linear trends work well in fitting time series that have exponential growth.

Exponential growth means constant growth at a particular rate. For example,
annual growth at a constant rate of 5% is exponential growth. How does exponential
growth work? Suppose we describe a time series by the following equation:

V= eb°+b1t, t=1,2,..,T. (2)

Exponential growth is growth at a constant rate (ebl - 1) with continuous compound-

ing. For instance, consider values of the time series in two consecutive periods. In

bo+by(1)

Period 1, the time series has the value y; = ¢ , and in Period 2, it has the value

yy = e”o+ b(2)
is yoly1 = (ebOerl(z))/(ebwbl(l)) = A0, Generally, in any period ¢, the time series has

the value y, = eb°+b‘(t). In period ¢ + 1, the time series has the value y,,; = eb°+b'(l+1).

. The resulting ratio of the values of the time series in the first two periods
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The ratio of the values in the periods (¢ + 1) and ¢ is y,,1/y, = eb"+b‘(t+1)/eb° +hi()

= ebl(l). Thus, the proportional rate of growth in the time series over two consecutive

periods is always the same: (y;,1 — y)/y; =y 1/y;— 1 = e’ — 1. For example, if we use
annual periods and ¢ = 1.04 for a particular series, then that series grows by 1.04
-1 =0.04, or 4% a year. Therefore, exponential growth is growth at a constant rate.
Continuous compounding is a mathematical convenience that allows us to restate the
equation in a form that is easy to estimate.

If we take the natural log of both sides of Equation 2, the result is the following
equation:

Iny,=by+b1t,t=1,2,..., T

Therefore, if a time series grows at an exponential rate, we can model the natural log
of that series using a linear trend (an exponential growth rate is a compound growth
rate with continuous compounding). Of course, no time series grows exactly at a
constant rate. Consequently, if we want to use a log-linear model, we must estimate
the following equation:

lnyt=b0+b1t+€trt=1;2,...,T. (3)

Note that this equation is linear in the coefficients by and b;. In contrast to a linear
trend model, in which the predicted trend value of y, is bo + b1z, the predicted trend

value of y, in a log-linear trend model is " because "V = Yy

Examining Equation 3, we see that a log-linear model predicts that In y, will increase
by b from one time period to the next. The model predicts a constant growth rate in

y; of e —1. For example, if b; = 0.05, then the predicted growth rate of y, in each
period is €%9° — 1 = 0.051271, or 5.13%. In contrast, the linear trend model (Equation 1)
predicts that y, grows by a constant amount from one period to the next.

Example 2 illustrates the problem of nonrandom residuals in a linear trend model,
and Example 3 shows a log-linear regression fit to the same data.

EXAMPLE 2

A Linear Trend Regression for Quarterly Sales at Starbucks

In September 2019, technology analyst Ray Benedict wants to use Equation 1
to fit the data on quarterly sales for Starbucks Corporation shown in Exhibit 6.
Starbucks’ fiscal year ends in June. Benedict uses 74 observations on Starbucks’
sales from the second quarter of fiscal year 2001 (starting in April 2001) to the
third quarter of fiscal year 2019 (ending in June 2019) to estimate the linear
trend regression model y, = by + byt + €, t = 1, 2, ..., 74. Exhibit 7 shows the
results of estimating this equation.

175
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Exhibit6 Starbucks Quarterly Sales by Fiscal Year
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Source: Bloomberg.

Exhibit7 Estimating a Linear Trend in Starbucks Sales

Regression Statistics

R? 0.9603
Standard error 353.36
Observations 74
Durbin—Watson 0.40

Coefficient Standard Error t-Statistic
Intercept 137.4213 82.99 1.6559
t (Trend) 80.2060 1.9231 41.7066

Source: Bloomberg.

At first glance, the results shown in Exhibit 7 seem quite reasonable: The
trend coefficient is highly statistically significant. When Benedict plots the
data on Starbucks’ sales and the trend line, however, he sees a different pic-
ture. As Exhibit 8 shows, before 2008 the trend line is persistently below sales.
Subsequently, until 2015, the trend line is persistently above sales and then
varies somewhat thereafter.
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Exhibit8 Starbucks Quarterly Sales with Trend
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Source: Bloomberg.

Recall a key assumption underlying the regression model: that the regression
errors are not correlated across observations. If a trend is persistently above or
below the value of the time series, however, the residuals (the difference between
the time series and the trend) are serially correlated. Exhibit 9 shows the resid-
uals (the difference between sales and the trend) from estimating a linear trend
model with the raw sales data. The figure shows that the residuals are persistent:
They are consistently negative from 2008 to 2015 and consistently positive from
2001 to 2008 and from 2017 to 2019.

Because of this persistent serial correlation in the errors of the trend model,
using a linear trend to fit sales at Starbucks would be inappropriate, even though
the R? of the equation is high (0.96). The assumption of uncorrelated residual
errors has been violated. Because the dependent and independent variables
are not distinct, as in cross-sectional regressions, this assumption violation is
serious and causes us to search for a better model.
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Exhibit9 Residual from Predicting Starbucks Sales with a Trend

1,000
800
600
400
200

0

-200

—400

-600

_800 1 1 1 1
1/Apr/01 2/Jan/05 28/Sep/08 1/Jul/12 27/Mar/16

Source: Bloomberg.

EXAMPLE 3

A Log-Linear Regression for Quarterly Sales at Starbucks

Having rejected a linear trend model in Example 2, technology analyst Benedict
now tries a different model for the quarterly sales for Starbucks Corporation
from the second quarter of 2001 to the third quarter of 2019. The curvature in
the data plot shown in Exhibit 6 provides a hint that an exponential curve may
fit the data. Consequently, he estimates the following linear equation:

Iny,=by+bit+e,t=12,...,74
This equation seems to fit the sales data well. As Exhibit 10 shows, the R?

for this equation is 0.95. An R? of 0.95 means that 95% of the variation in the
natural log of Starbucks’ sales is explained solely by a linear trend.

Exhibit 10 Estimating a Linear Trend in Lognormal Starbucks Sales

Regression Statistics

R? 0.9771
Standard error 0.1393
Observations 74

Durbin—Watson 0.26
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Exhibit 10 (Continued)

Coefficient Standard Error t-Statistic
Intercept 6.7617 0.0327 206.80
t (Trend) 0.0295 0.0008 36.875

Source: Compustat.

Although both Equations 1 and 3 have a high R?, Exhibit 11 shows how well
a linear trend fits the natural log of Starbucks’ sales (Equation 3). The natural
logs of the sales data lie very close to the linear trend during the sample period,
and log sales are not substantially above or below the trend for long periods of
time. Thus, a log-linear trend model seems better suited for modeling Starbucks’
sales than a linear trend model is.

1 Benedict wants to use the results of estimating Equation 3 to predict
Starbucks’ sales in the future. What is the predicted value of Starbucks’
sales for the fourth quarter of 2019?

Solution to 1:

The estimated value 60 is 6.7617, and the estimated value 61 is 0.0295. Therefore,

for fourth quarter of 2019 (¢ = 75), the estimated model predicts that In 975 =

6.7617 + 0.0295(75) = 8.9742 and that sales will be y = ™75 = 89742 _

$7,896.7 million. Note that a by of 0.0295 implies that the exponential growth
rate per quarter in Starbucks’ sales will be 2.99475% (00464 _ 1 = 0.0299475).

Exhibit 11 Natural Log of Starbucks Quarterly Sales
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Source: Compustat.

2  How much different is the previous forecast from the prediction of the
linear trend model?
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Solution to 2:

Exhibit 7 showed that for the linear trend model, the estimated value of Bo is
137.4213 and the estimated value of by is 80.2060. Thus, if we predict Starbucks’
sales for the fourth quarter of 2019 (¢ = 75) using the linear trend model, the
forecast is 975 = 137.4213 + 80.2060(75) = $6,152.87 million. This forecast is

far below the prediction made by the log-linear regression model. Later we will
examine whether we can build a better model of Starbucks’ quarterly sales than
a model that uses only a log-linear trend.

TREND MODELS AND TESTING FOR CORRELATED
ERRORS

b describe factors that determine whether a linear or a log-linear trend should be
used with a particular time series and evaluate limitations of trend models;

Both the linear trend model and the log-linear trend model are single-variable regres-
sion models. If they are to be correctly specified, the regression model assumptions
must be satisfied. In particular, the regression error for one period must be uncorrelated
with the regression error for all other periods. In Example 2 in the previous section, we
could infer an obvious violation of that assumption from a visual inspection of a plot
of residuals (Exhibit 9). The log-linear trend model of Example 3 appeared to fit the
data much better, but we still need to confirm that the uncorrelated errors assumption
is satisfied. To address that question formally, we must carry out a Durbin—Watson
test on the residuals.

Logical Ordering of Time-Series Observations

In contrast to cross-sectional observations, time-series observations have a logical
ordering. They must be processed in chronological order of the time periods involved.
For example, we should not make a prediction of the inflation rate using a CPI series in
which the order of the observations had been scrambled, because time patterns such
as growth in the independent variables can negatively affect the statistical properties
of the estimated regression coefficients.

In the reading on regression analysis, we showed how to test whether regression
errors are serially correlated using the Durbin—Watson statistic. For example, if the
trend models shown in Examples 1 and 3 really capture the time-series behavior of
inflation and the log of Starbucks’ sales, then the Durbin—Watson statistic for both
of those models should not differ significantly from 2.0. Otherwise, the errors in the
model are either positively or negatively serially correlated, and that correlation can
be used to build a better forecasting model for those time series.

In Example 1, estimating a linear trend in the monthly CPI inflation yielded a
Durbin—Watson statistic of 1.09. Is this result significantly different from 2.0? To find
out, we need to test the null hypothesis of no positive serial correlation. For a sample
with 228 observations and one independent variable, the critical value, dj, for the
Durbin—Watson test statistic at the 0.05 significance level is above 1.77. Because the
value of the Durbin—Watson statistic (1.09) is below this critical value, we can reject
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the hypothesis of no positive serial correlation in the errors. (Remember that signifi-
cantly small values of the Durbin—Watson statistic indicate positive serial correlation;
significantly large values point to negative serial correlation; here the Durbin—Watson
statistic of 1.09 indicates positive serial correlation.) We can conclude that a regression
equation that uses a linear trend to model inflation has positive serial correlation in
the errors. We will need a different kind of regression model because this one violates
the least squares assumption of no serial correlation in the errors.

In Example 3, estimating a linear trend with the natural logarithm of sales for the
Starbucks example yielded a Durbin—Watson statistic of 0.12. Suppose we wish to test
the null hypothesis of no positive serial correlation. The critical value, dj, is above 1.60
at the 0.05 significance level. The value of the Durbin—Watson statistic (0.12) is below
this critical value, so we can reject the null hypothesis of no positive serial correlation
in the errors. We can conclude that a regression equation that uses a trend to model
the log of Starbucks’ quarterly sales has positive serial correlation in the errors. So,
for this series as well, we need to build a different kind of model.

Overall, we conclude that the trend models sometimes have the limitation that
errors are serially correlated. Existence of serial correlation suggests that we can build
better forecasting models for such time series than trend models.

AUTOREGRESSIVE (AR) TIME-SERIES MODELS AND
COVARIANCE-STATIONARY SERIES

¢ explain the requirement for a time series to be covariance stationary and
describe the significance of a series that is not stationary;

A key feature of the log-linear model’s depiction of time series, and a key feature of
time series in general, is that current-period values are related to previous-period
values. For example, Starbucks’ sales for the current period are related to its sales in
the previous period. An autoregressive model (AR), a time series regressed on its
own past values, represents this relationship effectively. When we use this model, we
can drop the normal notation of y as the dependent variable and x as the independent
variable because we no longer have that distinction to make. Here we simply use x;.
For example, Equation 4 shows a first-order autoregression, AR(1), for the variable x:

xt = bo + blxt_l + Et. (4)
Thus, in an AR(1) model, we use only the most recent past value of x, to predict the

current value of x,. In general, a pth-order autoregression, AR(p), for the variable x,
is shown by

Xp=bo+b1xy g +boxy g+ ..+ bx, + e (5)
In this equation, p past values of x, are used to predict the current value of x,.

In the next section, we discuss a key assumption of time-series models that include
lagged values of the dependent variable as independent variables.

5.1 Covariance-Stationary Series

Note that the independent variable (x,_;) in Equation 4 is a random variable. This fact
may seem like a mathematical subtlety, but it is not. If we use ordinary least squares to
estimate Equation 4 when we have a randomly distributed independent variable that
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is a lagged value of the dependent variable, our statistical inference may be invalid. To
make a valid statistical inference, we must make a key assumption in time-series anal-
ysis: We must assume that the time series we are modeling is covariance stationary.!

What does it mean for a time series to be covariance stationary? The basic idea is
that a time series is covariance stationary if its properties, such as mean and variance,
do not change over time. A covariance stationary series must satisfy three principal
requirements. First, the expected value of the time series must be constant and finite
in all periods: E(y,) = pand |p | < oo, t=1,2,..., T (for this first requirement, we use
the absolute value to rule out the case in which the mean is negative without limit—i.e.,
minus infinity). Second, the variance of the time series must be constant and finite in
all periods. Third, the covariance of the time series with itself for a fixed number of
periods in the past or future must be constant and finite in all periods. The second
and third requirements can be summarized as follows:

cov(yp ¥ig) = Ag [Ny <005 t=1,2,...,T;5=0,%1,+2,..., T,

where X signifies a constant. (Note that when s in this equation equals 0, this equation
imposes the condition that the variance of the time series is finite, because the covari-
ance of a random variable with itself is its variance: cov(y,, y,) = var(y,).) What happens
if a time series is not covariance stationary but we model it using Equation 4? The
estimation results will have no economic meaning. For a non-covariance-stationary
time series, estimating the regression in Equation 4 will yield spurious results. In
particular, the estimate of b; will be biased, and any hypothesis tests will be invalid.

How can we tell if a time series is covariance stationary? We can often answer this
question by looking at a plot of the time series. If the plot shows roughly the same
mean and variance over time without any significant seasonality, then we may want
to assume that the time series is covariance stationary.

Some of the time series we looked at in the exhibits appear to be covariance sta-
tionary. For example, the inflation data shown in Exhibit 3 appear to have roughly
the same mean and variance over the sample period. Many of the time series one
encounters in business and investments, however, are not covariance stationary. For
example, many time series appear to grow (or decline) steadily over time and thus
have a mean that is nonconstant, which implies that they are nonstationary. As an
example, the time series of quarterly sales in Exhibit 8 clearly shows the mean increas-
ing as time passes. Thus, Starbucks’ quarterly sales are not covariance stationary (in
general, any time series accurately described with a linear or log-linear trend model
is not covariance stationary, although a transformation of the original series might be
covariance stationary). Macroeconomic time series such as those relating to income
and consumption are often strongly trending as well. A time series with seasonality
(regular patterns of movement with the year) also has a nonconstant mean, as do
other types of time series that we discuss later (in particular, random walks are not
covariance stationary).

Exhibit 2 showed that monthly retail sales (not seasonally adjusted) are also not
covariance stationary. Sales in December are always much higher than sales in other
months (these are the regular large peaks), and sales in January are always much lower
(these are the regular large drops after the December peaks). On average, sales also
increase over time, so the mean of sales is not constant.

Later we will show that we can often transform a nonstationary time series into a
stationary time series. But whether a stationary time series is original or transformed,
a warning is necessary: Stationarity in the past does not guarantee stationarity in the

1 “Weakly stationary” is a synonym for covariance stationary. Note that the terms “stationary” and “sta-
tionarity” are often used to mean “covariance stationary” or “covariance stationarity, respectively. You may
also encounter the more restrictive concept of “strictly” stationary, which has little practical application.
For details, see Diebold (2008).
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future. There is always the possibility that a well-specified model will fail when the
state of the world changes and yields a different underlying model that generates the
time series.

DETECTING SERIALLY CORRELATED ERRORS IN AN
AUTOREGRESSIVE MODEL

d describe the structure of an autoregressive (AR) model of order p and calculate
one- and two-period-ahead forecasts given the estimated coefficients;

e explain how autocorrelations of the residuals can be used to test whether the
autoregressive model fits the time series;

We can estimate an autoregressive model using ordinary least squares if the time
series is covariance stationary and the errors are uncorrelated. Unfortunately, our
previous test for serial correlation, the Durbin—Watson statistic, is invalid when the
independent variables include past values of the dependent variable. Therefore, for
most time-series models, we cannot use the Durbin—Watson statistic. Fortunately, we
can use other tests to determine whether the errors in a time-series model are serially
correlated. One such test reveals whether the autocorrelations of the error term are
significantly different from 0. This test is a ¢-test involving a residual autocorrelation
and the standard error of the residual autocorrelation. As background for the test,
we next discuss autocorrelation in general before moving to residual autocorrelation.

The autocorrelations of a time series are the correlations of that series with its
own past values. The order of the correlation is given by k, where k represents the
number of periods lagged. When k = 1, the autocorrelation shows the correlation of
the variable in one period with its occurrence in the previous period. For example,
the kth-order autocorrelation (p;) is

cov(x,,x,_x) E[(x — ) - ”)]

Pr = = >
o} o3

where E stands for the expected value. Note that we have the relationship cov(x;, x;_)
< 0)2(, with equality holding when k = 0. This means that the absolute value of p; is

less than or equal to 1.

Of course, we can never directly observe the autocorrelations, p;. Instead, we must
estimate them. Thus, we replace the expected value of x,, y, with its estimated value, X,
to compute the estimated autocorrelations. The kth-order estimated autocorrelation

of the time series x;, which we denote py, is

Y [P -]
P = t=k+1

S -

t=1
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Analogous to the definition of autocorrelations for a time series, we can define
the autocorrelations of the error term for a time-series model as?

COV\E;,E,_
Pek = (t;t k)
€

_ E[(gt ~0)(e,—x — 0)}

o
_ G
o;

We assume that the expected value of the error term in a time-series model is 0.3

We can determine whether we are using the correct time-series model by test-
ing whether the autocorrelations of the error term (error autocorrelations) differ
significantly from 0. If they do, the model is not specified correctly. We estimate the
error autocorrelation using the sample autocorrelations of the residuals (residual
autocorrelations) and their sample variance.

A test of the null hypothesis that an error autocorrelation at a specified lag equals
0 is based on the residual autocorrelation for that lag and the standard error of the
residual correlation, which is equal to 1/ \/'IT , where T is the number of observations
in the time series (Diebold 2008). Thus, if we have 100 observations in a time series,
the standard error for each of the estimated autocorrelations is 0.1. We can compute
the ¢-test of the null hypothesis that the error correlation at a particular lag equals 0

by dividing the residual autocorrelation at that lag by its standard error (1/ JT )

How can we use information about the error autocorrelations to determine whether
an autoregressive time-series model is correctly specified? We can use a simple three-
step method. First, estimate a particular autoregressive model—say, an AR(1) model.
Second, compute the autocorrelations of the residuals from the model.# Third, test
to see whether the residual autocorrelations differ significantly from 0. If significance
tests show that the residual autocorrelations differ significantly from 0, the model is
not correctly specified; we may need to modify it in ways that we will discuss shortly.
We now present an example to demonstrate how this three-step method works.

EXAMPLE 4

Predicting Gross Margins for Intel Corporation

Analyst Melissa Jones decides to use a time-series model to predict Intel
Corporation’s gross margin [(Sales — Cost of goods sold)/Sales] using quarterly
data from the first quarter of 1999 through the second quarter of 2019. She does
not know the best model for gross margin but believes that the current-period
value will be related to the previous-period value. She decides to start out with a
first-order autoregressive model, AR(1): Gross margin, = b, + b;(Gross margin, ;)

2 Whenever we refer to autocorrelation without qualification, we mean autocorrelation of the time series
itself rather than autocorrelation of the error term or residuals.

3 This assumption is similar to the one made in earlier coverage of regression analysis about the expected
value of the error term.

4 We can compute these residual autocorrelations easily with most statistical software packages. In Microsoft
Excel, for example, to compute the first-order residual autocorrelation, we compute the correlation of the
residuals from Observations 1 through 7' - 1 with the residuals from Observations 2 through 7.

5 Often, econometricians use additional tests for the significance of residual autocorrelations. For example,
the Box—Pierce Q-statistic is frequently used to test the joint hypothesis that all autocorrelations of the
residuals are equal to 0. For further discussion, see Diebold (2008).
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+ &, Her observations on the dependent variable are 1Q 2003 through 2Q 2019.
Exhibit 12 shows the results of estimating this AR(1) model, along with the
autocorrelations of the residuals from that model.

Exhibit 12 Autoregression: AR(1) Model Gross Margin of Intel

Quarterly Observations, January 2003-June 2019

Regression Statistics

R? 0.5746
Standard error 0.03002
Observations 65
Durbin—Watson 1.743

Coefficient Standard Error t-Statistic
Intercept 0.1513 0.0480 3.15
Gross 0.7462 0.0809 9.2236
margin;_;

Autocorrelations of the Residual

Lag Autocorrelation Standard Error t-Statistic
1 0.1308 0.1240 1.0545
2 -0.2086 0.1240 -1.6818
3 0.0382 0.1240 0.3080
4 0.0608 0.1240 0.4903

Source: Bloomberg.

The first thing to note about Exhibit 12 is that both the intercept (bo =

0.1513) and the coefficient on the first lag ( by = 0.7462) of the gross margin are
highly significant in the regression equation. The first lag of a time series is the
value of the time series in the previous period. The ¢-statistic for the intercept
is about 3.2, whereas the ¢-statistic for the first lag of the gross margin is more
than 9. With 65 observations and two parameters, this model has 63 degrees of
freedom. At the 0.05 significance level, the critical value for a ¢-statistic is about
2.0. Therefore, Jones must reject the null hypotheses that the intercept is equal
to 0 (b, = 0) and the coefficient on the first lag is equal to 0 (b; = 0) in favor of
the alternative hypothesis that the coefficients, individually, are not equal to 0.
But are these statistics valid? Although the Durbin—Watson statistic is presented
in Exhibit 12, it cannot be used to test serial correlation when the independent
variables include past values of the dependent variable. The correct approach
is to test whether the residuals from this model are serially correlated.

At the bottom of Exhibit 12, the first four autocorrelations of the residual
are displayed along with the standard error and the ¢-statistic for each of those
autocorrelations.® The sample has 65 observations, so the standard error for

each of the autocorrelations is 1/ J65 = 0.1240. Exhibit 12 shows that none of

6 For seasonally unadjusted data, analysts often compute the same number of autocorrelations as there
are observations in a year (for example, four for quarterly data). The number of autocorrelations computed
also often depends on sample size, as discussed in Diebold (2008).
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the first four autocorrelations has a ¢-statistic larger than 1.6818 in absolute
value. Therefore, Jones can conclude that none of these autocorrelations differs
significantly from 0. Consequently, she can assume that the residuals are not
serially correlated and that the model is correctly specified, and she can validly
use ordinary least squares to estimate the parameters and the parameters’ stan-
dard errors in the autoregressive model (for other tests for serial correlation of
residuals, see Diebold 2008).

Now that Jones has concluded that this model is correctly specified, how
can she use it to predict Intel’s gross margin in the next period? The estimated
equation is Gross margin, = 0.1513 + 0.7462(Gross margin,_;) + €,. The expected
value of the error term is 0 in any period. Therefore, this model predicts that gross
margin in period ¢ + 1 will be Gross margin, ; = 0.1513 + 0.7462(Gross margin,).
For example, if gross margin is 55% in this quarter (0.55), the model predicts
that in the next quarter gross margin will increase to 0.1513 + 0.7462(0.55) =
0.5617, or 56.17%. However, if gross margin is currently 65% (0.65), the model
predicts that in the next quarter, gross margin will fall to 0.1513 + 0.7462(0.65)
= 0.6363, or 63.63%. As we show in the following section, the model predicts
that gross margin will increase if it is below a certain level (59.61%) and decrease
if it is above that level.

MEAN REVERSION AND MULTIPERIOD FORECASTS
AND THE CHAIN RULE OF FORECASTING

f explain mean reversion and calculate a mean-reverting level;

d describe the structure of an autoregressive (AR) model of order p and calculate
one- and two-period-ahead forecasts given the estimated coefficients;

We say that a time series shows mean reversion if it tends to fall when its level is
above its mean and rise when its level is below its mean. Much like the temperature in
aroom controlled by a thermostat, a mean-reverting time series tends to return to its
long-term mean. How can we determine the value that the time series tends toward? If
a time series is currently at its mean-reverting level, then the model predicts that the
value of the time series will be the same in the next period. At its mean-reverting level,
we have the relationship x,, ; = x,. For an AR(1) model (x,,; = by + byx,), the equality
x;,1 = x; implies the level x, = by + b x; or that the mean-reverting level, x,, is given by
X, = bo .
I=by

So the AR(1) model predicts that the time series will stay the same if its current value
is by/(1 - by), increase if its current value is below by/(1 - b;), and decrease if its
current value is above by/(1 - by).

In the case of gross margins for Intel, the mean-reverting level for the model
shown in Exhibit 12 is 0.1513/(1 — 0.7462) = 0.5961. If the current gross margin is
above 0.5961, the model predicts that the gross margin will fall in the next period. If
the current gross margin is below 0.5961, the model predicts that the gross margin
will rise in the next period. As we will discuss later, all covariance-stationary time
series have a finite mean-reverting level.
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7.1 Multiperiod Forecasts and the Chain Rule of Forecasting

Often, financial analysts want to make forecasts for more than one period. For exam-
ple, we might want to use a quarterly sales model to predict sales for a company for
each of the next four quarters. To use a time-series model to make forecasts for more
than one period, we must examine how to make multiperiod forecasts using an AR(1)
model. The one-period-ahead forecast of x, from an AR(1) model is as follows:

Xi+1 = bo + bix, (6)
If we want to forecast x,, 5 using an AR(1) model, our forecast will be based on
Xiv2 = bo + bix, (7)

Unfortunately, we do not know x;,; in period £, so we cannot use Equation 7
directly to make a two-period-ahead forecast. We can, however, use our forecast of
%;,1 and the AR(1) model to make a prediction of x; 5. The chain rule of forecasting
is a process in which the next period’s value, predicted by the forecasting equation,
is substituted into the equation to give a predicted value two periods ahead. Using
the chain rule of forecasting, we can substitute the predicted value of x,,; into

Equation 7 to get ;CH—Z = 60 + 1;1;(;+1. We already know ;c;+1 from our one-period-
ahead forecast in Equation 6. Now we have a simple way of predicting x,_ .
Multiperiod forecasts are more uncertain than single-period forecasts because
each forecast period has uncertainty. For example, in forecasting x,,,, we first have
the uncertainty associated with forecasting «,, ; using x,, and then we have the uncer-
tainty associated with forecasting x,, 5 using the forecast of x,, ;. In general, the more
periods a forecast has, the more uncertain it is. Note that if a forecasting model is
well specified, the prediction errors from the model will not be serially correlated.
If the prediction errors for each period are not serially correlated, then the variance
of a multiperiod forecast will be higher than the variance of a single-period forecast.

EXAMPLE 5

Multiperiod Prediction of Intel’s Gross Margin

Suppose that at the beginning of 2020, we want to predict Intel’s gross margin
in two periods using the model shown in Exhibit 12. Assume that Intel’s gross
margin in the current period is 63%. The one-period-ahead forecast of Intel’s
gross margin from this model is 0.6214 = 0.1513 + 0.7462(0.63). By substituting
the one-period-ahead forecast, 0.6214, back into the regression equation, we can
derive the following two-period-ahead forecast: 0.6150 = 0.1513 + 0.7462(0.6214).
Therefore, if the current gross margin for Intel is 63%, the model predicts that
Intel’s gross margin in two quarters will be 61.50%.

EXAMPLE 6

Modeling US CPI Inflation

Analyst Lisette Miller has been directed to build a time-series model for monthly
US inflation. Inflation and expectations about inflation, of course, have a signif-
icant effect on bond returns. For a 24-year period beginning January 1995 and
ending December 2018, she selects as data the annualized monthly percentage
change in the CPI. Which model should Miller use?

187
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The process of model selection parallels that of Example 4 relating to Intel’s
gross margins. The first model Miller estimates is an AR(1) model, using the
previous month’s inflation rate as the independent variable: Inflation, = by + b;(In-
flation, ;) + e, £ =1,2, ..., 359. To estimate this model, she uses monthly CPI
inflation data from January 1995 to December 2018 (¢ = 1 denotes February 1995).
Exhibit 13 shows the results of estimating this model.

Exhibit 13 Monthly CPI Inflation at an Annual Rate: AR(1) Model—

Monthly Observations, February 1995-December 2018

Regression Statistics

R? 0.1586
Standard error 2.9687
Observations 287
Durbin—Watson 1.8442

Coefficient Standard Error t-Statistic
Intercept 1.3346 0.2134 6.2540
Inflation,_; 0.3984 0.0544 7.3235

Autocorrelations of the Residual

Lag Autocorrelation Standard Error t-Statistic
1 0.0777 0.0590 1.3175
2 -0.1653 0.0590 -2.8013
3 -0.1024 0.0590 -1.7362
4 -0.0845 0.0590 1.4324

Source: US Bureau of Labor Statistics.

~

As Exhibit 13 shows, both the intercept (bg = 1.3346) and the coefficient on

the first lagged value of inflation ( by = 0.3984) are highly statistically significant,
with large ¢-statistics. With 287 observations and two parameters, this model
has 285 degrees of freedom. The critical value for a ¢-statistic at the 0.05 signif-
icance level is about 1.97. Therefore, Miller can reject the individual null hypoth-
eses that the intercept is equal to 0 (b, = 0) and the coefficient on the first lag
is equal to 0 (b; = 0) in favor of the alternative hypothesis that the coefficients,
individually, are not equal to 0.

Are these statistics valid? Miller will know when she tests whether the resid-
uals from this model are serially correlated. With 287 observations in this sample,
the standard error for each of the estimated autocorrelations is 1/+/287 = 0.0590.
The critical value for the ¢-statistic is 1.97. Because the second estimated auto-
correlation has ¢-statistic larger than 1.97 in absolute value, Miller concludes
that the autocorrelations are significantly different from 0. This model is thus
misspecified because the residuals are serially correlated.

If the residuals in an autoregressive model are serially correlated, Miller
can eliminate the correlation by estimating an autoregressive model with more
lags of the dependent variable as explanatory variables. Exhibit 14 shows the
result of estimating a second time-series model, an AR(2) model using the
same data as in the analysis shown in Exhibit 13. With 286 observations and
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three parameters, this model has 283 degrees of freedom. Because the degrees
of freedom are almost the same as those for the estimates shown in Exhibit 13,
the critical value of the t-statistic at the 0.05 significance level also is almost
the same (1.97). If she estimates the equation with two lags—Inflation, = b +
by(Inflation;_;) + by(Inflation, ,) + e,—Miller finds that all three of the coef-
ficients in the regression model (an intercept and the coefficients on two lags
of the dependent variable) differ significantly from 0. The bottom portion of
Exhibit 14 shows that none of the first four autocorrelations of the residual has
a t-statistic greater in absolute value than the critical value of 1.97. Therefore,
Miller fails to reject the hypothesis that the individual autocorrelations of the
residual equal 0. She concludes that this model is correctly specified because
she finds no evidence of serial correlation in the residuals.

Exhibit 14 Monthly CPI Inflation at an Annual Rate: AR(2) Model—

Monthly Observations, March 1995-December 2018

Regression Statistics

R? 0.1907
Standard error 2.9208
Observations 286
Durbin—Watson 1.9934

Standard

Coefficient Error t-Statistic

Intercept 1.5996 0.2245 7.1252
Inflation,_; 0.4759 0.0583 8.1636
Inﬂationt_2 -0.1964 0.0583 -3.368

Autocorrelations of the Residual

Standard
Lag Autocorrelation Error t-Statistic
1 0.0032 0.0591 0.0536
2 0.0042 0.0591 0.0707
3 -0.0338 0.0591 -0.5696
4 0.0155 0.0591 1.7692

Source: US Bureau of Labor Statistics.

1 'The analyst selected an AR(2) model because the residuals from the AR(1)
model were serially correlated. Suppose that in a given month, inflation
had been 4% at an annual rate in the previous month and 3% in the month
before that. What would be the difference in the analyst forecast of infla-
tion for that month if she had used an AR(1) model instead of the AR(2)
model?

Solution to 1:

The AR(1) model shown in Exhibit 13 predicted that inflation in the next month
would be 1.3346 + 0.3984(4) = 2.93%, approximately, whereas the AR(2) model
shown in Exhibit 14 predicts that inflation in the next month will be 1.5996 +
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0.4759(4) - 0.1964(3) = 2.91% approximately. If the analyst had used the incor-
rect AR(1) model, she would have predicted inflation to be 2 bps higher (2.93%
versus 2.91%) than when using the AR(2) model. Although in this case the
difference in the predicted inflation is actually very small, this kind of scenario
illustrates that using an incorrect forecast could adversely affect the quality of
her company’s investment choices.

COMPARING FORECAST MODEL PERFORMANCE

g contrast in-sample and out-of-sample forecasts and compare the forecasting
accuracy of different time-series models based on the root mean squared error
criterion;

One way to compare the forecast performance of two models is to compare the vari-
ance of the forecast errors that the two models make. The model with the smaller
forecast error variance will be the more accurate model, and it will also have the
smaller standard error of the time-series regression. (This standard error usually is
reported directly in the output for the time-series regression.)

In comparing forecast accuracy among models, we must distinguish between in-
sample forecast errors and out-of-sample forecast errors. In-sample forecast errors
are the residuals from a fitted time-series model. For example, when we estimated
a linear trend with raw inflation data from January 1995 to December 2018, the in-
sample forecast errors were the residuals from January 1995 to December 2018. If we
use this model to predict inflation outside this period, the differences between actual
and predicted inflation are out-of-sample forecast errors.

EXAMPLE 7

In-Sample Forecast Comparisons of US CPI Inflation

In Example 6, the analyst compared an AR(1) forecasting model of monthly US
inflation with an AR(2) model of monthly US inflation and decided that the AR(2)
model was preferable. Exhibit 13 showed that the standard error from the AR(1)
model of inflation is 2.9687, and Exhibit 14 showed that the standard error from
the AR(2) model is 2.9208. Therefore, the AR(2) model had a lower in-sample
forecast error variance than the AR(1) model had, which is consistent with our
belief that the AR(2) model was preferable. Its standard error is 2.9208/2.9687 =
98.39% of the forecast error of the AR(1) model.

Often, we want to compare the forecasting accuracy of different models after the
sample period for which they were estimated. We wish to compare the out-of-sample
forecast accuracy of the models. Out-of-sample forecast accuracy is important because
the future is always out of sample. Although professional forecasters distinguish
between out-of-sample and in-sample forecasting performance, many articles that
analysts read contain only in-sample forecast evaluations. Analysts should be aware
that out-of-sample performance is critical for evaluating a forecasting model’s real-
world contribution.
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Typically, we compare the out-of-sample forecasting performance of forecasting
models by comparing their root mean squared error (RMSE), which is the square
root of the average squared error. The model with the smallest RMSE is judged the
most accurate. The following example illustrates the computation and use of RMSE
in comparing forecasting models.

EXAMPLE 8

Out-of-Sample Forecast Comparisons of US CPI Inflation

Suppose we want to compare the forecasting accuracy of the AR(1) and AR(2)
models of US inflation estimated over 1995 to 2018, using data on US inflation
from January 2019 to September 2019.

Exhibit 15 Out-of-Sample Forecast Error Comparisons: January 2019-September 2019 US CPI

Inflation (Annualized)

AR(2) Squared
Date Infl(t) Infl(t-1) Infl(t-2) AR(1) Error Squared Error Error Error
2019
January 0.0000 0.0000 0.0000 0.1335 0.0178 -1.6000 2.5599
February 2.4266 0.0000 0.0000 -2.2931 5.2585 0.8266 0.6833
March 4.9070 2.4266 0.0000 -3.8068 14.4916 2.1522 4.6320
April 3.6600 4.9070 2.4266 -1.5716 2.4699 0.2014 0.0406
May 1.2066 3.6600 4.9070 0.3850 0.1482 -1.1714 1.3722
June 1.2066 1.2066 3.6600 -0.5924 0.3510 -0.2488 0.0619
July 3.6600 1.2066 1.2066 -3.0458 9.2770 1.7228 2.9680
August 1.2066 3.6600 1.2066 0.3850 0.1482 —-1.8982 3.6030
September 0.0000 1.2066 3.6600 0.6142 0.3772 -1.4554 2.1181
Average 3.6155 Average 2.0043
RMSE 1.9014 RMSE 1.4157

Note: Any apparent discrepancies between error and squared error results are due to rounding.
Source: US Bureau of Labor Statistics.

For each month from January 2019 to September 2019, the first column of
numbers in Exhibit 15 shows the actual annualized inflation rate during the
month. The second and third columns show the rate of inflation in the previ-
ous two months. The fourth column shows the out-of-sample errors (Actual —
Forecast) from the AR(1) model shown in Exhibit 13. The fifth column shows the
squared errors from the AR(1) model. The sixth column shows the out-of-sample
errors from the AR(2) model shown in Exhibit 14. The final column shows the
squared errors from the AR(2) model. The bottom of the table displays the average
squared error and the RMSE. According to these measures, the AR(2) model
was slightly more accurate than the AR(1) model in its out-of-sample forecasts
of inflation from January 2019 to September 2019. The RMSE from the AR(2)
model was only 1.4157/1.9014 = 74.46% as large as the RMSE from the AR(1)
model. Therefore, the AR(2) model was more accurate both in sample and out
of sample. Of course, this was a small sample to use in evaluating out-of-sample
forecasting performance. Sometimes, an analyst may have conflicting information
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about whether to choose an AR(1) or an AR(2) model. We must also consider
regression coefficient stability. We will continue the comparison between these
two models in the following section.

INSTABILITY OF REGRESSION COEFFICIENTS

h explain the instability of coefficients of time-series models;

One of the important issues an analyst faces in modeling a time series is the sample
period to use. The estimates of regression coefficients of the time-series model can
change substantially across different sample periods used for estimating the model.
Often, the regression coefficient estimates of a time-series model estimated using an
earlier sample period can be quite different from those of a model estimated using a
later sample period. Similarly, the estimates can be diftferent between models estimated
using relatively shorter and longer sample periods. Further, the choice of model for a
particular time series can also depend on the sample period. For example, an AR(1)
model may be appropriate for the sales of a company in one particular sample period,
but an AR(2) model may be necessary for an earlier or later sample period (or for a
longer or shorter sample period). Thus, the choice of a sample period is an important
decision in modeling a financial time series.

Unfortunately, there is usually no clear-cut basis in economic or financial the-
ory for determining whether to use data from a longer or shorter sample period to
estimate a time-series model. We can get some guidance, however, if we remember
that our models are valid only for covariance-stationary time series. For example, we
should not combine data from a period when exchange rates were fixed with data
from a period when exchange rates were floating. The exchange rates in these two
periods would not likely have the same variance because exchange rates are usually
much more volatile under a floating-rate regime than when rates are fixed. Similarly,
many US analysts consider it inappropriate to model US inflation or interest-rate
behavior since the 1960s as a part of one sample period, because the Federal Reserve
had distinct policy regimes during this period. A simple way to determine appropriate
samples for time-series estimation is to look at graphs of the data to see whether the
time series looks stationary before estimation begins. If we know that a government
policy changed on a specific date, we might also test whether the time-series relation
was the same before and after that date.

In the following example, we illustrate how the choice of a longer versus a shorter
period can affect the decision of whether to use, for example, a first- or second-order
time-series model. We then show how the choice of the time-series model (and the
associated regression coefficients) affects our forecast. Finally, we discuss which sample
period, and accordingly which model and corresponding forecast, is appropriate for
the time series analyzed in the example.

EXAMPLE 9

Instability in Time-Series Models of US Inflation

In Example 6, the analyst Lisette Miller concluded that US CPI inflation should
be modeled as an AR(2) time series. A colleague examined her results and
questioned estimating one time-series model for inflation in the United States
since 1984, given that the Federal Reserve responded aggressively to the financial
crisis that emerged in 2007. He argues that the inflation time series from 1995
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to 2018 has two regimes or underlying models generating the time series: one
running from 1995 through 2007 and another starting in 2008. Therefore, the
colleague suggests that Miller estimate a new time-series model for US inflation
starting in 2008. Because of his suggestion, Miller first estimates an AR(1) model
for inflation using data for a sample period from 2008 to 2018. Exhibit 16 shows
her AR(1) estimates.

Exhibit 16 Autoregression: AR(1) Model Monthly CPI Inflation at an

Annual Rate, January 2008-December 2018

Regression Statistics

R? 0.2536
Standard error 3.0742
Observations 132
Durbin—Watson 1.8164

Coefficient Standard Error t-Statistic
Intercept 0.8431 0.2969 2.8397
Inflation,_; 0.5036 0.0758 6.6438
Autocorrelations of the Residual
Lag Autocorrelation Standard Error t-Statistic
1 0.0999 0.087 1.1479
2 -0.1045 0.087 -1.2015
3 -0.1568 0.087 -1.8051
4 0.0500 0.087 0.5750

Source: US Bureau of Labor Statistics.

The bottom part of Exhibit 16 shows that the first four autocorrelations of the
residuals from the AR(1) model are quite small. None of these autocorrelations
has a t-statistic larger than 1.99, the critical value for significance. Consequently,
Miller cannot reject the null hypothesis that the residuals are serially uncorrelated.
The AR(1) model is correctly specified for the sample period from 2008 to 2018,
so there is no need to estimate the AR(2) model. This conclusion is very different
from that reached in Example 6 using data from 1995 to 2018. In that example,
Miller initially rejected the AR(1) model because its residuals exhibited serial
correlation. When she used a larger sample, an AR(2) model initially appeared
to fit the data much better than did an AR(1) model.

How deeply does our choice of sample period affect our forecast of future
inflation? Suppose that in a given month, inflation was 4% at an annual rate, and
the month before that it was 3%. The AR(1) model shown in Exhibit 16 predicts
that inflation in the next month will be 0.8431 + 0.5036(4) ~ 2.86%. Therefore,
the forecast of the next month’s inflation using the 2008 to 2018 sample is 2.86%.
Remember from the analysis following Example 6 that the AR(2) model for the
1995 to 2018 sample predicts inflation of 2.91% in the next month. Thus, using
the correctly specified model for the shorter sample produces an inflation fore-
cast 0.05 pps below the forecast made from the correctly specified model for the
longer sample period. Such a difference might substantially affect a particular
investment decision.

193



194

Reading 3 = Time-Series Analysis

Which model is correct? Exhibit 17 suggests an answer. Monthly US inflation
was so much more volatile during the middle part of the study period than in
the earlier or later years that inflation is probably not a covariance-stationary
time series from 1995 to 2018. Therefore, we can reasonably believe that the
data have more than one regime and Miller should estimate a separate model for
inflation from 2009 to 2018, as shown previously. In fact, the standard deviation
of annualized monthly inflation rates is just 2.86% for 1995-2007 but 3.54% for
2008-2018, largely because of volatility during the 2008 crisis. As the example
shows, experience (such as knowledge of government policy changes) and judg-
ment play a vital role in determining how to model a time series. Simply relying
on autocorrelations of the residuals from a time-series model cannot tell us the
correct sample period for our analysis.

Exhibit 177 Monthly CPI Inflation
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Source: US Bureau of Labor Statistics.

RANDOM WALKS

i. describe characteristics of random walk processes and contrast them to covari-
ance stationary processes;

f. explain mean reversion and calculate a mean-reverting level;

So far, we have examined those time series in which the time series has a tendency
to revert to its mean level as the change in a variable from one period to the next
follows a mean-reverting pattern. In contrast, there are many financial time series in
which the changes follow a random pattern. We discuss these “random walks” in the
following section.
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10.1 Random Walks

A random walk is one of the most widely studied time-series models for financial
data. A random walk is a time series in which the value of the series in one period
is the value of the series in the previous period plus an unpredictable random error.
A random walk can be described by the following equation:

X =x_1+¢, E(g) =0, E(stz) = 67, cov(e,e,) = E(gey) = 0if 1 # 5. | (8)

Equation 8 means that the time series x, is in every period equal to its value in the
previous period plus an error term, g, that has constant variance and is uncorrelated
with the error term in previous periods. Note two important points. First, this equa-
tion is a special case of an AR(1) model with b, = 0 and b; = 1.7 Second, the expected
value of g, is zero. Therefore, the best forecast of x, that can be made in period ¢ - 1
is x,_1. In fact, in this model, x,_; is the best forecast of x in every period after ¢ — 1.

Random walks are quite common in financial time series. For example, many
studies have tested whether and found that currency exchange rates follow a random
walk. Consistent with the second point made in the previous paragraph, some studies
have found that sophisticated exchange rate forecasting models cannot outperform
forecasts made using the random walk model and that the best forecast of the future
exchange rate is the current exchange rate.

Unfortunately, we cannot use the regression methods we have discussed so far to
estimate an AR(1) model on a time series that is actually a random walk. To see why
this is so, we must determine why a random walk has no finite mean-reverting level
or finite variance. Recall that if x, is at its mean-reverting level, then x; = by + bx,, or
x; = bg/(1 = by). In a random walk, however, by = 0 and b; = 1, so by/(1 - b;) = 0/0.
Therefore, a random walk has an undefined mean-reverting level.

What is the variance of a random walk? Suppose that in Period 1, the value of x; is
0. Then we know that x, = 0 + &,. Therefore, the variance of x, = var(e,) = 6% Now x3 =
Xy + €3 = €, + £3. Because the error term in each period is assumed to be uncorrelated
with the error terms in all other periods, the variance of x5 = var(e,) + var(e;) = 202,
By a similar argument, we can show that for any period ¢, the variance of x, = (£ - 1)
0. But this means that as ¢ grows large, the variance of x, grows without an upper
bound: It approaches infinity. This lack of upper bound, in turn, means that a random
walk is not a covariance-stationary time series, because a covariance-stationary time
series must have a finite variance.

What is the practical implication of these issues? We cannot use standard regression
analysis on a time series that is a random walk. We can, however, attempt to convert
the data to a covariance-stationary time series if we suspect that the time series is a
random walk. In statistical terms, we can difference it.

We difference a time series by creating a new time series—say, y,—that in each
period is equal to the difference between x; and x,_;. This transformation is called
first-differencing because it subtracts the value of the time series in the first prior
period from the current value of the time series. Sometimes the first difference of
x; is written as Ax; = x, — x;_1. Note that the first difference of the random walk in
Equation 8 yields

Vi =X —x_1 =¢, E(g)=0, E(stz) = 67, cov(e,e,) = E(ge,) = 0 fort # 5.

The expected value of g, is 0. Therefore, the best forecast of y, that can be made in
period ¢ — 1 is 0. This implies that the best forecast is that there will be no change in
the value of the current time series, x;_;.

7 Equation 8 with a nonzero intercept added (as in Equation 9, given later) is sometimes referred to as a
random walk with drift.
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The first-differenced variable, y,, is covariance stationary. How is this so? First, note
that this model (y, = ¢;) is an AR(1) model with by = 0 and b; = 0. We can compute the
mean-reverting level of the first-differenced model as by/(1 - b;) = 0/1 = 0. Therefore,
a first-differenced random walk has a mean-reverting level of 0. Note also that the
variance of y, in each period is var(g,) = 0> Because the variance and the mean of y,
are constant and finite in each period, y, is a covariance-stationary time series and we
can model it using linear regression. Of course, modeling the first-differenced series
with an AR(1) model does not help us predict the future, because b, = 0 and b; = 0.
We simply conclude that the original time series is, in fact, a random walk.
Had we tried to estimate an AR(1) model for a time series that was a random walk,
our statistical conclusions would have been incorrect because AR models cannot be
used to estimate random walks or any time series that is not covariance stationary.
The following example illustrates this issue with exchange rates.

EXAMPLE 10

The Yen/US Dollar Exchange Rate

Financial analysts often assume that exchange rates are random walks. Consider
an AR(1) model for the Japanese yen/US dollar exchange rate (JPY/USD).
Exhibit 18 shows the results of estimating the model using month-end obser-
vations from October 1980 through August 2019.

Exhibit 18 Yen/US Dollar Exchange Rate: AR(1) Model Month-End

Observations, October 1980-August 2019

Regression Statistics

R? 0.9897
Standard error 4.5999
Observations 467
Durbin—Watson 1.9391

Coefficient Standard Error t-Statistic
Intercept 0.8409 0.6503 1.2931
JPY/USD,_; 0.9919 0.0047 211.0426

Autocorrelations of the Residual

Lag Autocorrelation Standard Error t-Statistic
1 0.0302 0.0465 0.6495
2 0.0741 0.0465 1.5935
3 0.0427 0.0465 0.9183
4 -0.0034 0.0465 0.0731

Source: US Federal Reserve Board of Governors.

The results in Exhibit 18 suggest that the yen/US dollar exchange rate is a
random walk because the estimated intercept does not appear to be significantly
different from 0 and the estimated coefficient on the first lag of the exchange
rate is very close to 1. Can we use the ¢-statistics in Exhibit 18 to test whether
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the exchange rate is a random walk? Unfortunately, no, because the standard
errors in an AR model are invalid if the model is estimated using a data series
that is a random walk (remember, a random walk is not covariance stationary).
If the exchange rate is, in fact, a random walk, we might come to an incorrect
conclusion based on faulty statistical tests and then invest incorrectly. We can
use a test presented in the next section to test whether the time series is a
random walk.

Suppose the exchange rate is a random walk, as we now suspect. If so, the
first-differenced series, y; = x;, — x;_;, will be covariance stationary. We present
the results from estimating y, = by + byy;_; + €, in Exhibit 19. If the exchange
rate is a random walk, then by = 0, b7 = 0, and the error term will not be serially
correlated.

Exhibit 19 First-Differenced Yen/US Dollar Exchange Rate: AR(1)

Model Month-End Observations, November 1980-
August 2019

Regression Statistics

R? 0.0008
Standard error 4.6177
Observations 466
Durbin—Watson 2.0075

Coefficient Standard Error t-Statistic
Intercept -0.2185 0.2142 -1.0200
JPY/USD,_; 0.0287 0.0464 0.6185
- JPY/USD;_,

Autocorrelations of the Residual

Lag Autocorrelation Standard Error t-Statistic
1 -0.0023 0.0463 -0.0501
2 0.0724 0.0463 1.5643
3 0.0387 0.0463 0.8361
4 -0.0062 0.0463 -0.1329

Source: US Federal Reserve Board of Governors.

In Exhibit 19, neither the intercept nor the coefficient on the first lag of
the first-differenced exchange rate differs significantly from 0, and no residual
autocorrelations differ significantly from 0. These findings are consistent with
the yen/US dollar exchange rate being a random walk.

We have concluded that the differenced regression is the model to choose.
Now we can see that we would have been seriously misled if we had based our
model choice on an R? comparison. In Exhibit 18, the R? is 0.9897, whereas
in Exhibit 19, the R? is 0.0008. How can this be, if we just concluded that the
model in Exhibit 19 is the one that we should use? In Exhibit 18, the R* mea-
sures how well the exchange rate in one period predicts the exchange rate in the
next period. If the exchange rate is a random walk, its current value will be an
extremely good predictor of its value in the next period, and thus the R? will be
extremely high. At the same time, if the exchange rate is a random walk, then
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changes in the exchange rate should be completely unpredictable. Exhibit 19
estimates whether changes in the exchange rate from one month to the next
can be predicted by changes in the exchange rate over the previous month. If
they cannot be predicted, the R2 in Exhibit 19 should be very low. In fact, it is
low (0.0008). This comparison provides a good example of the general rule that
we cannot necessarily choose which model is correct solely by comparing the
R? from the two models.

The exchange rate is a random walk, and changes in a random walk are by
definition unpredictable. Therefore, we cannot profit from an investment strategy
that predicts changes in the exchange rate.

To this point, we have discussed only simple random walks—that is, random walks
without drift. In a random walk without drift, the best predictor of the time series
in the next period is its current value. A random walk with drift, however, should
increase or decrease by a constant amount in each period. The equation describing a
random walk with drift is a special case of the AR(1) model:

X =by+bx_ + g,
by =1 by #0,0r (9)
Xt = bo + xt—l + St, E(St) =0.

A random walk with drift has b = 0, compared to a simple random walk, which has
by = 0.

We have already seen that b; = 1 implies an undefined mean-reversion level and
thus nonstationarity. Consequently, we cannot use an AR model to analyze a time
series that is a random walk with drift until we transform the time series by taking
first differences. If we first-difference Equation 9, the result is y, = %, — x;_1, ¥, = by
+€, by = 0.

THE UNIT ROOT TEST OF NONSTATIONARITY

j describe implications of unit roots for time-series analysis, explain when unit
roots are likely to occur and how to test for them, and demonstrate how a time
series with a unit root can be transformed so it can be analyzed with an AR
model;

k describe the steps of the unit root test for nonstationarity and explain the rela-
tion of the test to autoregressive time-series models;

In this section, we discuss how to use random walk concepts to determine whether a
time series is covariance stationary. This approach focuses on the slope coefficient in
the random-walk-with-drift case of an AR(1) model in contrast with the traditional
autocorrelation approach, which we discuss first.

The examination of the autocorrelations of a time series at various lags is a well-
known prescription for inferring whether or not a time series is stationary. Typically,
for a stationary time series, either autocorrelations at all lags are statistically indistin-
guishable from zero or the autocorrelations drop off rapidly to zero as the number of
lags becomes large. Conversely, the autocorrelations of a nonstationary time series do
not exhibit those characteristics. However, this approach is less definite than a currently
more popular test for nonstationarity known as the Dickey—Fuller test for a unit root.
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We can explain what is known as the unit root problem in the context of an AR(1)
model. If a time series comes from an AR(1) model, then to be covariance stationary,
the absolute value of the lag coefficient, b, must be less than 1.0. We could not rely
on the statistical results of an AR(1) model if the absolute value of the lag coefficient
were greater than or equal to 1.0 because the time series would not be covariance
stationary. If the lag coefficient is equal to 1.0, the time series has a unit root: It is
a random walk and is not covariance stationary (note that when b, is greater than 1
in absolute value, we say that there is an “explosive root”). By definition, all random
walks, with or without a drift term, have unit roots.

How do we test for unit roots in a time series? If we believed that a time series,
x;, was a random walk with drift, it would be tempting to estimate the parameters of
the AR(1) model x, = by + byx;_; + €; using linear regression and conduct a ¢-test of
the hypothesis that b; = 1. Unfortunately, if b; = 1, then x, is not covariance stationary

and the ¢-value of the estimated coefficient, by, does not actually follow the ¢-distri-
bution; consequently, a ¢-test would be invalid.

Dickey and Fuller (1979) developed a regression-based unit root test based on a
transformed version of the AR(1) model x, = by + byx,_; + €, Subtracting x,_; from
both sides of the AR(1) model produces

Xp— %1 =bg+(by — Dxy g +€p
or
Xp— %1 =bo+ g%, + €, E(g) =0, (10)

where g; = (b; — 1). If by = 1, then g; = 0 and thus a test of g; = 0 is a test of b; = 1.
If there is a unit root in the AR(1) model, then g; will be 0 in a regression where the
dependent variable is the first difference of the time series and the independent vari-
able is the first lag of the time series. The null hypothesis of the Dickey—Fuller test
is Hy: g = 0—that is, that the time series has a unit root and is nonstationary—and
the alternative hypothesis is H: g; < 0, that the time series does not have a unit root
and is stationary.

To conduct the test, one calculates a ¢-statistic in the conventional manner for g,

but instead of using conventional critical values for a ¢-test, one uses a revised set of
values computed by Dickey and Fuller; the revised critical values are larger in absolute
value than the conventional critical values. A number of software packages incorporate
Dickey—Fuller tests.

EXAMPLE 11 (HISTORICAL EXAMPLE)

AstraZeneca’s Quarterly Sales (1)

In January 2012, equity analyst Aron Berglin is building a time-series model
for the quarterly sales of AstraZeneca, a British/Swedish biopharmaceutical
company headquartered in London. He is using AstraZeneca’s quarterly sales
in US dollars for January 2000 to December 2011 and any lagged sales data that
he may need prior to 2000 to build this model. He finds that a log-linear trend
model seems better suited for modeling AstraZeneca’s sales than does a linear
trend model. However, the Durbin—Watson statistic from the log-linear regres-
sion is just 0.7064, which causes him to reject the hypothesis that the errors in
the regression are serially uncorrelated. He concludes that he cannot model the
log of AstraZeneca’s quarterly sales using only a time trend line. He decides to
model the log of AstraZeneca’s quarterly sales using an AR(1) model. He uses
In Sales, = by + b;(In Sales,_;) + &,.
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Before he estimates this regression, the analyst should use the Dickey—Fuller
test to determine whether there is a unit root in the log of AstraZeneca’s quarterly
sales. If he uses the sample of quarterly data on AstraZeneca’s sales from the
first quarter of 2000 through the fourth quarter of 2011, takes the natural log
of each observation, and computes the Dickey—Fuller ¢-test statistic, the value
of that statistic might cause him to fail to reject the null hypothesis that there
is a unit root in the log of AstraZeneca’s quarterly sales.

If a time series appears to have a unit root, how should we model it? One method
that is often successful is to model the first-differenced series as an autoregressive
time series. The following example demonstrates this method.

EXAMPLE 12

AstraZeneca’s Quarterly Sales (2)

The plot of the log of AstraZeneca’s quarterly sales is shown in Exhibit 20. By
looking at the plot, Berglin is convinced that the log of quarterly sales is not
covariance stationary (that it has a unit root).

Exhibit 20 Log of AstraZeneca’s Quarterly Sales
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Source: Compustat.

So he creates a new series, y;, that is the first difference of the log of
AstraZeneca’s quarterly sales. Exhibit 21 shows that series.

Berglin compares Exhibit 21 to Exhibit 20 and notices that first-differencing
the log of AstraZeneca’s quarterly sales eliminates the strong upward trend that
was present in the log of AstraZeneca’s sales. Because the first-differenced series
has no strong trend, Berglin is better off assuming that the differenced series is
covariance stationary rather than assuming that AstraZeneca’s sales or the log
of AstraZeneca’s sales is a covariance-stationary time series.
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Exhibit 21 Log Difference, AstraZeneca’s Quarterly Sales

Ln Difference
0.2

01 r

00 02 04 06 08 10 12

Year

Source: Compustat.

Now suppose Berglin decides to model the new series using an AR(1) model.
Berglin uses In(Sales,) — In(Sales,_;) = by + by[In(Sales,_;) — In(Sales;_,)] + €,.
Exhibit 22 shows the results of that regression.

Exhibit 22 Log Differenced Sales: AR(1) Model of AstraZeneca

Quarterly Observations, January 2000-December 2011

Regression Statistics

R? 0.3005
Standard error 0.0475
Observations 48
Durbin—Watson 1.6874

Coefficient Standard Error t-Statistic
Intercept 0.0222 0.0071 3.1268
In Sales,_; — -0.5493 0.1236 -4.4442
In Sales,_,

Autocorrelations of the Residual

Lag Autocorrelation Standard Error t-Statistic
1 0.2809 0.1443 1.9466
2 -0.0466 0.1443 -0.3229
3 0.0081 0.1443 0.0561
4 0.2647 0.1443 1.8344

Source: Compustat.
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The lower part of Exhibit 22 suggests that the first four autocorrelations of
residuals in this model are not statistically significant. With 48 observations
and two parameters, this model has 46 degrees of freedom. The critical value
for a t-statistic in this model is above 2.0 at the 0.05 significance level. None of
the ¢-statistics for these autocorrelations has an absolute value larger than 2.0.
Therefore, we fail to reject the null hypotheses that each of these autocorrela-
tions is equal to 0 and conclude instead that no significant autocorrelation is
present in the residuals.

This result suggests that the model is well specified and that we could use

the estimates. Both the intercept ( 60 =0.0222) and the coefficient ( 61 = -0.5493)
on the first lag of the new first-differenced series are statistically significant.

1 Explain how to interpret the estimated coefficients in the model.

Solution to 1:

The value of the intercept (0.0222) implies that if sales have not changed in the
current quarter (y, = In Sales, — In Sales;_; = 0), sales will grow by 2.22% next
quarter.8 If sales have changed during this quarter, however, the model predicts
that sales will grow by 2.22% minus 0.5493 times the sales growth in this quarter.

2 AstraZeneca’s sales in the third and fourth quarters of 2011 were
$8,405 million and $8,872 million, respectively. If we use the previous
model soon after the end of the fourth quarter of 2011, what will be the
predicted value of AstraZeneca’s sales for the first quarter of 2012?

Solution to 2:
Let us say that ¢ is the fourth quarter of 2011, so ¢ — 1 is the third quarter of
2011 and ¢ + 1 is the first quarter of 2012. Then we would have to compute )A/Hl

= 0.0222 - 0.5493y,. To compute )A/Hl, we need to know y, = In Sales, — In
Sales,_;. In the third quarter of 2011, AstraZeneca’s sales were $8,405 million,
so In Sales,_; = In 8,405 = 9.0366. In the fourth quarter of 2011, AstraZeneca’s
sales were $8,872 million, so In Sales, = In 8,872 = 9.0907. Thus y, = 9.0907 —
9.0366 = 0.0541. Therefore, y,,; = 0.0222 - 0.5493(0.0541) = —0.0075. If y,,,

= —0.0075, then —0.0075 = In Sales,,; — In Sales, = In(Sales,, ;/Sales;). If we
exponentiate both sides of this equation, the result is

00075 _ [Sales;y; |
Sales;,

Sales, | = Sales,e_o'oo75

= $8,872 million x 0.9925

= $8,805 million.
Thus, based on fourth quarter sales for 2011, this model would have predicted
that AstraZeneca’s sales in the first quarter of 2012 would be $8,805 million.

This sales forecast might have affected our decision to buy AstraZeneca’s stock
at the time.

8 Note that 2.22 percent is the exponential growth rate, not [(Current quarter sales/Previous quarter sales)
- 1]. The difference between these two methods of computing growth is usually small.
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MOVING-AVERAGE TIME-SERIES MODELS ‘I 2

k describe the steps of the unit root test for nonstationarity and explain the rela-
tion of the test to autoregressive time-series models;

So far, many of the forecasting models we have used have been autoregressive models.
Because most financial time series have the qualities of an autoregressive process,
autoregressive time-series models are probably the most frequently used time-series
models in financial forecasting. Some financial time series, however, seem to more
closely follow another kind of time-series model, called a moving-average model. For
example, as we will show, returns on the S&P BSE 100 Index can be better modeled
as a moving-average process than as an autoregressive process.

In this section, we present the fundamentals of moving-average models so that
you can ask the right questions when considering their use. We first discuss how to
smooth past values with a moving average and then how to forecast a time series
using a moving-average model. Even though both methods include the words “moving
average” in the name, they are very different.

12.1 Smoothing Past Values with an n-Period Moving Average

Suppose you are analyzing the long-term trend in the past sales of a company. In
order to focus on the trend, you may find it useful to remove short-term fluctuations
or noise by smoothing out the time series of sales. One technique to smooth out
period-to-period fluctuations in the value of a time series is an n-period moving
average. An n-period moving average of the current and past # — 1 values of a time
series, x;, is calculated as

Xp X X,
) (11)
n
The following example demonstrates how to compute a moving average of

AstraZeneca’s quarterly sales.

EXAMPLE 13

AstraZeneca’s Quarterly Sales (3)

Suppose we want to compute the four-quarter moving average of AstraZeneca’s
sales as of the beginning of the first quarter of 2012. AstraZeneca’s sales in
the previous four quarters were as follows: 1Q 2011, $8,490 million; 2Q 2011,
$8,601 million; 3Q 2011, $8,405 million; and 4Q 2011, $8,872 million. The four-
quarter moving average of sales as of the beginning of the first quarter of 2012
is thus (8,490 + 8,601 + 8,405 + 8,872)/4 = $8,592 million.

We often plot the moving average of a series with large fluctuations to help discern
any patterns in the data. Exhibit 23 shows monthly retail sales for the United States
from December 1995 to June 2019, along with a 12-month moving average of the
data (data from January 1995 are used to compute the 12-month moving average).
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Exhibit 23 Monthly US Real Retail Sales and 12-Month Moving Average of

Retail Sales
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Source: Bloomberg.

As Exhibit 23 shows, each year has a very strong peak in retail sales (December)
followed by a sharp drop in sales (January). Because of the extreme seasonality in the
data, a 12-month moving average can help us focus on the long-term movements
in retail sales instead of seasonal fluctuations. Note that the moving average does
not have the sharp seasonal fluctuations of the original retail sales data. Rather, the
moving average of retail sales grows steadily—for example, from 1995 through the
second half of 2008—and then declines for about a year and grows steadily thereafter.
We can see that trend more easily by looking at a 12-month moving average than by
looking at the time series itself.

Exhibit 24 shows monthly Europe Brent Crude Oil spot prices along with a 12-
month moving average of oil prices. Although these data do not have the same sharp
regular seasonality displayed in the retail sales data in Exhibit 23, the moving average
smooths out the monthly fluctuations in oil prices to show the longer-term movements.
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Exhibit 24 Monthly Europe Brent Crude Oil Price and 12-Month Moving

Average of Prices
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Source: US Energy Information Administration.

Exhibit 24 also shows one weakness with a moving average: It always lags large
movements in the actual data. For example, when oil prices rose quickly in late 2007
and the first half of 2008, the moving average rose only gradually. When oil prices
fell sharply toward the end of 2008, the moving average also lagged. Consequently,
a simple moving average of the recent past, though often useful in smoothing out a
time series, may not be the best predictor of the future. A main reason for this is that
a simple moving average gives equal weight to all the periods in the moving average.
In order to forecast the future values of a time series, it is often better to use a more
sophisticated moving-average time-series model. We discuss such models below.

12.2 Moving-Average Time-Series Models for Forecasting
Suppose that a time series, x;, is consistent with the following model:
x, =¢ +0g,_y, E(e,) =0, Eez):cz,
=& 10 E(er) ( t (12)
cov(e;.,e5) = E(ge5) = 0 forz # s.

This equation is called a moving-average model of order 1, or simply an MA(1) model.
Theta (0) is the parameter of the MA(1) model.”

Equation 12 is a moving-average model because in each period, x; is a moving
average of g, and g,_;, two uncorrelated random variables that each have an expected
value of zero. Unlike the simple moving-average model of Equation 11, this moving-
average model places different weights on the two terms in the moving average (1 on
g, and 6 on g;_;).

9 Note that a moving-average time-series model is very different from a simple moving average, as discussed
in Section 12. The simple moving average is based on observed values of a time series. In a moving-average
time-series model, we never directly observe ¢; or any other ¢,_;, but we can infer how a particular moving-
average model will imply a particular pattern of serial correlation for a time series, as we will discuss.
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We can see if a time series fits an MA(1) model by looking at its autocorrelations
to determine whether «x; is correlated only with its preceding and following values.
First, we examine the variance of x, in Equation 12 and its first two autocorrelations.
Because the expected value of x; is 0 in all periods and ¢, is uncorrelated with its own
past values, the first autocorrelation is not equal to 0, but the second and higher auto-
correlations are equal to 0. Further analysis shows that all autocorrelations except for
the first will be equal to 0 in an MA(1) model. Thus for an MA(1) process, any value
x; is correlated with x,_; and x,,; but with no other time-series values; we could say
that an MA(1) model has a memory of one period.

Of course, an MA(1) model is not the most complex moving-average model. A
qth-order moving-average model, denoted MA(q) and with varying weights on lagged
terms, can be written as

X =8t 0+ + 048y, E(e) = 0, E(Stz) = o’, (13)

cov(e,.ey) = E(ge5) = 0 forz # s.

How can we tell whether an MA(q) model fits a time series? We examine the
autocorrelations. For an MA(g) model, the first g autocorrelations will be significantly
different from 0, and all autocorrelations beyond that will be equal to 0; an MA(g)
model has a memory of g periods. This result is critical for choosing the right value
of g for an MA model. We discussed this result previously for the specific case of g =
1 that all autocorrelations except for the first will be equal to 0 in an MA(1) model.

How can we distinguish an autoregressive time series from a moving-average time
series? Once again, we do so by examining the autocorrelations of the time series
itself. The autocorrelations of most autoregressive time series start large and decline
gradually, whereas the autocorrelations of an MA(g) time series suddenly drop to 0
after the first g autocorrelations. We are unlikely to know in advance whether a time
series is autoregressive or moving average. Therefore, the autocorrelations give us our
best clue about how to model the time series. Most time series, however, are best
modeled with an autoregressive model.

EXAMPLE 14 (HISTORICAL EXAMPLE)

A Time-Series Model for Monthly Returns on the S&P BSE
100 Index

The S&P BSE 100 Index is designed to reflect the performance of India’s top 100
large-cap companies listed on the BSE Ltd. (formerly Bombay Stock Exchange).
Are monthly returns on the S&P BSE 100 Index autocorrelated? If so, we may
be able to devise an investment strategy to exploit the autocorrelation. What is
an appropriate time-series model for S&P BSE 100 monthly returns?

Exhibit 25 shows the first six autocorrelations of returns to the S&P BSE 100
using monthly data from January 2000 through December 2013. Note that all
of the autocorrelations are quite small. Do they reach significance? With 168
observations, the critical value for a ¢-statistic in this model is about 1.98 at
the 0.05 significance level. None of the autocorrelations has a ¢-statistic larger
in absolute value than the critical value of 1.98. Consequently, we fail to reject
the null hypothesis that those autocorrelations, individually, do not differ sig-
nificantly from 0.
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Exhibit 25 Annualized Monthly Returns to the S&P BSE 100,

January 2000-December 2013

Autocorrelations

Lag Autocorrelation Standard Error t-Statistic
1 0.1103 0.0772 1.4288
2 -0.0045 0.0772 -0.0583
3 0.0327 0.0772 0.4236
4 0.0370 0.0772 0.4793
5 -0.0218 0.0772 -0.2824
6 0.0191 0.0772 0.2474
Observations 168

Source: BSE Ltd.

If returns on the S&P BSE 100 were an MA(q) time series, then the first g
autocorrelations would differ significantly from 0. None of the autocorrelations
is statistically significant, however, so returns to the S&P BSE 100 appear to
come from an MA(0) time series. An MA(0) time series in which we allow the

mean to be nonzero takes the following form:19

~n+e, B(e) =0, E[ef) = o7,
X, =pu+g, E(g) g |=0 (1)
cov(e,,&5) = E(geg) = 0 forz # s,

which means that the time series is not predictable. This result should not be
surprising, because most research suggests that short-term returns to stock
indexes are difficult to predict.

We can see from this example how examining the autocorrelations allowed
us to choose between the AR and MA models. If returns to the S&P BSE 100 had
come from an AR(1) time series, the first autocorrelation would have differed
significantly from 0 and the autocorrelations would have declined gradually.
Not even the first autocorrelation is significantly different from 0, however.
Therefore, we can be sure that returns to the S&P BSE 100 do not come from
an AR(1) model—or from any higher-order AR model, for that matter. This
finding is consistent with our conclusion that the S&P BSE 100 series is MA(0).

SEASONALITY IN TIME-SERIES MODELS

l. explain how to test and correct for seasonality in a time-series model and calcu-
late and interpret a forecasted value using an AR model with a seasonal lag;

10 On the basis of investment theory and evidence, we expect that the mean monthly return on the
S&P BSE 100 is positive (u > 0). We can also generalize Equation 13 for an MA(g) time series by adding a
constant term, p. Including a constant term in a moving-average model does not change the expressions
for the variance and autocovariances of the time series. A number of early studies of weak-form market
efficiency used Equation 14 as the model for stock returns. See Garbade (1982).
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As we analyze the results of the time-series models in this reading, we encounter
complications. One common complication is significant seasonality, a case in which
the series shows regular patterns of movement within the year. At first glance, sea-
sonality might appear to rule out using autoregressive time-series models. After all,
autocorrelations will differ by season. This problem can often be solved, however, by
using seasonal lags in an autoregressive model.

A seasonal lag is usually the value of the time series one year before the current
period, included as an extra term in an autoregressive model. Suppose, for example,
that we model a particular quarterly time series using an AR(1) model, x;, = by + byx;_;
+ g, If the time series had significant seasonality, this model would not be correctly
specified. The seasonality would be easy to detect because the seasonal autocorrela-
tion (in the case of quarterly data, the fourth autocorrelation) of the error term would
differ significantly from 0. Suppose this quarterly model has significant seasonality. In
this case, we might include a seasonal lag in the autoregressive model and estimate

xXp=bo+bixs 1+ box,_ g+ € (15)

to test whether including the seasonal lag would eliminate statistically significant
autocorrelation in the error term.

In Examples 15 and 16, we illustrate how to test and adjust for seasonality in a
time-series model. We also illustrate how to compute a forecast using an autoregres-
sive model with a seasonal lag.

EXAMPLE 15

Seasonality in Sales at Starbucks

Earlier, we concluded that we could not model the log of Starbucks’ quarterly sales
using only a time-trend line (as shown in Example 3) because the Durbin—Watson
statistic from the regression provided evidence of positive serial correlation
in the error term. Based on methods presented in this reading, we might next
investigate using the first difference of log sales to remove an exponential trend
from the data to obtain a covariance-stationary time series.

Using quarterly data from the last quarter of 2001 to the second quarter of
2019, we estimate the following AR(1) model using ordinary least squares: (In
Sales, — In Sales,_;) = by + by(In Sales,_; — In Sales,_,) + ¢, Exhibit 26 shows
the results of the regression.

Exhibit 26 Log Differenced Sales: AR(1) Model—Starbucks, Quarterly

Observations, 2001-2019

Regression Statistics

R? 0.2044
Standard error 0.0611
Observations 72
Durbin—Watson 1.9904
Coefficient Standard Error t-Statistic
Intercept 0.0469 0.0080 5.8625
In Sales,_; -0.4533 0.1069 -4.2404
—In

Sales;_,
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Exhibit 26 (Continued)

Autocorrelations of the Residual

Lag Autocorrelation Standard Error t-Statistic
1 0.0051 0.1179 -0.0433
2 -0.1676 0.1179 -1.4218
3 -0.0130 0.1179 -0.1099
4 0.7630 0.1179 6.4720

Source: Bloomberg.

The first thing to note in Exhibit 26 is the strong seasonal autocorrelation
of the residuals. The bottom portion of the table shows that the fourth autocor-
relation has a value of 0.7630 and a ¢-statistic of 6. With 72 observations and
two parameters, this model has 70 degrees of freedom.!! The critical value for
a t-statistic is about 1.99 at the 0.05 significance level. Given this value of the
t-statistic, we must reject the null hypothesis that the fourth autocorrelation is
equal to 0 because the ¢-statistic is larger than the critical value of 1.99.

In this model, the fourth autocorrelation is the seasonal autocorrelation
because this AR(1) model is estimated with quarterly data. Exhibit 26 shows the
strong and statistically significant seasonal autocorrelation that occurs when a
time series with strong seasonality is modeled without taking the seasonality
into account. Therefore, the AR(1) model is misspecified, and we should not
use it for forecasting.

Suppose we decide to use an autoregressive model with a seasonal lag
because of the seasonal autocorrelation. We are modeling quarterly data, so we
estimate Equation 15: (In Sales, — In Sales,_;) = b, + b;(In Sales,_; — In Sales;_,)
+ by(In Sales,_, — In Sales,_:) + &,. Adding the seasonal difference In Sales, 4 — In
Sales, s is an attempt to remove a consistent quarterly pattern in the data and
could also eliminate a seasonal nonstationarity if one existed. The estimates of
this equation appear in Exhibit 27.

Exhibit 27 Log Differenced Sales: AR(1) Model with Seasonal Lag—

Starbucks, Quarterly Observations, 2005-2019

Regression Statistics

R? 0.7032
Standard error 0.0373
Observations 69

Durbin—Watson 2.0392

(continued)

11 In this example, we restrict the start of the sample period to the beginning of 2001, and we do not use
prior observations for the lags. Accordingly, the number of observations decreases with an increase in the
number of lags. In Exhibit 26, the first observation is for the third quarter of 2001 because we use up to two
lags. In Exhibit 27, the first observation is for the second quarter of 2002 because we use up to five lags.
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Exhibit 27 (Continued)

Coefficient Standard Error t-Statistic
Intercept 0.0107 0.0059 1.8136
In Sales, ; — -0.1540 0.0729 -2.1125
In Sales,_,
In Sales, 4 — 0.7549 0.0720 10.4847
In Sales,_s

Autocorrelations of the Residual

Lag Autocorrelation Standard Error t-Statistic
1 0.0135 0.1204 0.1121
2 -0.0171 0.1204 -0.1420
3 0.1589 0.1204 1.3198
4 -0.1498 0.1204 -1.2442

Source: Compustat.

Note the autocorrelations of the residual shown at the bottom of Exhibit 27.
None of the ¢-statistics on the first four autocorrelations is now significant.
Because the overall regression is highly significant (an F-test, not shown in the
exhibit, is significant at the 0.01 level), we can take an AR(1) model with a seasonal
lag as a reasonable working model for Starbucks sales. (A model having only a
seasonal lag term was investigated and not found to improve on this model.)

How can we interpret the coefficients in this model? To predict the current
quarter’s sales growth at Starbucks, we need to know two things: sales growth
in the previous quarter and sales growth four quarters ago. If sales remained
constant in each of those two quarters, the model in Exhibit 27 would predict
that sales will grow by 0.0107 (1.07%) in the current quarter. If sales grew by
1% last quarter and by 2% four quarters ago, then the model would predict that
sales growth this quarter will be 0.0107 - 0.0154(0.01) + 0.7549(0.02) = 0.0256,
or 2.56%. Note that all of these growth rates are exponential growth rates. Notice
also that the R? in the model with the seasonal lag (0.7032 in Exhibit 27) was
more than three times higher than the R? in the model without the seasonal lag
(0.2044 in Exhibit 26). Again, the seasonal lag model does a much better job of
explaining the data.

EXAMPLE 16 (HISTORICAL EXAMPLE)

Retail Sales Growth

We want to predict the growth in monthly retail sales of Canadian furniture
and home furnishing stores so that we can decide whether to recommend the
shares of these stores. We decide to use non-seasonally adjusted data on retail
sales. To begin with, we estimate an AR(1) model with observations on the
annualized monthly growth in retail sales from January 1995 to December 2012.
We estimate the following equation: Sales growth, = by + b;(Sales growth,_;) +
g;. Exhibit 28 shows the results from this model.



Seasonality in Time-Series Models 211

The autocorrelations of the residuals from this model, shown at the bottom of
Exhibit 28, indicate that seasonality is extremely significant in this model. With
216 observations and two parameters, this model has 214 degrees of freedom.
At the 0.05 significance level, the critical value for a ¢-statistic is about 1.97. The
12th-lag autocorrelation (the seasonal autocorrelation, because we are using
monthly data) has a value of 0.7620 and a ¢-statistic of 11.21. The ¢-statistic on
this autocorrelation is larger than the critical value (1.97), implying that we can
reject the null hypothesis that the 12th autocorrelation is 0. Note also that many
of the other ¢-statistics for autocorrelations shown in the table differ significantly
from 0. Consequently, the model shown in Exhibit 28 is misspecified, so we
cannot rely on it to forecast sales growth.

Suppose we add the seasonal lag of sales growth (the 12th lag) to the AR(1)
model to estimate the equation Sales growth, = b, + b;(Sales growth,_;) + by(Sales
growth,_;,) + €;. In this example, although we state that the sample period begins
in 1995, we use prior observations for the lags. This results in the same number
of observations irrespective of the number of lags. Exhibit 29 presents the results
of estimating this equation. The estimated value of the seasonal autocorrelation
(the 12th autocorrelation) has fallen to —0.1168. None of the first 12 autocor-
relations has a ¢-statistic with an absolute value greater than the critical value of
1.97 at the 0.05 significance level. We can conclude that there is no significant
serial correlation in the residuals from this model. Because we can reasonably
believe that the model is correctly specified, we can use it to predict retail sales
growth. Note that the R? in Exhibit 29 is 0.6724, much larger than the R? in
Exhibit 28 (computed by the model without the seasonal lag).

Exhibit 28 Monthly Retail Sales Growth of Canadian Furniture and

Home Furnishing Stores: AR(1) Model, January 1995-
December 2012

Regression Statistics

R? 0.0509
Standard error 1.8198
Observations 216
Durbin—Watson 2.0956

Coefficient Standard Error t-Statistic
Intercept 1.0518 0.1365 7.7055
Sales -0.2252 0.0665 -3.3865
growth,_;

Autocorrelations of the Residual

Lag Autocorrelation Standard Error t-Statistic
1 -0.0109 0.0680 -0.1603
2 -0.1949 0.0680 -2.8662
3 0.1173 0.0680 1.7250
4 -0.0756 0.0680 -1.1118
5 -0.1270 0.0680 -1.8676
6 -0.1384 0.0680 -2.0353
7 -0.1374 0.0680 -2.0206

(continued)
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Exhibit 28 (Continued)

Autocorrelations of the Residual

Lag Autocorrelation Standard Error t-Statistic
8 -0.0325 0.0680 -0.4779
9 0.1207 0.0680 1.7750
10 -0.2197 0.0680 -3.2309
11 -0.0342 0.0680 -0.5029
12 0.7620 0.0680 11.2059

Source: Statistics Canada (Government of Canada).

How can we interpret the coefficients in the model? To predict growth in

retail sales in this month, we need to know last month’s retail sales growth and
retail sales growth 12 months ago. If retail sales remained constant both last
month and 12 months ago, the model in Exhibit 29 would predict that retail sales
will grow at an annual rate of about 23.7% this month. If retail sales grew at an
annual rate of 10% last month and at an annual rate of 5% 12 months ago, the
model in Exhibit 29 would predict that retail sales will grow in the current month
at an annual rate of 0.2371 - 0.0792(0.10) + 0.7798(0.05) = 0.2682, or 26.8%.

Exhibit 29 Monthly Retail Sales Growth of Canadian Furniture and

Home Furnishing Stores: AR(1) Model with Seasonal Lag,
January 1995-December 2012

Regression Statistics

R? 0.6724
Standard error 1.0717
Observations 216
Durbin—Watson 2.1784

Coefficient Standard Error t-Statistic
Intercept 0.2371 0.0900 2.6344
Sales -0.0792 0.0398 -1.9899
growth,_;
Sales 0.7798 0.0388 20.0979
growth;_;
Autocorrelations of the Residual
Lag Autocorrelation Standard Error t-Statistic
1 -0.0770 0.0680 -1.1324
2 -0.0374 0.0680 -0.5500
3 0.0292 0.0680 0.4294
4 -0.0358 0.0680 -0.5265
5 -0.0399 0.0680 -0.5868
6 0.0227 0.0680 0.3338
7 -0.0967 0.0680 -1.4221



Autoregressive Moving-Average Models and Autoregressive Conditional Heteroskedasticity Models

Exhibit 29 (Continued)

Autocorrelations of the Residual

Lag Autocorrelation Standard Error t-Statistic
0.1241 0.0680 1.8250
9 0.0499 0.0680 0.7338
10 -0.0631 0.0680 -0.9279
11 0.0231 0.0680 0.3397
12 -0.1168 0.0680 -1.7176

Source: Statistics Canada (Government of Canada).

AUTOREGRESSIVE MOVING-AVERAGE MODELS
AND AUTOREGRESSIVE CONDITIONAL
HETEROSKEDASTICITY MODELS

m explain autoregressive conditional heteroskedasticity (ARCH) and describe how
ARCH models can be applied to predict the variance of a time series;

So far, we have presented autoregressive and moving-average models as alternatives
for modeling a time series. The time series we have considered in examples have usu-
ally been explained quite well with a simple autoregressive model (with or without
seasonal lags).1? Some statisticians, however, have advocated using a more general
model, the autoregressive moving-average (ARMA) model. The advocates of ARMA
models argue that these models may fit the data better and provide better forecasts
than do plain autoregressive (AR) models. However, as we discuss later in this section,
there are severe limitations to estimating and using these models. Because you may
encounter ARMA models, we next provide a brief overview.

An ARMA model combines both autoregressive lags of the dependent variable and
moving-average errors. The equation for such a model with p autoregressive terms
and ¢ moving-average terms, denoted ARMA(p, q), is

X, =by +bx, g+ + bpx,_p +& + 015+ + eqa,_q,

16
E(g;) =0, E(atz) =67, cov(g,.e;) = E(g,e5) = 0 forz # s, 1o

where by, by, . . ., b, are the autoregressive parameters and 8y, 0, . . ., 6, are the
moving-average parameters.

Estimating and using ARMA models has several limitations. First, the parameters
in ARMA models can be very unstable. In particular, slight changes in the data sample
or the initial guesses for the values of the ARMA parameters can result in very different
final estimates of the ARMA parameters. Second, choosing the right ARMA model
is more of an art than a science. The criteria for deciding on p and g for a particular
time series are far from perfect. Moreover, even after a model is selected, that model
may not forecast well.

12 For the returns on the S&P BSE 100 (see Example 14), we chose a moving-average model over an
autoregressive model.

14
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To reiterate, ARMA models can be very unstable, depending on the data sample
used and the particular ARMA model estimated. Therefore, you should be skeptical
of claims that a particular ARMA model provides much better forecasts of a time
series than any other ARMA model. In fact, in most cases, you can use an AR model
to produce forecasts that are just as accurate as those from ARMA models without
nearly as much complexity. Even some of the strongest advocates of ARMA models
admit that these models should not be used with fewer than 80 observations, and
they do not recommend using ARMA models for predicting quarterly sales or gross
margins for a company using even 15 years of quarterly data.

14.1 Autoregressive Conditional Heteroskedasticity Models

Up to now, we have ignored any issues of heteroskedasticity in time-series models and
have assumed homoskedasticity. Heteroskedasticity is the dependence of the error
term variance on the independent variable; homoskedasticity is the independence
of the error term variance from the independent variable. We have assumed that the
error term’s variance is constant and does not depend on the value of the time series
itself or on the size of previous errors. At times, however, this assumption is violated
and the variance of the error term is not constant. In such a situation, the standard
errors of the regression coefficients in AR, MA, or ARMA models will be incorrect,
and our hypothesis tests would be invalid. Consequently, we can make poor investment
decisions based on those tests.

For example, suppose you are building an autoregressive model of a company’s sales.
If heteroskedasticity is present, then the standard errors of the regression coefficients
of your model will be incorrect. It is likely that because of heteroskedasticity, one or
more of the lagged sales terms may appear statistically significant when in fact they
are not. Therefore, if you use this model for your decision making, you may make
some suboptimal decisions.

In work responsible in part for his shared 2003 Nobel Prize in Economics, Robert
F. Engle in 1982 first suggested a way of testing whether the variance of the error in
a particular time-series model in one period depends on the variance of the error in
previous periods. He called this type of heteroskedasticity “autoregressive conditional
heteroskedasticity” (ARCH).

As an example, consider the ARCH(1) model

€ ~ N(O,ao + alsf,l), 17)

where the distribution of €,, conditional on its value in the previous period, €;_;, is
normal, with mean 0 and variance a, + alaf,l. If a; = 0, the variance of the error in
every period is just ay. The variance is constant over time and does not depend on
past errors. Now suppose that @; > 0. Then the variance of the error in one period
depends on how large the squared error was in the previous period. If a large error
occurs in one period, the variance of the error in the next period will be even larger.

Engle showed that we can test whether a time series is ARCH(1) by regressing
the squared residuals from a previously estimated time-series model (AR, MA, or
ARMA) on a constant and one lag of the squared residuals. We can estimate the
linear regression equation

2 2

& =ay + ag-1 +u, (18)
where u, is an error term. If the estimate of a; is statistically significantly different
from zero, we conclude that the time series is ARCH(1). If a time-series model has

ARCH(1) errors, then the variance of the errors in period ¢ + 1 can be predicted in

~2 A A A2
period ¢ using the formula o741 = ao + ai&; .
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EXAMPLE 17

Testing for ARCH(1) in Monthly Inflation

Analyst Lisette Miller wants to test whether monthly data on CPI inflation contain
autoregressive conditional heteroskedasticity. She could estimate Equation 18
using the residuals from the time-series model. Based on the analyses in Examples
6 through 9, she has concluded that if she modeled monthly CPI inflation from
1995 to 2018, there would not be much difference in the performance of AR(1)
and AR(2) models in forecasting inflation. The AR(1) model is clearly better
for the period 2008-2018. She decides to further explore the AR(1) model for
the entire period 1995 to 2018. Exhibit 30 shows the results of testing whether
the errors in that model are ARCH(1). Because the test involves the first lag of
residuals of the estimated time-series model, the number of observations in the
test is one less than that in the model.

The t-statistic for the coefficient on the previous period’s squared residu-
als is greater than 4.8. Therefore, Miller easily rejects the null hypothesis that
the variance of the error does not depend on the variance of previous errors.
Consequently, the test statistics she computed in Exhibit 30 are not valid, and
she should not use them in deciding her investment strategy.

Exhibit 30 Test for ARCH(1) in an AR(1) Model: Residuals from

Monthly CPI Inflation at an Annual Rate, March 1995-
December 2018

Regression Statistics

R? 0.0759
Standard error 23.7841
Observations 286
Durbin—Watson 2.0569

Coefficient Standard Error t-Statistic
Intercept 6.3626 1.4928 4.2622
A2 0.2754 0.0570 4.8316

&t-1

Source: US Bureau of Labor Statistics.

It is possible Miller’s conclusion—that the AR(1) model for monthly infla-
tion has ARCH in the errors—may have been due to the sample period used
(1995-2018). In Example 9, she used a shorter sample period, 2008—2018, and
concluded that monthly CPI inflation follows an AR(1) process. (These results
were shown in Exhibit 16.) Exhibit 30 shows that errors for a time-series model
of inflation for the entire sample (1995-2018) have ARCH errors. Do the errors
estimated with a shorter sample period (2008-2018) also display ARCH? For the
shorter sample period, Miller estimated an AR(1) model using monthly inflation
data. Now she tests to see whether the errors display ARCH. Exhibit 31 shows
the results.
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In this sample, the coefficient on the previous period’s squared residual has
a t-statistic of 4.0229. Consequently, Miller rejects the null hypothesis that the
errors in this regression have no autoregressive conditional heteroskedasticity.
The error variance appears to be heteroskedastic, and Miller cannot rely on the
t-statistics.

Exhibit 31 Test for ARCH(1) in an AR(1) Model: Monthly CPI Inflation

at an Annual Rate, February 2008-December 2018

Regression Statistics

R? 0.1113
Standard error 24.64
Observations 131
Durbin—Watson 2.0385

Coefficient Standard Error t-Statistic
Intercept 6.2082 2.2873 2.7142
~2 0.3336 0.0830 4.0229

&t-1

Source: US Bureau of Labor Statistics.

Suppose a model contains ARCH(1) errors. What are the consequences of that
fact? First, if ARCH exists, the standard errors for the regression parameters will not
be correct. We will need to use generalized least squares'® or other methods that
correct for heteroskedasticity to correctly estimate the standard error of the param-
eters in the time-series model. Second, if ARCH exists and we have it modeled—for
example, as ARCH(1)—we can predict the variance of the errors. Suppose, for instance,
that we want to predict the variance of the error in inflation using the estimated

parameters from Exhibit 30: 8t2 = 6.3626 + 0.2754%?_1. If the error in one period were
0%, the predicted variance of the error in the next period would be 6.3626 + 0.2754(0)
= 6.3626. If the error in one period were 1%, the predicted variance of the error in
the next period would be 6.3626 + 0.2754(12) = 6.6380.

Engle and other researchers have suggested many generalizations of the ARCH(1)
model, including ARCH(p) and generalized autoregressive conditional heteroskedas-
ticity (GARCH) models. In an ARCH(p) model, the variance of the error term in the
current period depends linearly on the squared errors from the previous p peri-

ods: 0',2 =aqay + alatz_l +oee apatz_p. GARCH models are similar to ARMA models

of the error variance in a time series. Just like ARMA models, GARCH models can
be finicky and unstable: Their results can depend greatly on the sample period and
the initial guesses of the parameters in the GARCH model. Financial analysts who
use GARCH models should be well aware of how delicate these models can be, and
they should examine whether GARCH estimates are robust to changes in the sample
and the initial guesses about the parameters.1#

13 See Greene (2018).
14 For more on ARCH, GARCH, and other models of time-series variance, see Hamilton (1994).
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REGRESSIONS WITH MORE THAN ONE TIME SERIES

n explain how time-series variables should be analyzed for nonstationarity and/or
cointegration before use in a linear regression; and

Up to now, we have discussed time-series models only for one time series. Although in
the readings on correlation and regression and on multiple regression we used linear
regression to analyze the relationship among different time series, in those readings we
completely ignored unit roots. A time series that contains a unit root is not covariance
stationary. If any time series in a linear regression contains a unit root, ordinary least
squares estimates of regression test statistics may be invalid.

To determine whether we can use linear regression to model more than one time
series, let us start with a single independent variable; that is, there are two time series,
one corresponding to the dependent variable and one corresponding to the indepen-
dent variable. We will then extend our discussion to multiple independent variables.

We first use a unit root test, such as the Dickey—Fuller test, for each of the two
time series to determine whether either of them has a unit root.!> There are several
possible scenarios related to the outcome of these tests. One possible scenario is that
we find that neither of the time series has a unit root. Then we can safely use linear
regression to test the relations between the two time series. Otherwise, we may have
to use additional tests, as we discuss later in this section.

EXAMPLE 18

Unit Roots and the Fisher Effect

Researchers at an asset management firm examined the Fisher effect by estimating
the regression relation between expected inflation and US Treasury bill (T-bill)
returns. They used 181 quarterly observations on expected inflation rates and
T-bill returns from the sample period extending from the fourth quarter of 1968
through the fourth quarter of 2013. They used linear regression to analyze the
relationship between the two time series. The results of this regression would
be valid if both time series are covariance stationary; that is, neither of the two
time series has a unit root. So, if they compute the Dickey—Fuller ¢-test statistic
of the hypothesis of a unit root separately for each time series and find that they
can reject the null hypothesis that the T-bill return series has a unit root and the
null hypothesis that the expected inflation time series has a unit root, then they
can use linear regression to analyze the relation between the two series. In that
case, the results of their analysis of the Fisher effect would be valid.

A second possible scenario is that we reject the hypothesis of a unit root for the
independent variable but fail to reject the hypothesis of a unit root for the dependent
variable. In this case, the error term in the regression would not be covariance station-
ary. Therefore, one or more of the following linear regression assumptions would be
violated: (1) that the expected value of the error term is 0, (2) that the variance of the
error term is constant for all observations, and (3) that the error term is uncorrelated
across observations. Consequently, the estimated regression coefficients and standard

15 For theoretical details of unit root tests, see Greene (2018) or Tsay (2010). Unit root tests are available
in some econometric software packages, such as EViews.
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errors would be inconsistent. The regression coefficients might appear significant, but
those results would be spurious.!® Thus we should not use linear regression to analyze
the relation between the two time series in this scenario.

A third possible scenario is the reverse of the second scenario: We reject the
hypothesis of a unit root for the dependent variable but fail to reject the hypothesis
of a unit root for the independent variable. In this case also, like the second scenario,
the error term in the regression would not be covariance stationary, and we cannot
use linear regression to analyze the relation between the two time series.

EXAMPLE 19 (HISTORICAL EXAMPLE)

Unit Roots and Predictability of Stock Market Returns by
Price-to-Earnings Ratio

Johann de Vries is analyzing the performance of the South African stock market.
He examines whether the percentage change in the Johannesburg Stock Exchange
(JSE) All Share Index can be predicted by the price-to-earnings ratio (P/E) for
the index. Using monthly data from January 1994 to December 2013, he runs
a regression using (P, — P,_1)/P;_; as the dependent variable and P, {/E,_, as
the independent variable, where P, is the value of the JSE index at time £ and
E, is the earnings on the index. De Vries finds that the regression coefficient is
negative and statistically significant and the value of the R? for the regression
is quite high. What additional analysis should he perform before accepting the
regression as valid?

De Vries needs to perform unit root tests for each of the two time series.
If one of the two time series has a unit root, implying that it is not stationary,
the results of the linear regression are not meaningful and cannot be used to
conclude that stock market returns are predictable by P/E.17

The next possibility is that both time series have a unit root. In this case, we
need to establish whether the two time series are cointegrated before we can rely
on regression analysis.!® Two time series are cointegrated if a long-term financial or
economic relationship exists between them such that they do not diverge from each
other without bound in the long run. For example, two time series are cointegrated
if they share a common trend.

In the fourth scenario, both time series have a unit root but are not cointegrated.
In this scenario, as in the second and third scenarios, the error term in the linear
regression will not be covariance stationary, some regression assumptions will be
violated, the regression coeflicients and standard errors will not be consistent, and we
cannot use them for hypothesis tests. Consequently, linear regression of one variable
on the other would be meaningless.

Finally, the fifth possible scenario is that both time series have a unit root but they
are cointegrated. In this case, the error term in the linear regression of one time series
on the other will be covariance stationary. Accordingly, the regression coefficients and
standard errors will be consistent, and we can use them for hypothesis tests. However,
we should be very cautious in interpreting the results of a regression with cointegrated
variables. The cointegrated regression estimates the long-term relation between the

16 The problem of spurious regression for nonstationary time series was first discussed by Granger and
Newbold (1974).

17 Barr and Kantor (1999) contains evidence that the P/E time series is nonstationary.

18 Engle and Granger (1987) first discussed cointegration.
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two series but may not be the best model of the short-term relation between the two
series. Short-term models of cointegrated series (error correction models) are dis-
cussed in Engle and Granger (1987) and Tsay (2010), but these are specialist topics.

Now let us look at how we can test for cointegration between two time series

that each have a unit root, as in the fourth and fifth scenarios.!® Engle and Granger
suggested the following test. If y, and x, are both time series with a unit root, we
should do the following:

1
2

Estimate the regression y, = by + b1x; + €.

Test whether the error term from the regression in Step 1 has a unit root using
a Dickey—Fuller test. Because the residuals are based on the estimated coef-
ficients of the regression, we cannot use the standard critical values for the
Dickey—Fuller test. Instead, we must use the critical values computed by Engle
and Granger, which take into a