# Load required libraries library(ggplot2) library(dplyr) library(gridExtra) # Set Poisson distribution parameter (λ) lambda <- 4 # Define the range of x values x_vals <- 0:15 # --- 1. Plot the PMF (Probability Mass Function) --- pmf <- data.frame( x = x_vals, prob = dpois(x_vals, lambda) ) plot_pmf <- ggplot(pmf, aes(x = x, y = prob)) + geom_bar(stat = "identity", fill = "steelblue") + labs(title = paste("Poisson PMF (λ =", lambda, ")"), x = "x", y = "P(X = x)") + theme_minimal() # --- 2. Plot the CDF (Cumulative Distribution Function) --- cdf <- data.frame( x = x_vals, cdf = ppois(x_vals, lambda) ) plot_cdf <- ggplot(cdf, aes(x = x, y = cdf)) + geom_step(color = "darkgreen", size = 1.2) + labs(title = paste("Poisson CDF (λ =", lambda, ")"), x = "x", y = "P(X ≤ x)") + theme_minimal() # --- 3. Simulate Poisson random variables --- set.seed(123) n_samples <- 10000 samples <- rpois(n_samples, lambda) # Histogram of simulated data hist_sim <- ggplot(data.frame(samples), aes(x = samples)) + geom_histogram(binwidth = 1, fill = "orange", color = "black", aes(y = ..density..)) + labs(title = "Simulated Poisson Samples", x = "Value", y = "Density") + theme_minimal() # --- 4. Compare empirical and theoretical distributions --- empirical <- table(factor(samples, levels = x_vals)) / n_samples comparison <- data.frame( x = x_vals, Empirical = as.numeric(empirical), Theoretical = dpois(x_vals, lambda) ) plot_compare <- ggplot(comparison, aes(x = x)) + geom_bar(aes(y = Empirical), stat = "identity", fill = "gray70", width = 0.4, position = position_nudge(x = -0.2)) + geom_bar(aes(y = Theoretical), stat = "identity", fill = "blue", width = 0.4, position = position_nudge(x = 0.2)) + labs(title = "Empirical vs Theoretical Poisson PMF", x = "x", y = "Probability") + theme_minimal() + scale_x_continuous(breaks = x_vals) + guides(fill = FALSE) # --- 5. Mean and Variance Check --- empirical_mean <- mean(samples) empirical_var <- var(samples) cat("Theoretical Mean:", lambda, "\n") cat("Empirical Mean:", round(empirical_mean, 3), "\n\n") cat("Theoretical Variance:", lambda, "\n") cat("Empirical Variance:", round(empirical_var, 3), "\n") # --- 6. Use Cases / Applications of Poisson --- cat("\nCommon Applications of Poisson Distribution:\n") cat("- Modeling number of emails received per hour\n") cat("- Modeling decay events from radioactive particles\n") cat("- Number of accidents at a traffic intersection per day\n") cat("- Number of customer arrivals per minute\n") # --- Display Plots Together --- grid.arrange(plot_pmf, plot_cdf, hist_sim, plot_compare, ncol = 2)