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How to Use the CFA
Program Curriculum

The CFA’ Program exams measure your mastery of the core knowledge, skills, and
abilities required to succeed as an investment professional. These core competencies
are the basis for the Candidate Body of Knowledge (CBOK™). The CBOK consists of
four components:

= A broad outline that lists the major CFA Program topic areas (www
.cfainstitute.org/programs/cfa/curriculum/cbok)

= Topic area weights that indicate the relative exam weightings of the top-level
topic areas (www.cfainstitute.org/programs/cfa/curriculum)

= Learning outcome statements (LOS) that advise candidates about the
specific knowledge, skills, and abilities they should acquire from curricu-
lum content covering a topic area: LOS are provided at the beginning of
each block of related content and the specific lesson that covers them. We
encourage you to review the information about the LOS on our website
(www.cfainstitute.org/programs/cfa/curriculum/study-sessions), including
the descriptions of LOS “command words” on the candidate resources page
at www.cfainstitute.org.

= The CFA Program curriculum that candidates receive upon exam
registration

Therefore, the key to your success on the CFA exams is studying and understanding
the CBOK. You can learn more about the CBOK on our website: www.cfainstitute
.org/programs/cfa/curriculum/cbok.

The entire curriculum, including the practice questions, is the basis for all exam
questions and is selected or developed specifically to teach the knowledge, skills, and
abilities reflected in the CBOK.

ERRATA

The curriculum development process is rigorous and includes multiple rounds of
reviews by content experts. Despite our efforts to produce a curriculum that is free
of errors, there are instances where we must make corrections. Curriculum errata are
periodically updated and posted by exam level and test date online on the Curriculum
Errata webpage (www.cfainstitute.org/en/programs/submit-errata). If you believe you
have found an error in the curriculum, you can submit your concerns through our
curriculum errata reporting process found at the bottom of the Curriculum Errata
webpage.

DESIGNING YOUR PERSONAL STUDY PROGRAM

An orderly, systematic approach to exam preparation is critical. You should dedicate
a consistent block of time every week to reading and studying. Review the LOS both
before and after you study curriculum content to ensure that you have mastered the


www.cfainstitute.org/programs/cfa/curriculum/cbok
www.cfainstitute.org/programs/cfa/curriculum/cbok
www.cfainstitute.org/programs/cfa/curriculum
www.cfainstitute.org/programs/cfa/curriculum/study-sessions
www.cfainstitute.org
www.cfainstitute.org/programs/cfa/curriculum/cbok
www.cfainstitute.org/programs/cfa/curriculum/cbok
www.cfainstitute.org/en/programs/submit-errata
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applicable content and can demonstrate the knowledge, skills, and abilities described
by the LOS and the assigned reading. Use the LOS self-check to track your progress
and highlight areas of weakness for later review.

Successful candidates report an average of more than 300 hours preparing for each
exam. Your preparation time will vary based on your prior education and experience,
and you will likely spend more time on some study sessions than on others.

CFA INSTITUTE LEARNING ECOSYSTEM (LES)

Your exam registration fee includes access to the CFA Program Learning Ecosystem
(LES). This digital learning platform provides access, even offline, to all of the curricu-
lum content and practice questions and is organized as a series of short online lessons
with associated practice questions. This tool is your one-stop location for all study
materials, including practice questions and mock exams, and the primary method by
which CFA Institute delivers your curriculum experience. The LES offers candidates
additional practice questions to test their knowledge, and some questions in the LES
provide a unique interactive experience.

PREREQUISITE KNOWLEDGE

The CFA’ Program assumes basic knowledge of Economics, Quantitative Methods,
and Financial Statements as presented in introductory university-level courses in
Statistics, Economics, and Accounting. CFA Level I candidates who do not have a
basic understanding of these concepts or would like to review these concepts can
study from any of the three pre-read volumes.

FEEDBACK

Please send any comments or feedback to info@cfainstitute.org, and we will review
your suggestions carefully.
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LEARNING MODULE

Basics of Multiple Regression
and Underlying Assumptions

LEARNING OUTCOMES

Mastery | The candidate should be able to:

] describe the types of investment problems addressed by multiple
linear regression and the regression process

] formulate a multiple linear regression model, describe the relation
between the dependent variable and several independent variables,
and interpret estimated regression coefficients

] explain the assumptions underlying a multiple linear regression
model and interpret residual plots indicating potential violations of
these assumptions

INTRODUCTION

Multiple linear regression uses two or more independent variables to describe the
variation of the dependent variable rather than just one independent variable, as in
simple linear regression. It allows the analyst to estimate using more complex models
with multiple explanatory variables and, if used correctly, may lead to better predic-
tions, better portfolio construction, or better understanding of the drivers of security
returns. If used incorrectly, however, multiple linear regression may yield spurious
relationships, lead to poor predictions, and offer a poor understanding of relationships.

The analyst must first specify the model and make several decisions in this process,
answering the following, among other questions: What is the dependent variable of
interest? What independent variables are important? What form should the model
take? What is the goal of the model—prediction or understanding of the relationship?

The analyst specifies the dependent and independent variables and then employs
software to estimate the model and produce related statistics. The good news is that
the software, such as shown in Exhibit 1, does the estimation, and our primary tasks
are to focus on specifying the model and interpreting the output from this software,
which are the main subjects of this content.
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Learning Module 1

Basics of Multiple Regression and Underlying Assumptions

Exhibit 1: Examples of Regression Software

Software Programs/Functions
Excel Data Analysis > Regression
Python scipy.stats.linregress
statsmodels.Im
sklearn.linear_model.LinearRegression
R Im
SAS PROC REG
PROC GLM
STATA regress

SUMMARY

Multiple linear regression is used to model the linear relationship between
one dependent variable and two or more independent variables.

In practice, multiple regressions are used to explain relationships between
financial variables, to test existing theories, or to make forecasts.

The regression process covers several decisions the analyst must make, such
as identifying the dependent and independent variables, selecting the appro-
priate regression model, testing if the assumptions behind linear regression
are satisfied, examining goodness of fit, and making needed adjustments.

A multiple regression model is represented by the following equation:

)/i:b0+b1X1i+b2X2i+b3X3i+ +kaki+8i’ = 1, 2, 3, e N

where Y'is the dependent variable, Xs are the independent variables from 1
to k, and the model is estimated using # observations.

Coefficient b is the model’s “intercept,” representing the expected value of ¥
if all independent variables are zero.

Parameters b to b are the slope coefficients (or partial regression coeffi-
cients) for independent variables X; to X;. Slope coefficient b; describes the
impact of independent variable X; on Y, holding all the other independent
variables constant.

There are five main assumptions underlying multiple regression models that
must be satisfied, including (1) linearity, (2) homoskedasticity, (3) inde-
pendence of errors, (4) normality, and (5) independence of independent
variables.

Diagnostic plots can help detect whether these assumptions are satisfied.
Scatterplots of dependent versus and independent variables are useful for
detecting non-linear relationships, while residual plots are useful for detect-
ing violations of homoskedasticity and independence of errors.
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USES OF MULTIPLE LINEAR REGRESSION

] describe the types of investment problems addressed by multiple
linear regression and the regression process

There are many investment problems in which the analyst needs to consider the
impact of multiple factors on the subject of research rather than a single factor. In
the complex world of investments, it is intuitive that explaining or forecasting a
financial variable by a single factor may be insufficient. The complexity of financial
and economic relations calls for models with multiple explanatory variables, subject
to fundamental justification and various statistical tests.

Examples of how multiple regression may be used include the following:

= A portfolio manager wants to understand how returns are influenced by a
set of underlying factors; the size effect, the value effect, profitability, and
investment aggressiveness. The goal is to estimate a Fama—French five-factor
model that will provide an understanding of the factors that are important
for driving a particular stock’s excess returns.

= A financial adviser wants to identify whether certain variables, such as
financial leverage, profitability, revenue growth, and changes in market
share, can predict whether a company will face financial distress.

= An analyst wants to examine the effect of different dimensions of country
risk, such as political stability, economic conditions, and environmental,
social, and governance (ESG) considerations, on equity returns in that
country.

Multiple regression can be used to identify relationships between variables, to
test existing theories, or to forecast. We outline the general process of regression
analysis in Exhibit 2. As you can see, there are many decisions that the analyst must
make in this process.

For example, if the dependent variable is continuous, such as returns, the tradi-
tional regression model is typically the first step. If, however, the dependent variable is
discrete—for example, an indicator variable such as whether a company is a takeover
target or not a takeover target—then, as we shall see, the model may be estimated as
a logistic regression.

In either case, the process of determining the best model follows a similar path.
The model must first be specified, including independent variables that may be con-
tinuous, such as company financial features, or discrete (i.e., dummy variables), indi-
cating membership in a class, such as an industry sector. Next, the regression model
is estimated and analyzed to ensure it satisfies key underlying assumptions and meets
the analyst’s goodness-of-fit criteria. Once the model is tested and its out-of-sample
performance is deemed acceptable, then it can be used for further identifying rela-
tionships between variables, for testing existing theories, or for forecasting.
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Exhibit 2: The Regression Process

Explain the variation
of the dependent variable
by using the variation of
other, independent
variables

Is the
dependent variable
continuous?

Use logistic

NO ——— P

regression

YES

Estimate the
regression model

Analyze the residuals

Are the
assumptions of
regression
satisfied?

Adjust the
model

YES

Examine the
goodness of fit
of the model

Is the overall fit
significant?

NO

YES

Is this model the

~——NO best of possible
models?

YES

Use the model for

analysis and
prediction
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KNOWLEDGE CHECK

Assessment: Multiple Regression—Types of Investment
Problems and Process

1. You are a junior analyst assisting in the development of various multiple
regression models for your industry sector. Identify the action you should
take to resolve each of the following issues:

Issue Action

The dependent variable takes on a value of
1 if the company is a merger target and 0
otherwise.

The analyst estimates a model with five inde-
pendent variables, and none of these variables
are significant explanatory variables.

The residuals do not appear to be homoskedas-
tic, thus violating a regression assumption.

The regression assumptions are satisfied, the
overall fit is significant, and the model is the
best model of the possible models.

Solution
Issue Action
The dependent variable takes on a value of Use logistic regression.
1 if the company is a merger target and 0
otherwise.
The analyst estimates a model with five inde- Adjust the model and re-estimate.

pendent variables, and none of these variables
are significant explanatory variables.

The residuals do not appear to be homoskedas- Adjust the model and re-estimate.

tic, thus violating a regression assumption.

The regression assumptions are satisfied, the Use the model for analysis and
overall fit is significant, and the model is the prediction.
best model of the possible models.

THE BASICS OF MULTIPLE REGRESSION

] formulate a multiple linear regression model, describe the relation
between the dependent variable and several independent variables,
and interpret estimated regression coefficients

The goal of simple regression is to explain the variation of the dependent variable, Y,
using the variation of an independent variable, X. The goal of multiple regression is
the same, to explain the variation of the dependent variable, Y, but using the variations
in a set of independent variables, X7, X,, . . ., X;. Recall the variation of Y'is
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2
Variation of ¥ = i(Y! -Y),
=1

which we also refer to as the sum of squares total. The simple regression equation is

Yi:b0+b1)(l'+8i’ izl, 2, 3, o, L

When we introduce additional independent variables to help explain the variation of
the dependent variable, we have the multiple regression equation:

Yi=by+ b X+ byXp; + b3 X5+ ...+ b X, Te,i=1,2,3, .., n (1)

In this equation, the terms involving the k independent variables are the deterministic
part of the model, whereas the error term, g, is the stochastic or random part of the
model. The model is estimated over # observations, where n must be larger than .

It is important to note that a slope coefficient in a multiple regression, known as
a partial regression coefficient or a partial slope coefficient, must be interpreted
with care. A partial regression coefficient, bj, describes the impact of that indepen-
dent variable on the dependent variable, holding all the other independent variables
constant. For example, in the multiple regression equation,

Y= by + by Xy + by + b3X5 + gy,

the coefficient b, measures the change in Y for a one-unit change in X, assuming X;
and X5 are held constant. The estimated regression equation is

Y, = botb X+ by X+ by Xy,

with # indicating estimated coefficients.

Consider an estimated regression equation in which the monthly excess returns
of a bond index (RET) are regressed against the change in monthly government bond
yields (BY) and the change in the investment-grade credit spreads (CS). The estimated
regression, using 60 monthly observations, is

RET = 0.0023 — 5.0585BY — 2.1901CS.
We learn the following from this regression:

1. The bond index RET yields, on average, 0.0023% per month, or approxi-
mately 0.028% per year, if the changes in the government bond yields and
investment-grade credit spreads are zero.

2. The change in the bond index return for a given one-unit change in the
monthly government bond yield, BY, is —5.0585%, holding CS constant. This
means that the bond index has an empirical duration of 5.0585.

3. If the investment-grade credit spreads, CS, increase by one unit, the bond
index returns change by —2.1901%, holding BY constant.

4. For a month in which the change in the credit spreads is 0.001 and the
change in the government bond yields is 0.005, the expected excess return
on the bond index is

RET = 0.0023 — 5.0585(0.005) — 2.1901(0.001) = —0.0252, or —2.52%.

KNOWLEDGE CHECK

An institutional salesperson has just read the research report in which you
estimated a regression of monthly excess returns on a portfolio, RETRE, against
the Fama—French three factors:

s MKTRE, the market excess return;
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= SMB, the difference in returns between small- and large-capitalization
stocks; and

=  HML, the difference in returns between value and growth stocks.

All returns are stated in whole percentages (that is, 1 for 1%), and the esti-
mated regression equation is

RETRF = 1.5324 + 0.5892MKTRF + —0.8719SMB + —0.0560HML.

Before this salesperson meets with her client firm, she asks you to do the
following regarding your estimated regression model:

1. Interpret the intercept.
Solution

If the market excess return, SMB, and HML are each zero, then we expect a
return on the portfolio of 1.534%.

2. Interpret each slope coefficient.
Solution

Each slope coefficient is interpreted assuming the other variables are held
constant.

+ For MKTRE, if the market return increases by 1%, we expect the portfolio’s
return to increase by 0.5892%.

« For SMB, if the size effect returns increase by 1%, we expect the portfolio’s
return to decrease by 0.8719%.

» For HML, if the value effect returns increase by 1%, we expect the portfo-
lio’s return to decrease by 0.056%.

3. Calculate the predicted value of the portfolio’s return if
MKTRF = 1, SMB = 4, and HML = -2.

Solution

Given the expected values of the independent variables, the expected return
on the portfolio is

R =1.534+0.5892(1) — 0.8719(4) — 0.0560(~2) = —1.2524.

ASSUMPTIONS UNDERLYING MULTIPLE LINEAR
REGRESSION

] explain the assumptions underlying a multiple linear regression
model and interpret residual plots indicating potential violations of
these assumptions

Before we can conduct correct statistical inference on a multiple linear regression
model estimated using ordinary least squares (OLS), we need to know whether the
assumptions underlying that model are met. Suppose we have n observations on the
dependent variable, Y, and the independent variables, X;, X5, .. ., X}, and we want to
estimate the model
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Yi=by+ b Xj;+ by Xo; + b3 X5+ ...+ by Xy +e,i=1,2,3, ..., n.

In simple regression, we had four assumptions that needed to be satisfied so that we
could make valid conclusions regarding the regression results. In multiple regression,
we modify these slightly to reflect the additional independent variables:

1. Linearity: The relationship between the dependent variable and the inde-
pendent variables is linear.

2. Homoskedasticity: The variance of the regression residuals is the same for
all observations.

3. Independence of errors: The observations are independent of one another.
This implies the regression residuals are uncorrelated across observations.

4. Normality: The regression residuals are normally distributed.

5. Independence of independent variables:

5a. Independent variables are not random.

5b. There is no exact linear relation between two or more of the inde-
pendent variables or combinations of the independent variables.

The independence assumption is needed to enable the estimation of the coeffi-
cients. If there is an exact linear relationship between independent variables, the model
cannot be estimated. In the more common case of approximate linear relationships,
which may be indicated by significant pairwise correlations between the indepen-
dent variables, the model can be estimated but its interpretation is problematic. In
empirical work, the assumptions underlying multiple linear regression do not always
hold. The statistical tools to detect violations and methods to mitigate their effects
will be addressed later.

Regression software produces diagnostic plots, which are a useful tool for detect-
ing potential violations of the assumptions underlying multiple linear regression. To
illustrate the use of such plots, we first estimate a regression to analyze 10 years of
monthly total excess returns of ABC stock using the Fama—French three-factor model.
As noted previously, this model uses market excess return (MKTREF), size (SMB) and
value (HML) as explanatory variables.

ABC_RETRF, = by + byMKTRF, + b,SMB, + bHML, + ¢,

We start our analysis by generating a scatterplot matrix using software. This matrix
is also referred to as a pairs plot.

CODE: SCATTERPLOT MATRIX

Using Python
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
df = pd.read_csv(“ABC_FF.csv’,parse_dates=True,index_col=0)
sns.pairplot(df)
plt.show()

Using R

df <- read.csv(“data.csv”)
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Assumptions Underlying Multiple Linear Regression

pairs(df{c(“ABC_RETRF”’MKTRF?SMB”HML")])

The pairwise scatterplots for all variables are shown in Exhibit 3. For example, the
bottom row shows the relationships for the following three pairs: ABC_RETRF and
MKTRE, ABC_RETRF and SMB, and ABC_RETRF and HML. The simple regression
line and corresponding 95% confidence interval for the variables in each pair are also
shown, along with the histogram of each variable along the diagonal.

Exhibit 3: Scatterplot Matrix of ABC Returns and Fama-French Factors

SMB

w
o« .
& .
3 .
d B S
)
) . I .: I I
s . . A n L]
-0.10 0.00 0.10 -0.05 0.00 0.05 -0.1 0.00 -0.2 0.0 0.2
MKTRF SMB HML ABC_RETRF

You can see the following from the lower set of scatterplots between ABC_RET and
the three independent variables:

= There is a positive relationship between ABC_RETF and the market factor,
MKTRE.

= There seems to be no apparent relation between ABC_RETRF and the size
factor, SMB. The reason is the scatterplot compares the two variables in iso-
lation and does not show the “partial” correlation picked up by the regres-
sion, which explains why SMB is significant in the regression (see Exhibit 4)
but not in the scatterplot.

= There is a negative relationship between ABC_RETF and the value factor,
HML.

Looking at the scatterplots between the independent variables, SMB and HML
have little or no correlation, as indicated by the relatively flat line for the SMB-HML
pair. This is a desirable characteristic between explanatory variables.

An additional benefit of the scatterplot matrix is that all data points are displayed,
so it can also be used to identify extreme values and outliers.

1
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We now estimate the model of ABC’s excess returns using software such as
Microsoft Excel, Python, or R; results are shown in Exhibit 5. Focusing on the regres-
sion residuals, we look for clues to potential violations of the assumptions of multiple
linear regression.

Exhibit 4: ABC Returns Explained Using Fama-French Three-Factor Model

Regression Statistics

Multiple R 0.6238
R-Squared 0.3891
Adjusted R-Squared 0.3733
Standard Error 0.0628
Observations 120
ANOVA

Df Ss Ms F Significance F
Regression 3 0.2914 0.0971 24.6278 0.0000
Residual 116 0.4575 0.0039
Total 119 0.7489

Standard Lower
Coefficient error t-Stat. P-value 95% Upper 95%

Intercept 0.0052 0.0061 0.8435 0.4007 —-0.0070 0.0173
MKTRF 1.2889 0.1538 8.3791 0.0000 0.9842 1.5935
SMB —-0.5841 0.2664 -2.1922 0.0304 -1.1118 —0.0564
HML —-0.6810 0.2231 -3.0523 0.0028 -1.1229 -0.2391

Exhibit 5: ABC Returns Explained Using Fama-French Three-Factor Model

Regression Statistics

Multiple R 0.6238
R-Squared 0.3891
Adjusted R-Squared 0.3733
Standard Error 0.0628

Observations 120
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Assumptions Underlying Multiple Linear Regression

ANOVA

Df Ss MS F Significance F
Regression 3 0.2914 0.0971 24.6278 0.0000
Residual 116 0.4575 0.0039
Total 119 0.7489

Standard Lower
Coefficient error t-Stat. P-value 95% Upper 95%

Intercept 0.0052 0.0061 0.8435 0.4007 —-0.0070 0.0173
MKTRF 1.2889 0.1538 8.3791 0.0000 0.9842 1.5935
SMB -0.5841 0.2664 -2.1922 0.0304 -1.1118 —0.0564
HML —-0.6810 0.2231 -3.0523 0.0028 -1.1229 -0.2391

CODE: REGRESSION

Using Python
import pandas as pd
from statsmodels.formula.api import ols
df = pd.read_csv(“data.csv”)
model = ols(ABC_RETRF ~ MKTRF+SMB+HML',data=df).fit()
print(model.summary())

Using R
df <- read.csv(“data.csv”)
model <- Im(ABC_RETRF~ MKTRF+SMB+HML',data=df)

print(summary(model))

We start by looking at a scatterplot of residuals against the dependent variable,
as shown in Exhibit 6. We can use this scatterplot to uncover potential assumption
violations and to help identify outliers in our data.

13



14

Learning Module 1

© CFA Institute. For candidate use only. Not for distribution.
Basics of Multiple Regression and Underlying Assumptions

Exhibit 6: Residuals vs. Predicted Value of Dependent Variable

Potential outliers indicated with square markers
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Potential outliers indicated with square markers

As indicated by the line centered near residual value 0.00, a visual inspection of Exhibit
6 does not reveal any directional relationship between the residuals and the predicted
values from the regression model. This outcome is good, because we want residuals to
behave in an independent manner compared to what the model predicts, and suggests
the regression’s errors have a constant variance and are uncorrelated with each other,
thereby satisfying several of the underlying assumptions of multiple linear regression.
Notably, we detect three residuals (square markers) that may be outliers, Months 7, 25,
and 95. This information can be used to check for shocks from factors not considered
in the model that may have occurred at these points in time.

Exhibit 7 presents plots of the regression residuals versus each of the three factors
in Panels A, B, and C. A visual inspection does not indicate any directional relationship
between the residuals and the explanatory variables, suggesting there is no violation
of a multiple linear regression assumption. Importantly, the three potential outliers
detected in the residual versus predicted value plot are also apparent in Exhibit 7, as
indicated by the square markers.
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Exhibit 7: Regression Residuals vs. Factors (Independent Variables)

Panel A: Regression residuals vs. market factor (MKTRF)
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Panel B: Regression residuals vs. size factor (SMB)
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Panel C: Regression residuals vs. value factor (HML)
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CODE: RESIDUAL ANALYSIS
Using Python

import pandas as pd
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import matplotlib.pyplot as plt
import statsmodels.api as sm
import numpy as np
df = pd.read_csv(“data.csv’parse_dates=True,index_col=0)
model = ols(ABC_RETRF ~ MKTRF+SMB+HML',data=df).fit()
fig = sm.graphics.plot_partregress_grid(model)
fig.tight_layout(pad=1.0)
plt.show()
fig = sm.graphics.plot_ccpr_grid(model)
fig.tight_layout(pad=1.0)
plt.show()

Using R
library(ggplot2)
library(gridExtra)
df <- read.csv(“data.csv”)
model <- Im(ABC_RETRF~ MKTRF+SMB+HML',data=df)
df$res <- model$residuals

gl <- ggplot(df,aes(y=res, x=MKTRF))+geom_point()+
xlab(“MKTREF”)+ylab(“Residuals”)

g2 <- ggplot(df,aes(y=res, x=SMB))+geom_point()+ xlab(“SMB”)+
ylab(“Residuals”)

g3 <- ggplot(df,aes(y=res, x=HML))+geom_point()+ xlab(“HML")+
ylab(“Residuals”)

grid.arrange(gl,g2,g3,nrow=3)

Finally, in Exhibit 8 we present a normal Q-Q plot. A normal Q-Q plot, or simply a
Q-Q plot, is used to visualize the distribution of a variable by comparing it to a normal
distribution. In the case of regression, we can use a Q-Q plot to compare the model’s
standardized residuals to a theoretical standard normal distribution. If the residuals
are normally distributed, they should align along the diagonal. Recall that 5% of obser-
vations that are normally distributed should fall below —1.65 standard deviations, so
the 5th percentile residual observation should appear at —1.65 standard deviations.
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Exhibit 8: Normal Q-Q Plot of Regression Residuals

Superimposed on the plot is a linear relation
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Superimposed on the plot is a linear relation

However, after —2 standard deviations, observations 25 and 95 fall well below the
theoretical standard normal distribution range, while Observation 7, lying above the
diagonal line around +2.5 standard deviations, is somewhat above the theoretical
range. This evidence again suggests these three residual observations are potential
outliers. However, setting them aside, the normal Q-Q plot does provide ample evi-
dence that the regression residuals overall are distributed consistently with the normal
distribution. Thus, we can conclude that the regression model error term is close to
being normally distributed.

KNOWLEDGE CHECK

You are analyzing price changes of a cryptocurrency (CRYPTO) using the price
changes for gold (GOLD) and a technology stock index (TECH), based on five
years of monthly observations. You also run several diagnostic charts of your
regression results. In a meeting with your research director, she asks you to do
the following:

1. Identify any assumptions that may be violated if we examine the correlation
between GOLD and TECH and find a significant pairwise correlation.
Solution
This result may indicate an approximate linear relation between GOLD and
TECH, which would be a violation of the independence of independent
variables, and should be explored further.

17
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2. Describe the purpose of a plot of the regression residuals versus the predict-
ed value of CRYPTO.
Solution

This plot is useful for examining whether there is any clustering or pattern
that may suggest the residuals are not homoskedastic and whether there are
any potential outliers.

3. Describe the purpose of a plot of the regression residuals versus GOLD.
Solution

This plot is useful for examining whether there are any extreme values of the
independent variables that may influence the estimated regression param-
eters and whether there is any relationship between the residuals and an
independent variable, which suggests the model is misspecified.

4. Describe the purpose of a normal Q-Q plot of residuals.
Solution

The normal Q-Q plot is useful for exploring whether the residuals are nor-
mally distributed, a key assumption of linear regression.

5. A pairwise scatterplot is used to detect whether:
A. there is a linear relationship between the dependent and independent
variables.
B. the residual terms exhibit heteroskedasticity.

C. the residual terms are normally distributed.
Solution

A is correct. The pairwise scatterplot is useful for visualizing the relation-
ships between the dependent and explanatory variables.

6. Interpret this scatterplot showing price changes for the cryptocurrency
(CRYPTO) and the tech index (TECH):

60
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0

CRYPTO returns (%)

-20

-40

-60
-10 -5 0 5 10

TECH returns (%)
Solution
Based on the plot, there appears to be a positive relationship between
CRYPTO and TECH, which may be significant. Several potential outliers are
also apparent.

7. A normal Q-Q plot is used to detect whether:

A. there is a linear relationship between the dependent and independent
variables.
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B. the regression residual terms exhibit heteroskedasticity.

C. the regression residual terms are normally distributed.

Solution

Cis correct. The normal Q-Q plot is useful for exploring whether the resid-
uals are normally distributed.

. Interpret this normal Q-Q plot from our regression of CRYPTO price
changes:
50
40 N
30 ° ...

30 et

-40

Solution

Based on the plot, the residuals are not normally distributed, as indicated

by the deviation of residuals from the diagonal evident past +2 standard
deviations, and several potential outliers are also apparent. This normal Q-Q
plot suggests the distribution of residuals is “fat-tailed.” Note that fat-tailed
distributions of residuals are a commonly observed feature of financial data
time series.

19
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PRACTICE PROBLEMS

The following information relates to questions
1-5

You are a junior analyst at an asset management firm. Your supervisor asks you to
analyze the return drivers for one of the firm’s portfolios. She asks you to con-
struct a regression model of the portfolio’s monthly excess returns (RET) against
three factors: the market excess return (MRKT), a value factor (HML), and the
monthly percentage change in a volatility index (VIX).

You collect the data and run the regression, and the resulting model is

Yrer =—-0.999 + 1.817X,/pxc7 + 0.489X 754 + 0.037 X/

You then create some diagnostic charts to help determine the model fit.




Practice Problems

© CFA Institute. For candidate use only. Not for distribution.

RET vs VIX
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1. Determine the type of regression model you should use.

A. Logistic regression
B. Simple linear regression

C. Multiple linear regression

2. Determine which one of the following statements about the coefficient of the
volatility factor (VIX) is true.

A. A 1.0% increase in Xy would result in a —0.962% decrease in Yppr
B. A 0.037% increase in Xy;, would result in a 1.0% increase in Yzt

(. A 1.0% increase in Xy, holding all the other independent variables con-
stant, would result in a 0.037% increase in Yyt

3. Identify the regression assumption that may be violated based on Chart 1, RET
vs. VIX.

A. Independence of errors
B. Independence of independent variables

(. Linearity between dependent variable and explanatory variables

4. Identify which chart, among Charts 2, 3, and 4, is most likely to be used to assess
homoskedasticity.

A. Chart2
B. Chart3

C. Chart 4

5. Identify which chart, among Charts 2, 3, and 4, is most likely to be used to assess
independence of independent variables.

A. Chart2
B. Chart3

C. Chart 4
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SOLUTIONS

1. Cis correct. You should use a multiple linear regression model since the depen-
dent variable is continuous (not discrete) and there is more than one explana-
tory variable. If the dependent variable were discrete, then the model should be
estimated as a logistic regression.

2. Cis correct. The coefficient of the volatility factor (X;;y) is 0.037. It should be in-
terpreted to mean that holding all the other independent variables constant, a 1%
increase (decrease) would result in a 0.037% increase (decrease) in the monthly
portfolio excess return (Ypgy).

3. Cis correct. Chart 1 is a scatterplot of RET versus VIX. Linearity between the
dependent variable and the independent variables is an assumption underlying
multiple linear regression. As shown in the following Revised Chart 1, the rela-
tionship appears to be more curved (i.e., quadratic) than linear.
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4. Cis correct. To assess homoskedasticity, we must evaluate whether the variance
of the regression residuals is constant for all observations. Chart 4 is a scatter-
plot of the regression residuals versus the predicted values, so it is very useful
for visually assessing the consistency of the variance of the residuals across the
observations. Any clusters of high and/or low values of the residuals may indicate
a violation of the homoskedasticity assumption.

5. Bis correct. Chart 3 is a scatterplot comparing the values of two of the indepen-
dent variables, MRKT and HML. This chart would most likely be used to assess
the independence of these explanatory variables.
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LEARNING MODULE

Evaluating Regression Model Fit
and Interpreting Model Results

LEARNING OUTCOMES

Mastery | The candidate should be able to:

] evaluate how well a multiple regression model explains the
dependent variable by analyzing ANOVA table results and measures
of goodness of fit

] formulate hypotheses on the significance of two or more coefficients
in a multiple regression model and interpret the results of the joint
hypothesis tests

] calculate and interpret a predicted value for the dependent variable,
given the estimated regression model and assumed values for the
independent variable

SUMMARY

= In multiple regression, adjusted R2 is used as a measure of model goodness
of fit since it does not automatically increase as independent variables are
added to the model. Rather, it adjusts for the degrees of freedom by incor-
porating the number of independent variables.

» Adjusted R? will increase (decrease) if a variable is added to the model that
has a coefficient with an absolute value of its ¢-statistic greater (less) than
1.0.

= Akaike’s information criterion (AIC) and Schwarz’s Bayesian information
criteria (BIC) are also used to evaluate model fit and select the “best” model
among a group with the same dependent variable. AIC is preferred if the
purpose is prediction, BIC is preferred if goodness of fit is the goal, and
lower values of both measures are better.

= Hypothesis tests of a single coefficient in a multiple regression, using ¢-tests,
are identical to those in simple regression.
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= The joint F-test is used to jointly test a subset of variables in a multiple
regression, where the “restricted” model is based on a narrower set of
independent variables nested in the broader “unrestricted” model. The null
hypothesis is that the slope coefficients of all independent variables outside
the restricted model are zero.

= The general linear F-test is an extension of the joint F-test, where the null
hypothesis is that the slope coefficients on all independent variables in the
unrestricted model are equal to zero.

= Predicting the value of the dependent variable using an estimated multi-
ple regression model is similar to that in simple regression. First, sum, for
each independent variable, the estimated slope coefficient multiplied by
the assumed value of that variable, and then add the estimated intercept
coefficient.

= In multiple regression, the confidence interval around the forecasted value
of the dependent variable reflects both model error and sampling error
(from forecasting the independent variables); the larger the sampling error,
the larger is the standard error of the forecast of Y and the wider is the con-
fidence interval.

GOODNESS OF FIT

] evaluate how well a multiple regression model explains the
dependent variable by analyzing ANOVA table results and measures
of goodness of fit

In the simple regression model, the coefficient of determination, also known as
R-squared or R?, is a measure of the goodness of fit of an estimated regression to the
data. R? can also be defined in multiple regression as the ratio of the variation of the
dependent variable explained by the independent variables (sum of squares regression)
to the total variation of the dependent variable (sum of squares total).

o 2
Sum of squares regression Y (Yi - Y)
Sum of squares total (-1

R? =

where 7 is the number of observations in the regression, Y; is an observation on the
dependent variable, Y; is the predicted value of the dependent variable based on the
independent variables, and Yis the mean of the dependent variable.

In multiple linear regression, however, R? is less appropriate as a measure of a
model’s goodness of fit. This is because as independent variables are added to the
model, R? will increase or will stay the same, but it will not decrease. Problems with
using R? in multiple regression include the following:

» The R? cannot provide information on whether the coefficients are statisti-
cally significant.

= The R? cannot provide information on whether there are biases in the esti-
mated coefficients and predictions.

= The R? cannot tell whether the model fit is good. A good model may have a
low R?, as in many asset-pricing models, and a bad model may have a high
R? due to overfitting and biases in the model.
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Goodness of Fit

Overfitting of a regression model is a situation in which the model is too com-
plex, meaning there may be too many independent variables relative to the number
of observations in the sample. A result of overfitting is that the coefficients on the
independent variables may not represent true relationships with th_ezdependent variable.

An alternative measure of goodness of fit is the adjusted R2\X /| which is typically
part of the multiple regression output produced by most statistical software packages.
A benefit of using the adjusted R? is that it does not automatically increase when
another independent variable is added to a regression. This is because it adjusts for
the degrees of freedom as follows, where k is the number of independent variables:

R2—1- <Sum of squares error/(n — k — 1)) 1)

Sum of squares total/(n — 1)

Mathematically, the relation between R and R?2 is
P2 =1 n—1 _p2
R2 = 1- (22 -RY). @)

Note that if k > 1, then R? is strictly greater than adjusted R2. Further, the adjusted R?
may be negative, whereas the R? has a minimum of zero.

The following are two key observations about R when adding a new variable to
a regression:

= If the coefficient’s ¢-statistic > |1.0], then R2 increases.

= If the coefficient’s ¢-statistic < |1.0|, then R? decreases.

Note that a ¢-statistic with an absolute value of 1.0 does not indicate the indepen-
dent variable is different from zero at typical levels of significance, 5% and 1%. So,
adjusted R? does not set a very high bar for the statistic to increase.

Consider the regression output provided in Exhibit 1, which shows the results
from the regression of portfolio returns on the returns for five hypothetical funda-
mental factors, which we shall call Factors 1 through 5. The goal of this regression is
to identify the factors that best explain the returns on the portfolio.

Exhibit 1: Regression of Portfolio Excess Returns on Five Factors

Multiple R 0.7845

R-Squared 0.6155

Adjusted R-Squared 0.5718

Standard Error 0.0113

Log-Likelihood -74.054

Observations 50

ANOVA Table
Degrees of Sum of Mean Significance of

Source freedom squares squares F-statistic F-statistic
Regression 5 90.6234 18.1247 14.0853 < 0.0000
Residual 44 56.6182 1.2868

Total 49 147.2416
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95% confidence

interval

Standard Lower Upper

Coefficient error t-Statistic P-value bound bound

Intercept 2.1876 0.1767 -12.3787 0.0000 -2.5437 -1.8314
Factor 1 1.5992 0.2168 7.3756 0.0000 1.1622 2.0361
Factor 2 0.1923 0.7406 0.2596 0.7964 -1.3002 1.6847
Factor 3 -0.7126 0.5854 -1.2172 0.2300 -1.8925 0.4673
Factor 4 3.3376 1.3493 2.4736 0.0173 0.6182 6.0570
Factor 5 -2.6832 8.3919 -0.3197 0.7507 -19.5959 14.2295

CODE: REGRESSION STATISTICS

Using Microsoft Excel

Let depvar be the range of cells for the dependent variable, and let indvar be the
range of cells for the independent variables.

=LINEST (depvar,indvar, TRUE,TRUE) or Data Analysis > Regression
Using Python
Let df be the data frame containing the data.
import statsmodels.api as sm
from statsmodels.stats.anova import anova_lm
from statsmodels.formula.api import ols
formula="Portfolio ~ Factorl+Factor2+Factor3+Factor4+Factor5'
results=ols(formula,df).fit()
print(results.summary())
Using R
Let df be the data frame containing the data.
modelll <- Im(df$Portfolio ~
df$Factorl+df$Factor2+df$Factor3+df$Factord+df$Factors)
anova(modelll)

summary(modelll)

We see in Exhibit 1 that R2 is 0.6155, or 61.55%, and can we visualize this rela-
tionship using the graph in Exhibit 2.
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Goodness of Fit

Exhibit 2: Predicted vs. Actual Portfolio Excess Returns Based on Regression

of Returns on a Model with Five Factors
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We can use the analysis of variance (ANOVA) table in Exhibit 1 to describe the model
fit. We know from simple regression that the R? is the ratio of the sum of squares
regression to the sum of squares total. We confirm this as

SSR _ 90.6234

2 = 298
R” = SST 147.2416

= 0.6155

and the adjusted R2 (using Equation 3) as

=2+ [( 50-1 ~90.6234 \] _

R =1 [(50—5—1)(1 147.2416)] = 0.5718.
The effect of successively adding each factor to the model is shown in Exhibit 3. The
regression of the portfolio returns starts with the returns of Factor 1, then in the next
model adds Factor 2, and so on, until all five are included in the full model. Note that
with each added variable, the R? either stays the same or increases. However, while
the adjusted R? increases when Factors 3 and 4 are added, it declines when Factors 2

and 5 are added to those models, respectively. This illustrates the relationship between
the |¢-statistic| of the added variable and adjusted RZ.
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Exhibit 3: R and Adjusted R2 for Models Adding Factors to Explain Excess

Returns
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Importantly, the following should be noted:

= Unlike in simple regression, there is no neat interpretation of the adjusted
R? in a multiple regression setting in terms of percentage of the dependent
variable’s variation explained.

= The adjusted R? does not address whether the regression coefficients are
significant or the predictions are biased; this requires examining residual
plots and other statistics.

= R?and adjusted R? are not generally suitable for testing the significance
of the model’s fit; for this, we explore the ANOVA further, calculating the
F-statistic and other goodness-of-fit metrics.

KNOWLEDGE CHECK

You are a junior portfolio manager (PM) reviewing your firm’s research on diver-
sified manufacturers. You are considering Model 1, a cross-sectional regression of
return on assets (ROA) for a sample of 26 diversified manufacturing companies
on capital expenditures scaled by beginning year PPE (CAPEX):

Model 1: ROAl = bo + bCAPEXCAPEXZ + &

Multiple R 0.9380
R-Squared 0.8799
Adjusted R-Squared 0.8749
Standard Error 1.5274
Log-Likelihood —46.842

Observations 26
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Partial ANOVA Results

95% confidence

interval
Standard Lower Upper
Coefficient error t-Statistic  P-value bound bound
Intercept 4.7856 0.6468 7.3988 0.0000 3.4507 6.1206

CAPEX 1.2495 0.0942 13.2623 0.0000 1.0551 1.4440

Adding a second feature, the prior year’s ratio of advertising expenditures
to revenues (ADV), results in Model 2:

Multiple R 0.9384
R-Squared 0.8805
Adjusted R-Squared 0.8701
Standard Error 1.55666
Log-Likelihood —46.795
Observations 26

Partial ANOVA Results

95% confidence

interval
Standard Lower Upper
Coefficient Error t-Statistic  P-value 95% 95%
Intercept 4,9961 0.9144 5.4638 0.0000 3.1045 6.8876
CAPEX 1.2415 0.0990 12.5410 0.0000 1.0367 1.4463
ADV —0.0345 0.1039 -0.3320 0.7429 —0.2495 0.1805

1. Interpret and contrast R? and adjusted R? for Models 1 and 2 using the
regression output provided.

Solution

The R? for Model 1 (CAPEX only) indicates that 87.99% of the variation of
ROA is explained by CAPEX. For Model 2 (CAPEX and ADV), the R? in-
creases to 88.05%. However, the adjusted R? for Model 2 declines to 0.8701
(87.01%) from 0.8749 for Model 1. The lower adjusted R? is consistent with
the |¢-statistic| for ADV’s coefficient < 1.0 (i.e., 0.3302) and the coefficient
not being different from zero at typical significance levels (P-value = 0.7429).
To conclude, adding the ADV variable does not improve the overall statisti-
cal performance and explanatory power of the model.

As both the R? and adjusted R? may increase when we add independent variables,

we risk model overfitting. Fortunately, there are several statistics to help compare
model quality and identify the most parsimonious model, including two statistics

more commonly known by their acronyms, AIC and BIC.
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We can use Akaike’s information criterion (AIC) to evaluate a collection of models
that explain the same dependent variable. It is often provided in the output for regres-
sion software, but AIC can be calculated using information in the regression output:

Sum of squares error

AIC = nn( e )+ 20k + 1. 3)

As the formula indicates, the AIC statistic depends on the sample size (#), the number
of independent variables in the model (k), and the sum of squares error (SSE) of the
model. One goal in multiple regression is to derive the best fitting model without
adding extraneous independent variables. AIC is a measure of model parsimony, so
alower AIC indicates a better-fitting model. The term 2(k + 1) is the penalty assessed
for adding independent variables to the model.

In a similar manner, Schwarz’s Bayesian information criterion (BIC or SBC) allows
comparison of models with the same dependent variable, as follows:

Sum of squares error

BIC = nln( 7 )+ln(n)(k+ D. “)

Compared to AIC, BIC assesses a greater penalty for having more parameters in
a model, so it will tend to prefer small, more parsimonious models. This is because
In(n) is greater than 2, even for very small sample sizes. Because we also use BIC to
choose the best model among a set of models (i.e., the one with the lowest BIC), when
do we prefer one measure over the other?

Practically speaking, AIC is preferred if the model is used for prediction purposes,
but BIC is preferred when the best goodness of fit is desired. Importantly, the value
of these measures considered alone is meaningless; the relative values of AIC or BIC
among a set of models is what really matters.

For the regression of portfolio returns on five factors, we present several
goodness-of-fit measures in Exhibit 4 generated for five models out of the 31 possible
combinations (5C,, r = 1-5) of models using these five variables.

Exhibit 4: Goodness-of-Fit Measures for Portfolio Excess Returns Regressed

on Different Sets of Factors

R2 Adjusted R2 AIC BIC
Factor 1 only 0.541 0.531 19.079 22.903
Factors 1 and 2 0.541 0.521 21.078 26.814
Factors 1, 2, and 3 0.562 0.533 20.743 28.393
Factors 1, 2, 3, and 4 0.615 0.580 16.331 25.891
Factors 1, 2, 3, 4, and 5 0.615 0.572 18.215 29.687

The following are important observations that can be made from Exhibit 4:

» The R? increases or remains the same as we add variables to the model.

» The adjusted R? increases with the addition of some variables (Factors 3 and
4) but decreases with the addition of other variables (Factors 2 and 5).

= The AIC is minimized with the model using Factors 1, 2, 3, and 4.

= The BIC is minimized with the model using Factor 1 only.

If we are developing a model for prediction purposes, then we would likely select
the four-factor model that AIC indicates, whereas if we are seeking the most parsi-
monious, best-fitting model, we would choose the one-factor model. We now have a
framework for selecting the best model from a given set of models.
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KNOWLEDGE CHECK

1. The research report you are reviewing presents goodness-of-fit statistics for
the two models explaining the variation in return on assets (ROA) for the
sample of diversified manufacturers, as follows:

Model 1: CAPEX Model 2: CAPEX and
Only ADV
R? 0.880 0.881
Adjusted R? 0.875 0.870
AIC 23.899 25.804
BIC 26.523 28.792

The senior PM as asks you to interpret the given goodness-of-fit statistics
and justify which is the better model.

Solution

The goodness-of-fit results for this sample regression indicate the following:

= 88% of the variation in ROA is explained by CAPEX, and 88.1% of this
variation is explained by CAPEX and ADV together.

» Adjusted R? declines when ADV is added, indicating its coefficient
is not significant and has a |¢-statistic| < 1.0 (note that for ADV, the
P-value = 0.7429 and the ¢-statistic is —0.3320).

= AIC and BIC both indicate that Model 1 is a better model as these
metrics are lower for Model 1 than for Model 2.

To conclude, adding ADV does not improve the explanatory or predicting
power of the original model using just CAPEX.

TESTING JOINT HYPOTHESES FOR COEFFICIENTS

] formulate hypotheses on the significance of two or more coefficients
in a multiple regression model and interpret the results of the joint
hypothesis tests

In multiple regression, the interpretation of the intercept and slope coefficients is sim-
ilar to that in simple regression, but with a subtle difference. In simple regression, the
intercept is the expected value of the dependent variable if the independent variable
is zero. In multiple regression, the intercept is the expected value of the dependent
variable if all independent variables are zero.

Regarding interpretation of slope coefficients, as noted earlier, in multiple regres-
sion, the slope coefficient for a given independent variable is the expected change in
the dependent variable for a one-unit change in that independent variable with all
other independent variables remaining constant.

33



34

Learning Module 2

© CFA Institute. For candidate use only. Not for distribution.
Evaluating Regression Model Fit and Interpreting Model Results

Tests of a single coefficient in a multiple regression are identical to those in a sim-
ple regression. The hypothesis structure is the same, and the ¢-test is the same. For a
two-sided alternative hypothesis that the true coefficient, bj, is equal to a hypothesized
value, B/, the null and alternative hypotheses are

Hy: b;=B;and H,: b; # B;,
where bj is the coefficient on the jth independent variable and B;is the hypoth-

esized slope (0, 1, or something else). A one-sided test for a single coefficient is also
the same in multiple regression as in simple regression:

One-sided coefficient test, left side One-sided coefficient test, right side
Hy: bj > Bj, H,: b,» < Bj Hy: bj > BI-, H,: bj > B/

If we are testing simply whether a variable is significant in explaining the dependent
variable’s variation, the hypotheses are H: b; = 0 and H,: b; = 0.

By default, statistical software produces the ¢-statistics and the P-values for a test
of the slope coefficient against zero for each independent variable in the model. If
we want to test the slope against a hypothesized value other than zero, we need to

= perform the test by adjusting the hypothesized parameter value, B}, in the
test statistic or

= compare the hypothesized parameter value, B;, with the confidence interval
bounds for the coefficient generated in the regression output.

There are times when we want to test a subset of variables in a multiple regression
jointly. Just to motivate the preliminary discussion and frame the problem, suppose
we want to compare regression results for a portfolio’s excess returns using Fama and
French’s three-factor model (MKTRE, SMB, HML) with those using their five-factor
model (MKTREF, SMB, HML, RMW, CMA). Because the two models share three fac-
tors (MKTRF, SMB, HML), a comparison involves examining whether the two other
variables—the return difference between the most profitable and the least profitable
firms (RMW) and the return difference between firms that invest most conservatively
and those that invest most aggressively (CMA)—are needed. A key objective in deter-
mining the better model is parsimony, achieved by identifying groups of independent
variables that are most useful in explaining variation in the dependent variable.

Now consider a more general model:

Y;=bo+ b1Xy; + byXo; + b3 X3 + DXy + bsXs; + €.

We refer to this full model, with all five independent variables, as the unrestricted
model. Suppose we want to test whether X, and X, together do not provide a signif-
icant contribution to explaining the dependent variable—that is, to test whether 5, =
bz = 0. We compare the full model with five independent variables to

Y[ = bO + leli + bzle- + b3X3i + 81-.

This model is referred to as the restricted model because by excluding them from
the model, we have restricted the slope coefficients on X, and X to be equal to zero.
These models are also described as nested models, because the restricted model is
“nested” within the unrestricted model. This comparison of models implies a null
hypothesis that involves a joint restriction on two coefficients—that is, Hy: by = b5 =
0 against H4: b, and/or bg = 0.

We can use a statistic to compare nested models, where the unrestricted model
is compared to a restricted model in which one or more of the slope coefficients is
set equal to zero. This statistic focuses on the impact of the joint restriction on the
ability of the restricted model to explain the dependent variable relative to the unre-
stricted model. We test the role of the jointly omitted variables using the following
F-distributed test statistic:
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(Sum of squares error restricted model — Sum of squares error unrestricted)/q

Sum of squares error unrestricted model/(n — k — 1) > ®)

where g is the number of restrictions, meaning the number of variables omitted
in the restricted model compared to the unrestricted model.

Suppose we want to compare a model with five independent variables to a restricted
model having only three of these variables (X;, X,, and X3).

Unrestricted model: Y; = by + b1.X; + byXy; + b3 X3, + baXy; + bsXs; + €.

Restricted model: Y; = by + b1X|; + boXy; + b3X3; + €.

Here, g = 2 since we are testing the null hypothesis of b, = b5 = 0. Also, note the
F-statistic for this test has g and n — k — 1 degrees of freedom.

To summarize, the unrestricted model has the larger set of explanatory variables,
while the restricted model has g fewer independent variables because the slope coef-
ficients on the excluded variables are constrained to equal zero.

The general form for hypotheses for testing a nested (restricted) model is

Hy b,=b,.1=...=b = 0; H,: At least one slope of the ¢ slopes # 0,

mtq—1
where m is the first restricted slope, m + 1 is the second restricted slope, and so
on, up to the gth restricted slope.

Why not simply perform hypothesis tests on the individual variables and then
draw conclusions about the set from that information? Often in multiple regression
involving financial variables, there is some degree of correlation between the variables,
so there may be some sharing of explanatory power that is not considered with the
tests of individual slopes.

We now apply this test to the model of portfolio returns with the five hypothet-
ical factors (Factors 1-5), introduced in Exhibit 1, as independent variables. Partial
ANOVA results for the restricted model with just Factors 1, 2, and 3 and for the
unrestricted model with all five factors are shown in Exhibit 5, Panel A. The joint
test of hypotheses for the slopes of Factors 4 and 5 using the F-test are in Panel B,
using a 1% significance level. As demonstrated, we fail to reject the null hypothesis
that the slopes of Factors 4 and 5 are both zero.

Exhibit 5: Comparison of Regression Models of Portfolio Excess Returns Using

Three Factors and Five Factors (from Exhibit 1)

Panel A Partial ANOVA Results for Models Using Three
Factors and Five Factors

Degrees
of Residual sum  Mean square
Source Factors freedom of squares error
Restricted model 1,2,3 46 64.5176 1.4026
Unrestricted model 1,2,3,4,5 44 56.6182 1.2868

Panel B Test of Hypotheses for Factors 4 and 5 at 1% Level
of Significance

Step 1 State the Ho: braciors = bractors = 0 vs. H,: At least one b; = 0
hypotheses.

Step 2 Identify the _ (Sum of squares error restricted model — Sum of squares error unrestricted)/q
appropriate test - Sum of squares error unrestricted model/(n — k - 1) ’

statistic. with ¢ = 2 and n — k — 1 = 44 degrees of freedom.
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Step 3
Step 4
Step 5

Step 6

Evaluating Regression Model Fit and Interpreting Model Results

Specify the level o = 1% (one-tail, right side).

of significance.

State the deci-  Critical F-value = 5.120. Reject the null if the calculated
sion rule. F-statistic exceeds 5.120.

Calculate the F = (645176 - 56.6182)/2 _ 3.9497 _ 3604

test statistic. 56.6182/44 1.2868

Make a Fail to reject the null hypothesis because the calculated
decision. F-statistic does not exceed the critical F-value. There is not

sufficient evidence to indicate that at least one slope coeffi-
cient among by and b is different from zero.

This joint hypothesis test indicates Factors 4 and 5 do not provide sufficient explan-
atory power (i.e., SSE declines by just 7.8994 = 64.5176 — 56.6182) to compensate
for the loss of two degrees of freedom by their inclusion in the unrestricted model.
Thus, we conclude the restricted, more parsimonious model fits the data better than
the unrestricted model.

CODE: COMPARING NESTED REGRESSION MODELS USING THE FIVE FACTORS
(FROM EXHIBIT 1)

Python
Let df be the data frame containing the data.

R

from statsmodels.stats.anova import anova_lm

from statsmodels.formula.api import ols

formula="Portfolio ~ Factorl+Factor2+Factor3+Factor4+Factor5'
results=ols(formula,df).fit()

hypotheses='(Factor4=Factor5=0)'

f test = results.f_test(hypotheses)

print(f_test)

Let df be the data frame containing the data.

model5 <- Im(df$Portfolio ~
df$Factorl+df$Factor2+df$Factor3+df$Factord+df$Factors)

model3 <- Im(df$Portfolio ~ df$Factorl+df$Factor2+df$Factor3)

anova(model5,model3)

We can extend the F-distributed joint test of hypotheses for coefficients to test
the significance of the whole regression equation, which is often referred to as a
goodness-of-fit test. For the multiple linear regression,

Yi=by+ b1 Xq; + byXo; + b3Xz; + ... + DXy, + g,

where k is the number of independent variables, we can use the general linear
F-test to test the null hypothesis that slope coefficients on all variables are equal to zero:
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H0:b1:b2:b3= ...=bk=0
against the alternative that at least one slope coefficient is different from zero:

H,: At least one bj #0.

This F-statistic is calculated in the same way as in simple regression—the ratio of the
mean square regression (MSR) to the mean square error (MSE)—but the degrees of
freedom are now k in the numerator and # — k — 1 in the denominator:

_ MSR
F= MSE"

Using the ANOVA table in Exhibit 1 for the five-factor model of portfolio returns,

18.1247
1.2868
We present partial ANOVA results in Exhibit 6, Panel A, and show in Panel B the
steps for the hypothesis test for model goodness of fit using the F-statistic at the 5%
significance level.

F =

= 14.0853.

Exhibit 6: Test of Hypothesis for Goodness of Fit Using F-Statistic for Model of

Portfolio Returns Regressed against Five Factors

Panel A Partial ANOVA Results (repeated from Exhibit 1)

Analysis of Variance

Degrees of
Source freedom Sum of squares Mean squares
Regression 5 90.6234 18.1247
Residual 44 56.6182 1.2868
Total 49 147.2416

Panel B Hypothesis Testing

Step 1 State the hypotheses. Hy: by = by = by = by =bs =0.
H,: At least one b; = 0.
Step 2 Identify the appropriate F = MSR \ith 5 and 44 degrees of freedom.
s MSE
test statistic.
Step 3 Specify the level of a = 5% (one-tail, right side).
significance.
Step 4 State the decision rule. Critical F-value = 2.427. Reject the null if the cal-
culated F-statistic is greater than 2.427.
Step 5 Calculate the test statistic. —p _ 18.1247 _ 14 0g53
1.2868 .
Step 6 Make a decision. Reject the null hypothesis because the calculated

F-statistic exceeds the critical F-value. There is
sufficient evidence to indicate that at least one
slope coefficient is different from zero.

Exhibit 7 summarizes the statistics we have introduced for judging the goodness
of fit of multiple regression models. Importantly, finding the “best” model is not a
straight-line process but is, rather, iterative, because it depends on reviewing the
regression results and adjusting the model accordingly.
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Exhibit 7: Assessing Model Fit Using Multiple Regression Statistics

Statistic Criterion to use in assessment

Adjusted R? The higher the better

Akaike’s information criterion (AIC) The lower the better

Schwarz’s Bayesian information criterion The lower the better

(BIC)

t-Statistic on a slope coefficient Outside bounds of critical ¢-value(s) for the
selected significance level

F-test for joint test of slope coefficients Exceeds the critical F-value for the selected

significance level

Exhibit 8 shows model fit statistics visually for all 31 possible models from our example
of regressing portfolio returns on the five factors. Here the models are ranked by BIC,
from lowest (best model) to highest (worst model). Note that AIC and BIC may differ
because BIC imposes a greater penalty on more complex models.

Exhibit 8: All 31 Models of Excess Portfolio Returns Regressed on Up to Five

Factors
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Note: Each model is designated by its factors. For example, “1 2 4” is the model incorporating
Factors 1, 2, and 4 only.

The best model of all 31 models is the model with just Factors 1 and 4. This model has
the lowest BIC and AIC and the highest adjusted R?. Note the model with the highest
R? has all five factors and ranks relatively poorly on all the other metrics. This visual
demonstrates the consistency between AIC and BIC when comparing models and
how these statistics differ from the R? and adjusted R? in selecting the best model.
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KNOWLEDGE CHECK

You are a junior analyst tasked with determining important signals of higher
ROA for companies. At today’s investment meeting, the PM suggested three
possible reasons: higher capital investment, higher advertising costs, and higher
R&D spending. You cover the manufacturing sector, and you want to determine
which factors, if any, signal improved ROA. You estimate the following three
models for ROA for a sample of 26 diversified manufacturers:

Model 1: ROA; = by + b ppxCAPEX; + ¢;;

Model 2: ROA; = by + bcyppxCAPEX; + b, pyADV; + &;

Model 3: ROA; = by + by ppyCAPEX; + by ADV,; + bpe pR&D; + ¢;
Where:

=  CAPEX is capital expenditures scaled by beginning-year PPE;

= ADV is the prior year’s ratio of advertising expenditures to revenues;
and

= R&D is the prior period’s R&D expenditures divided by revenues.

Partial ANOVA Results for Model 1

Significance

Df Sss MS F F
Regression 1 410.3606  410.3606 175.8896 0.0000
Residual 24 55.9934 2.3331
Total 25 466.3540

Log-likelihood —46.842

Partial ANOVA Results for Model 2

Significance
Df Sss MS F F
Regression 2 410.6278  205.3139 84.7396 0.0000
Residual 23 55.7263 2.4229
Total 25 466.3540

Log-likelihood —-46.795

ANOVA Results for Model 3

Degrees
of Sum of Mean Significance
Source freedom squares squares F-statistic  of F-statistic
Regression 3 410.9591 136.9864 54.4039 0.0000

Residual 22 55.3949 2.5180
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Degrees
of Sum of Mean Significance
Source freedom squares squares F-statistic  of F-statistic
Total 25 466.3540
Log-likelihood —-46.716
95% confidence
interval
Standard Lower Upper
Coefficient error t-Statistic  P-value bound bound
Intercept 4.7022 1.2349 3.8078 0.0010 2.1412 7.2633
CAPEX 1.2302 0.1056 11.6490 0.0000 1.0112 1.4492
ADV -0.0371 0.1062 —0.3490 0.7304 -0.2572 0.1831
R&D 0.1029 0.2837 0.3628 0.7203 —0.4854 0.6913

Before the next investment meeting, the PM asks you to do the following:

1. Demonstrate the relationship between R? and adjusted R? for Model 3.

Solution
For Model 3, the R? is 0.8812 and the adjusted R2 is 0.8650, as follows:

RZ

_ 410.9591

= 2663540 ~ 0-8812.

Adjusted R? = 1 - [2(1-0.8812)] = 0.8650.

2. Determine whether Model 3 explains ROA using a 1% significance level.

Solution
The test of the full (unrestricted) Model 3 is as follows:

Step 1

Step 2

Step 3

Step 4

Step 5

Step 6

State the hypotheses.

Identify the appropriate
test statistic.

Specify the level of
significance.

State the decision rule.

Calculate the test
statistic.

Make a decision.

HO:bCAPEX = bADV = bR&D =0. Hal At least

one bj z 0.
F = %—gg, with 3 and 22 degrees of freedom.

a = 1% (one-tail, right side).

Critical F-value = 4.8166.
Reject the null hypothesis if the calculated
F-statistic exceeds 4.8166.

F = 54.4039, as given in the regression out-
put. (Note small difference vs. MSR/MSE from
rounding.)

Reject the null hypothesis because the calcu-
lated F-statistic exceeds the critical F-value.
There is sufficient evidence that at least one
slope coefficient is different from zero.
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3. Determine whether each slope coefficient in Model 3 is different from zero
at the 1% significance level.

Solution

The test of whether each slope coefficient in Model 3 is different from zero

is as follows:
Step 1 State the hypotheses. Hy:bj=0vs. Hy: b; = 0.
Step 2 Identify the appropriate i-B
test statistic. t = 55 with 26 — 3 — 1 = 22 degrees of
freedom.
Step 3 Specify the level of a = 1% (two-tail).
significance.
Step 4 State the decision rule.  Critical £-values = + 2.8188. Reject the null
hypothesis if the calculated ¢-statistic is
greater than 2.8188 or less than —2.8188.
Step 5 Calculate the test CAPEX: ¢ = 12302-0 _ 17 649.
g 0.1056
statistic.
. -0.0371-0 _
ADV:t = —o1062 " 0.3493.
. _ 01029-0 _
R&D: ¢t = 083 = 0.3627.
Note calculated t-statistics may differ from
output due to rounding.
Step 6 Make a decision. Reject the null hypothesis for CAPEX

because the calculated ¢-statistic exceeds the
critical t-value. There is sufficient evidence
to indicate the slope coefficient for CAPEX is
different from zero.

Fail to reject the null hypothesis for both the
ADYV and R&D variables because the cal-
culated ¢-statistics are within the bounds of
the critical values. There is not sufficient evi-
dence to indicate that the slope coefficients
of ADV or R&D are different from zero.

4. Determine whether ADV and R&D together contribute to the explanation
of ROA in Model 3 at a 1% significance level using the joint F-test.

Solution

The joint test of whether ADV and R&D together contribute to the explana-

tion of ROA in Model 3 is as follows:

1M

Step 1

Step 2

Step 3

Step 4

State the
hypotheses.

Identify the appro-
priate test statistic.

Specify the level of
significance.

State the decision
rule.

Hy: bypy = brep = 0vs. Hy: At least one b; = 0.

F =

(Sum of squares error restricted model - Sum of squares error unrestricted model)/q

Sum of squares error unrestricted model/(n - k - 1)

degrees of freedom

a = 1% (one-tail, right side).

, with 2 and 22

Critical F-value = 5.7190. Reject the null hypothesis if the calculated F-statistic exceeds 5.7190.
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Step 5 Calculate the test F - (559934 -553949)/2 _ (1188
statistic. 55.3949/22 .

Step 6 Make a decision. Fail to reject the null hypothesis because the calculated F-statistic does not exceed the critical
F-value. There is not sufficient evidence to indicate that at least one of the two slope coefficients
is different from zero. This evidence suggests that Model 1, using only CAPEX, is the better
model compared to Model 3.

5. State and justify your conclusion based on these tests of hypotheses.
Solution

The conclusion is the variation of ROA in this sample is explained by
CAPEX. The variables of ADV and R&D by themselves or together do not
explain the variation in ROA. The justification for this conclusion is as
follows:

» Adjusted R? is higher for Model 1 (CAPEX) versus Model 3 (all three
variables).

=  ADV and R&D are each insignificant based on ¢-tests of Model 3.

=  ADV and R&D together are insignificant based on the joint F-test
using Model 1 (restricted) and Model 3 (unrestricted).

6. Consider the following statistics on all possible ROA models:

Variable(s) in Model R2 Adjusted R2 AIC BIC

CAPEX 0.8803 0.8753 23.8988 26.5226
R&D 0.0866 0.0486 76.7297 73.9100
ADV 0.0619 0.0228 77.4233 74.5737
CAPEX, R&D 0.8809 0.8706 25.7594 28.7575
CAPEX, ADV 0.8807 0.8703 25.8044 28.7917
ADV, R&D 0.1473 0.0731 76.9431 72.5325
CAPEX, ADV, R&D 0.8814 0.8653 27.6481 31.0365

Recommend the best model from the set and justify your choice.
Solution

The simple regression model with CAPEX alone is the best model among
those presented. This model has the highest adjusted RZ and the lowest AIC
and BIC. These model-fit statistics confirm that the model with CAPEX
alone, which is the most parsimonious, is the best-fitting model.

3 FORECASTING USING MULTIPLE REGRESSION

] calculate and interpret a predicted value for the dependent variable,
given the estimated regression model and assumed values for the
independent variable
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Forecasting Using Multiple Regression

The process for predicting the value of the dependent variable using an estimated
multiple regression model is similar to that in simple regression, but with more items
to sum, as shown in the following formula:

A~

As the formula indicates, to determine the predicted (forecasted) value of the depen-
dent variable (? f), the analyst must sum, for each independent variable, the estimated

slope coefficient multiplied by the assumed value for that variable (l/; ij) and then

add the estimated intercept coefficient (l/a\ 0) times the assumed value for the intercept

of 1.
We can use the regression results from Exhibit 1 of portfolio returns on the five
factors to predict the portfolio return using the following model:

Y; = by + byFactory; + b,Factor,; + bsFactors; + bsFactory; + bsFactors; + ¢;,

which now uses assumed values of the factors. This model becomes

A

Y,=-2.1876 + 1.5992 Factor; + 0.1923 Factor, — 0.7126 Factor; + 3.3376
F/':IC'[OI‘4 — 2.6832 Factors,

and the assumed values of the five factors are as follows:

Factor 1 2 3 4 5

Assumed Value 0.110 0.040 0.080 -0.010 0.001

Exhibit 9 shows the calculation of the predicted value of the portfolio return, —2.0971%.

Exhibit 9: Predicting Portfolio Returns Using the Five-Factor Model

(1) (2) (1) x (2)

Assumed value Estimated coefficient Product

Intercept 1.000 -2.1876 -2.1876
Factor 1 0.110 1.5992 0.1759
Factor 2 0.040 0.1923 0.0077
Factor 3 0.080 -0.7126 -0.0570
Factor 4 -0.010 3.3376 —0.0334
Factor 5 0.001 -2.6832 -0.0027
-2.0971

There are cautions regarding predicting with a multiple regression model:

= If a regression model is estimated using all five independent variables, for
example, any prediction of the dependent variable must also include all five
variables—even the ones that are not statistically significant. This is because
correlations between these variables were used in estimating the slope
coefficients.

= For any prediction of the dependent variable, we must also include the inter-
cept term.

As with simple linear regression forecasts, we are often interested in the level of
uncertainty around the forecast of the dependent variable in terms of the standard
error of the forecast. In any regression estimation, there are residuals because not
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all observations lie on the estimated line. This is basic uncertainty in the model—the
model error—which is the stochastic part of the model that involves the regression
residual, ¢;.

When the independent variables themselves are forecasts and thus out-of-sample
predictions, there is an added source of error arising from errors associated with fore-
casting the independent variables. In such cases, the forecast error for the dependent
variable is dependent on how well the independent variables (X;5 Xo5 ..., Xz were
forecasted, hence introducing sampling error. The combined effect of the model error
and the sampling error results in a standard error of the forecast for thhat is larger
than the standard error of the regression. This larger forecast error results in a pre-
diction interval for the dependent variable that is wider than the within-sample error.

Although the calculation of the forecast interval for multiple regression is overly
detailed for our purposes, we can use software to produce this interval and the cor-
responding standard error of the forecast. For the five-factor portfolio return model,
the standard error of the forecast is 1.1466, the upper 95% confidence bound is 0.2119,
and the lower 95% confidence bound is —4.4098, compared with the point estimate,
noted above, of —2.0971.

KNOWLEDGE CHECK

1. Your research report includes the following regression equation:

ROA =4.7022 + 1.2302CAPEX — 0.0371ADV + 0.1029R&D.

An institutional salesperson at your firm asks you to determine the pre-
dicted ROA for a company with assumed values for the three independent
variables of CAPEX = 5%, ADV = 4%, and R&D = 3%.

Solution
The predicted ROA is 11.0135%, calculated as follows:

@f = 4.7022 + 1.2302(5) — 0.0371(4) + 0.1029(3) = 11.0135.
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PRACTICE PROBLEMS

The following information relates to questions
1-5

You are a junior analyst at an asset management firm. Your supervisor asks you to
analyze the return drivers for one of the firm’s portfolios. She asks you to con-
struct a regression model of the portfolio’s monthly excess returns (RET) against
three factors: the market excess return (MRKT), a value factor (HML), and the
monthly percentage change in a volatility index (VIX). You collect the data and
run the regression. After completing the first regression (Model 1), you review
the ANOVA results with your supervisor.

Then, she asks you to create two more models by adding two more explanatory
variables: a size factor (SMB) and a momentum factor (MOM). Your three mod-
els are as follows:

Model 1: RETl = bo + bMRKTMRI<Tl + bHMLHMLl + bVIXVIXi + €.

+ €.
+ bMOMMOMl + €.

The regression statistics and ANOVA results for the three models are shown in
Exhibit 1, Exhibit 2, and Exhibit 3.

Exhibit 1: ANOVA Table for Model 1

RET; = b + byirMRKT; + by HML; + by VIX; + €

Std.

Regression Statistics Coefficient  Error t-Stat. P-Value
Multiple R 0.907 Intercept -0.999 0.414 -2411 0.018
R-Squared 0.823 MRKT 1.817 0.124 14.683 0.000
Adjusted R-Sq. 0.817 HML 0.489 0.118 4.133 0.000
Standard Error 3.438 VIX 0.037 0.018 2.122 0.037
Observations 96.000
ANOVA

Df Ss MSs F Significance F
Regression 3 5058.430 1686.143 142.628 0.000
Residual 92 1087.618 11.822

Total 95 6146.048




© CFA Institute. For candidate use only. Not for distribution.
46 Learning Module 2 Evaluating Regression Model Fit and Interpreting Model Results

Exhibit 2: ANOVA Table for Model 2

Regression Statistics Coefficient  Std. Error t-Stat. P-Value
Multiple R 0.923 Intercept -0.820 0.383 -2.139 0.035
R-Squared 0.852 MRKT 1.649 0.121 13.683 0.000
Adjusted R-Sq. 0.846 HML 0.434 0.109 3.970 0.000
Standard Error 3.161 VIX 0.025 0.016 1.516 0.133
Observations 96.000 SMB 0.563 0.133 4.223 0.000
ANOVA

Df Ss MS F Significance F
Regression 4 5236.635 1309.159 131.000 0.000
Residual 91 909.413 9.994
Total 95 6146.048

Exhibit 3: ANOVA Table for Model 3

RET; = b + byirMRKT; + by HML; + by VIX; + bgysSMB,; + byioMOM; + €;

Regression Statistics Coefficient Std. Error t-Stat. P-Value
Multiple R 0.923 Intercept  -0.823 0.385 -2.136 0.035
R-Squared 0.852 MRKT 1.719 0.280 6.130 0.000
Adjusted R-Sq. 0.844 HML 0.412 0.138 2.989 0.004
Standard Error 3.177 VIX 0.026 0.017 1.532 0.129
Observations 96.000 SMB 0.553 0.139 3.987 0.000

MOM -0.067 0.242 -0.276 0.783
ANOVA

Df ss MSs F Significance F

Regression 5 5237.402 1047.480 103.751 0.000
Residual 90 908.647 10.096
Total 95 6146.048

Your supervisor asks for your assessment of the model that provides the best fit
as well as the model that is best for predicting values of the monthly portfolio
return. So, you calculate Akaike’s information criterion (AIC) and Schwarz’s
Bayesian information criterion (BIC) for all three models, as shown in Exhibit 4.
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Exhibit 4: Goodness-of-Fit Measures

AIC BIC
Model 1 241.03 251.29
Model 2 225.85 238.67
Model 3 227.77 243.16

1. Determine which one of the following reasons for the change in adjusted R2 from
Model 2 to Model 3 is most likely to be correct.

A. Adjusted R? decreases since adding MOM does not improve the overall
explanatory power of Model 3.

B. Adjusted R? increases since adding SMB improves the overall explanatory
power of Model 2.

C. Adjusted R? decreases since adding MOM improves the overall explanatory
power of Model 3.

2. Identify the model that provides the best fit.
A. Model 1
B. Model 2
(. Model 3
3. Identify the model that should be used for prediction purposes.
A. Model 1
B. Model 2

C. Model 3

4. Calculate the predicted RET for Model 3 given the assumed factor values: MRKT
=3,HML = -2, VIX = -5, SMB = 1, MOM = 3.

A. 3.732
B. 3.992

C. 4.555

5. Calculate the joint F-statistic and determine whether SMB and MOM together
contribute to explaining RET in Model 3 at a 1% significance level (use a critical
value of 4.849).

A. 2.216, so SMB and MOM together do not contribute to explaining RET
B. 8.863, so SMB and MOM together do contribute to explaining RET

(. 9.454, so SMB and MOM together do contribute to explaining RET
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SOLUTIONS

1. Ais correct. Adjusted R? in Model 3 decreases to 0.844 from 0.846 in Model 2.
Model 3 includes all independent variables from Model 2, while adding MOM.
Adding variables to a regression model always either increases R? or causes it to
stay the same. But adjusted R? only increases if the new variable meets a thresh-
old of significance, |¢-statistic| > 1. MOM does not meet this threshold, indicat-
ing it does not improve the overall explanatory power of Model 3.

2. Bis correct. BIC is the preferred measure for determining which model provides
the best fit, and a lower BIC is better. Since Model 2 has the lowest BIC value, it
provides the best fit among the three models.

3. Bis correct. AIC is the preferred measure for determining the model that is best
used for prediction purposes. As with BIC, a lower AIC is better. Model 2 also
has the lowest AIC value among the three models; thus, it should be used for
prediction purposes.

4. Ais correct. The regression equation for Model 3 is

RET =-0.823 + 1.719MRKT + 0.412HML + 0.026VIX + 0.553SMB
—0.067MOM.

Using the assumed values for the independent variables, we have
RET = -0.823 + (1.719)(3) + (0.412)(-2) + (0.026)(-5) + (0.553)(1) — (0.067)(3)
=3.732.

5. Bis correct. To determine whether SMB and MOM together contribute to the
explanation of RET, at least one of the coefficients must be non-zero. So, H:
bSMB = bMOM =0 and Ha.' bSMB =0 and/or bMOM = 0.

We use the F-statistic, where

(SSE of restricted model — SSE of unrestricted model)/¢

F= SSE of unrestricted model/(n —k— 1) >

with ¢ =2 and n — k — 1 = 90 degrees of freedom. The test is one-tailed, right side,
with o = 1%, so the critical F-value is 4.849.

Model 1 does not include SMB and MOM, so it is the restricted model. Model
3 includes all of the variables of Model 1 as well as SMB and MOM,, so it is the
unrestricted model.

Using data in Exhibit 1 and Exhibit 3, the joint F-statistic is calculated as

(1087.618 —908.647)/2 _ 89.485
908.647/90 ~10.096

Since 8.863 > 4.849, we reject Hy. Thus, SMB and MOM together do contribute
to the explanation of RET in Model 3 at a 1% significance level.

F =

= 8.863.
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LEARNING MODULE

Model Misspecification

LEARNING OUTCOMES

Mastery

The candidate should be able to:

[

0O

describe how model misspecification affects the results of
a regression analysis and how to avoid common forms of
misspecification

explain the types of heteroskedasticity and how it affects statistical
inference

explain serial correlation and how it affects statistical inference

explain multicollinearity and how it affects regression analysis

SUMMARY

= Principles for proper regression model specification include economic
reasoning behind variable choices, parsimony, good out-of-sample perfor-
mance, appropriate model functional form, and no violations of regression
assumptions.

= Failures in regression functional form are typically due to omitted vari-
ables, inappropriate form of variables, inappropriate variable scaling, and
inappropriate data pooling; these may lead to the violations of regression
assumptions.

= Heteroskedasticity occurs when the variance of regression errors differs
across observations. Unconditional heteroskedasticity is when the error
variance is not correlated with the independent variables, whereas condi-
tional heteroskedasticity exists when the error variance is correlated with
the values of the independent variables.

=  Unconditional heteroskedasticity creates no major problems for statisti-
cal inference, but conditional heteroskedasticity is problematic because it
results in underestimation of the regression coefficients’ standard errors, so
t-statistics are inflated and Type I errors are more likely.

= Conditional heteroskedasticity can be detected using the Breusch—Pagan
(BP) test, and the bias it creates in the regression model can be corrected by
computing robust standard errors.
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= Serial correlation (or autocorrelation) occurs when regression errors are
correlated across observations and may be a serious problem in time-series
regressions. Serial correlation can lead to inconsistent coefficient estimates,
and it underestimates standard errors, so t-statistics are inflated (as with
conditional heteroskedasticity).

= The Breusch—Godfrey (BG) test is a robust method for detecting serial
correlation. The BG test uses residuals from the original regression as the
dependent variable run against initial regressors plus lagged residuals, and
H, is the coefficients of the lagged residuals are zero.

= The biased estimates of standard errors caused by serial correlation can be
corrected using robust standard errors, which also correct for conditional
heteroskedasticity.

= Multicollinearity occurs with high pairwise correlations between indepen-
dent variables or if three or more independent variables form approximate
linear combinations that are highly correlated. Multicollinearity results in
inflated standard errors and reduced ¢-statistics.

» The variance inflation factor (VIF) is a measure for quantifying multicol-
linearity. If VIF; is 1 for X, then there is no correlation between X; and
the other regressors. VIF; > 5 warrants further investigation, and VIF; > 10
indicates serious multicollinearity requiring correction.

= Solutions to multicollinearity include dropping one or more of the regres-
sion variables, using a different proxy for one of the variables, or increasing
the sample size.

MODEL SPECIFICATION ERRORS

] describe how model misspecification affects the results of
a regression analysis and how to avoid common forms of
misspecification

Model specification refers to the set of variables included in the regression and the
regression equation’s functional form. Here we provide broad guidelines for correctly
specifying a regression and then describe common types of model misspecification.

The principles for good regression model specification are presented concisely
in Exhibit 1.

Exhibit 1: Principles for Proper Regression Model Specification

Principle Explanation

Model should be grounded in Provide economic reasoning behind choice of variables.
economic reasoning.

Model should be parsimonious. ~ Each variable included in regression should play an essen-
tial role.

Model should perform well out Model may explain only the specific dataset on which it
of sample. was trained, meaning it is overfit.
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Misspecified Functional Form

Principle

Explanation

Model functional form should be

appropriate.

Model should satisfy regression

assumptions.

If a nonlinear relationship between regressors is expected,

model should incorporate the appropriate nonlinear

terms.

If heteroskedasticity, serial correlation, or multicol-

linearity are detected, revise regression variables and/or

functional form.

We now cover model specification errors. Understanding them will lead to better
model development and more informed use of investment research.

MISSPECIFIED FUNCTIONAL FORM

When estimating a regression, we assume it has the correct functional form, an
assumption that can fail in different ways, as shown in Exhibit 2.

Exhibit 2: Failures in Regression Functional Form

Failures in Regression
Functional Form

Explanation

Consequence

Omitted variables

Inappropriate form of
variables

Inappropriate variable
scaling

Inappropriate data
pooling

One or more important variables are
omitted from the regression.

Ignoring a nonlinear relationship
between the dependent and indepen-
dent variable

One or more regression variables may
need to be transformed before estimat-
ing the regression.

Regression model pools data from
different samples that should not be
pooled.

May lead to heteroske-
dasticity or serial
correlation

May lead to
heteroskedasticity

May lead to het-
eroskedasticity or
multicollinearity

May lead to heteroske-
dasticity or serial
correlation

Omitted Variables

First, consider omitted variable bias, the bias resulting from the omission of an
important independent variable from a regression. If the true regression model is

Yi=by+ b1 Xy + byXy; T g

but we estimate the model as

Yi=by+ b Xt g

the latter model is misspecified because X, is omitted.
If the omitted variable is uncorrelated with X, the residual will be by,X,; + ¢;.

Therefore, the residual in the misspecified regression will not have an expected value of
zero nor will it be independent and identically distributed, depending on the behavior
of X,. This means that the estimate of the intercept will be biased, although in this
instance, the coefficient for X; will still be estimated correctly.
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If instead the omitted variable (X;) is correlated with the remaining variable (X;),
the error term in the model will be correlated with X; and the estimated values of
the regression coefficients in the latter model will be biased and inconsistent. The
estimated coefficient on X, the intercept, and the residuals will be incorrect. The
estimates of the coefficients’ standard errors will also be inconsistent, so these cannot
be used for conducting statistical tests.

Inappropriate Form of Variables

Another misspecification error in regression models is using the wrong form of the data
when a transformed version is appropriate. For example, an analyst may fail to account
for nonlinearity in the relationship between the dependent variable and one or more
independent variables by specifying a linear relation. When specifying a regression
model, we should consider whether economic theory suggests a nonlinear relation.
We can often confirm nonlinearity by plotting the data. For example, if the relation
between variables becomes linear when one or more of the variables is represented as a
proportional change in the variable, then we can correct the misspecification by taking
the natural logarithm of the variable we want to represent as a proportional change.

Inappropriate Scaling of Variables

The use of unscaled data in regressions when scaled data are more appropriate may
cause model misspecification. Often, analysts must decide whether to scale variables
before they compare data across companies. For example, analysts often compare
companies using common-size financial statements. Common-size statements make
comparability across companies much easier, allowing the analyst to quickly compare
trends in profitability, leverage, efficiency, and so on, for a group of companies.

Inappropriate Pooling of Data

Finally, another common misspecification error is pooling data from samples that
should not be pooled. Inappropriate pooling data may occur when the sample spans
structural breaks in the behavior of the data. This might arise from a change in gov-
ernment regulation or a regime change from a low-volatility period to a high-volatility
period. In a scatterplot, such data would appear in discrete, widely separated clusters
with little or no correlation, because the means of the data for each cluster would be
very different. When available data results from discernible subsamples, the analyst
should estimate the model using the subsample most representative of conditions
during the forecasting period.

KNOWLEDGE CHECK

You are a junior analyst at a firm specializing in precious metals funds. The firm’s
outlook is for increasing stock market volatility over the next six months, so
the research director tasks you with modeling the relation between gold returns
and changes in stock market volatility. You collect 32 months of returns to gold
(GOLD) and changes in the CBOE VIX Index (VIX), estimate a model with
GOLD as the dependent variable and VIX as the independent variable, and
create the following two scatterplots.
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Returns on gold vs. changes in the VIX

Gold return (%)

-40 -20 0 20 40 60 80 100 120 140
VIX change (%)

Regression residuals and gold returns

Residual

-6 -4 -2 0 2 4 6 8
Gold return (%)

1. Discuss whether these scatterplots provide evidence of any violations of
regression assumptions.

Solution

The residuals display a strong positive relationship (not noise) versus GOLD,
which is a concern. This suggests the residuals are not normally distributed,
are correlated, have a non-zero expected value, and are heteroskedastic. The
conclusion, apparent in the lack of linear relation between gold returns and
changes in the VIX, is that VIX does not capture the entire explanation of
the variation in GOLD.

2. Describe how to address any violations that may be indicated.

Solution

The model should be modified to include additional features—such as mar-
ket returns, economic drivers such as expected inflation, and even an indica-



54

Learning Module 3

© CFA Institute. For candidate use only. Not for distribution.
Model Misspecification

tor variable to classify periods of high versus low geopolitical risk—that may
better explain the variation in gold returns.

Next, you are assigned to study a factor model for explaining the excess returns
to precious metals Portfolio A (PORTA), estimated as
PORTAl = bO + b]_Xll Tr b2X2l + Sl"

with the following results:

Standard
Coefficient Error t-Stat. P-Value
Intercept 0.013 0.005 2.671 0.009
X3, Factor 1 1.896 0.208 9.111 0.000
X,, Factor 2 0.170 0.186 0.916 0.361

Also, adjusted R? is 43%, and the general F-test indicates rejection of the null
hypothesis that the coefficients on X; and X, are equal to zero.

You are asked if it is appropriate to include excess stock market return
(MKTRE) as an additional explanatory variable, so you examine the residuals
from the estimated model and their relationship with MKTRF using the fol-
lowing scatterplot:

Residuals from factor model versus MKTRF
0.20

015 y =1.0225x - 0.0118 o0®
0.10 R = 0.6474

0.05
0.00

-0.05 ° g%

010 ¢

Residual

-0.15

-0.20
-0.15 -0.10 -0.05 0.00 0.05 0.10 0.15 0.20

Excess return on the market

3. Identify the type of model misspecification suggested by the scatterplot.
Solution

The model has two variables (X; and X,), but the residuals from this model
have a clear relationship with MKTRE. Therefore, the type of misspecifica-
tion error is the omitted variable bias.

4. Describe how the misspecification affects the estimated model.
Solution

The estimated coefficients for X; and X, are biased and inconsistent, as are
their standard errors, so the model cannot be relied on for making statistical
inferences.

5. Recommend a correction for the misspecification.
Solution

The recommended correction for this misspecification error is to include
the omitted variable, MKTRE, and re-estimate the revised model.
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VIOLATIONS OF REGRESSION ASSUMPTIONS:
HETEROSKEDASTICITY

] explain the types of heteroskedasticity and how it affects statistical
inference

An important assumption underlying linear regression is that the variance of errors
is constant across observations (errors are homoskedastic). Residuals in financial
model estimations, however, are often heteroskedastic, meaning the variance of the
residuals differs across observations. Heteroskedasticity may arise from model mis-
specification, including omitted variables, incorrect functional form, and incorrect
data transformations, as well as from extreme values of independent variables.

The difference between homoskedastic and heteroskedastic errors can be seen in
Exhibit 3. Panel A shows the values of the dependent and independent variables and
a fitted regression line for a model with homoskedastic errors; there is no apparent
relationship between the regression residuals and the value of the independent vari-
able. Panel B shows the relationship when there are heteroskedastic errors. There
is a systematic relationship between the value of the independent variable and the
regression residuals: The residuals, which are the distance from the line, are larger
for larger values of the independent variable.
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Exhibit 3: Homoskedastic and Heteroskedastic Residuals

Panel A: Homoskedastic residuals
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The Consequences of Heteroskedasticity

There are two broad types of heteroskedasticity: unconditional and conditional.
Unconditional heteroskedasticity occurs when the error variance is not correlated
with the regression’s independent variables. Although it violates a linear regression
assumption, this form of heteroskedasticity creates no major problems for statistical
inference.

Conditional heteroskedasticity is more problematic for statistical inference—when
the error variance is correlated with (conditional on) the values of the independent
variables. This type of heteroskedasticity may lead to mistakes in statistical inference.
When errors are conditional heteroskedastic, the F-test for the overall regression
significance is unreliable because the MSE becomes a biased estimator of the true
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population variance. Moreover, ¢-tests of individual regression coefficients are unreliable
because heteroskedasticity introduces bias into estimators of the standard error of
regression coefficients. Thus, in regressions with financial data, the most likely impacts
of conditional heteroskedasticity are that standard errors will be underestimated, so
t-statistics will be inflated. If there is conditional heteroskedasticity in the estimated
model, we tend to find significant relationships where none actually exist and commit
more Type I errors (rejecting the null hypothesis when it is actually true).

Testing for Conditional Heteroskedasticity

The Breusch-Pagan (BP) test is widely used in financial analysis to diagnose poten-
tial conditional heteroskedasticity and is best understood via the three-step process
shown in Exhibit 4. Fortunately, many statistical software packages easily test for and
correct conditional heteroskedasticity.

Exhibit 4: Breusch-Pagan Test for Conditional Heteroskedasticity

Run the initial regression:

Y, =b,+bX,+bX, +U,

Run a new model with the
fitted residuals squared
from Step 1 as the
dependent variable
against the regressors

in Step 1:

92 =
Uy =ag+ 31X1t+ a2X2t+ &

Test hypotheses on

coefficients of the
regressors in Step 2
using a chi-squared
distributed test statistic

57

Hy: Al a= 0 versus
H_: At least one a* 0

If conditional heteroskedasticity is present in the initial regression, the independent
variables will explain a significant portion of the variation in the squared residuals
in Step 2. This is because each observation’s squared residual is correlated with the
independent variables if the independent variables affect the variance of the errors.

The BP test statistic is approximately chi-square distributed with k degrees of
freedom, where k is the number of independent variables in Step 1:

Xipy = nR?, (1)

and here R? is from Step 2. The null hypothesis is that there is no conditional het-
eroskedasticity; the regression’s squared residuals are uncorrelated with the indepen-
dent variables. The alternative is that there is correlation with at least one independent
variable. This is a one-tail, right-side test.

The BP test is illustrated in Exhibit 5. Here, an analyst uses 10 years of monthly
data to assess exposures of Stock XYZ'’s excess returns (STOCK_RETRF) using the
Fama-French three-factor model; the regressors are excess market return (MKTRE),
the size factor (SMB), and the value factor (HML). The regression output is in Panel A.

The regression yields significant estimated MKTRF (1.2414) and SMB (1.0953)
exposures. To validate the results, the analyst can conduct a residual analysis by plotting
regression residuals against each of the three factors to look for clues to violations of
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linear regression assumptions, including conditional heteroskedasticity. However, the
BP test (results shown in Panel B) is more rigorous. In this case, the null hypothesis is
rejected at the 1% level of significance, indicating conditional heteroskedastic residuals.

Exhibit 5: Testing for Conditional Heteroskedasticity in FAma-French Three-

Factor Model

Panel A Explaining XYZ Returns Using Fama-French
Three-Factor Model

Regression Statistics
Multiple R 0.9375
R-Squared 0.8788
Adjusted R-Squared 0.8757
Standard Error 0.0246
Observations 120
ANOVA
df Ss Ms F Significance F
Regression 3 0.5074 0.1691 280.4951 0.0000
Residual 116 0.0699 0.0006
Total 119 0.5773
Coefficient Standard Error t-Stat. P-Value
Intercept -0.0026 0.0024 -1.0735 0.2853
MKTRF 1.2414 0.0601 20.6419 0.0000
SMB 1.0953 0.1042 10.5147 0.0000
HML —-0.1065 0.0872 —-1.2205 0.2248

Panel B Breusch—-Pagan Test for Heteroskedasticity

BP test statistic 13.40264
P-value 0.00038

CODE: BREUSCH-PAGAN TEST FOR HETEROSKEDASTICITY
Using Python
from statsmodels.formula.api import ols
import statsmodels.api as sm
model = ols('XYZ_RETRF ~ MKTRF+SMB+HML',data=df).fit()
print(model.summary())

test = sm.stats.diagnostic.het_breuschpagan(model.resid, model.model.
exog)
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print(test)
Using R
library(Imtest)
model <- Im('’XYZ_RETRF~ MKTRF+SMB+HML',data=df)
print(summary(model))

bptest(model)

Correcting for Heteroskedasticity

It is important to note that market efficiency implies that in efficient markets, het-
eroskedasticity should generally not be observed in financial data. However, if het-
eroskedasticity is detected, for example, in the form of volatility clustering—where
large (small) changes tend to be followed by large (small) changes—then it presents an
opportunity to forecast asset returns that should be exploited to generate alpha. So,
analysts should not only correct problems in their models due to heteroskedasticity
but also understand the underlying processes in their data and capitalize on them.

The easiest method to correct for the effects of conditional heteroskedasticity in lin-
ear regression is to compute robust standard errors, which adjust the standard errors
of the regression’s estimated coefficients to account for the heteroskedasticity. Many
software packages easily compute robust standard errors, and we recommend using
them. Note that robust standard errors are also known as heteroskedasticity-consistent
standard errors or White-corrected standard errors.

Returning to the prior example, where the model’s error variance is heteroskedas-
tic, Exhibit 6 shows the results when the regression coefficients’ standard errors are
corrected for conditional heteroskedasticity. Comparing these standard errors to those
in the initial regression (in Exhibit 5), the standard errors for the MKTRF and SMB
increase from 0.060 to 0.091 and from 0.104 to 0.111, respectively. Note the regression
coefficients did not change; rather, the problematic standard errors are corrected.

Exhibit 6: Explaining XYZ Returns Using Fama-French Three-Factor Model

with Standard Errors Corrected for Conditional Heteroskedasticity

Coefficient Standard Error t-Stat. P-Value
(Intercept) -0.0026 0.0021 -1.2347 0.2194
MKTREF 1.2414 0.0910 13.6483 0.0000
SMB 1.0953 0.1111 9.8605 0.0000
HML -0.1065 -0.1015 -1.0488 0.2965
KNOWLEDGE CHECK

The summer intern presents to the investment team three multiple regression
models, A, B and C, that use various ESG factors to explain stock returns. The
research director then asks you, a junior analyst, to examine them for potential
heteroskedasticity. You run scatterplots of the regression residuals against factors
X1, Xy, and X3, respectively, and Breusch—Pagan tests for each of the models.
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In a follow-up meeting with the research director, she asks you to do the
following:

1. Interpret the scatterplot for each regression model, and determine if it sug-
gests heteroskedasticity is a potential problem.

Solution

The Model A scatterplot shows the spread of residuals narrowing dramati-
cally as the value of X; increases, suggesting heteroskedasticity is an issue.
The Model B scatterplot shows no discernible pattern, just noise, for resid-
uals versus X, and thus suggests no heteroskedasticity issue. The Model C
scatterplot shows the spread of residuals widening dramatically in a non-lin-
ear pattern as the value of X; increases, suggesting the presence of both
heteroskedasticity and non-linearities.

2. Identify the correct conclusion in the following table for BP tests of the
three models using a 5% level of significance.

BP test Conclusion: Homoskedastic or
Model statistic P-value heteroskedastic residuals
A 7.183 0.0072
B 0.035 0.8523
C 29.586 0.0001

Solution
If the BP test statistic’s P-value is less than 0.05, then conclude the residuals
are heteroskedastic.

Conclusion: Homoskedastic or

BP test statistic P-value heteroskedastic residuals
A 7.183 0.0072 Heteroskedastic residuals
B 0.035 0.8523 Homoskedastic residuals
C 29.586 0.0001 Heteroskedastic residuals




© CFA Institute. For candidate use only. Not for distribution.
Violations of Regression Assumptions: Serial Correlation

3. Given heteroskedastic residuals, describe the expected effect of applying
White’s correction on coefficient standard errors, calculated ¢-statistics, and
corresponding P-values for the independent variables.

Solution

By applying White’s correction for heteroskedasticity, the coefficient
standard errors will increase, thereby decreasing estimated ¢-statistics and
increasing corresponding P-values for the independent variables.

VIOLATIONS OF REGRESSION ASSUMPTIONS: SERIAL
CORRELATION

] explain serial correlation and how it affects statistical inference

A common and serious problem in multiple linear regression is violation of the assump-
tion that regression errors are uncorrelated across observations. When regression
errors are correlated across observations, they are serially correlated. Serial correla-
tion (or autocorrelation) typically arises in time-series regressions. If we have panel
data, which is cross-sectional time-series data, serial correlation may also arise. We
discuss three aspects of serial correlation: its effect on statistical inference, tests for
it, and methods to correct for it.

The Consequences of Serial Correlation

The main problem caused by serial correlation in linear regression is an incorrect
estimate of the regression coefficients’ standard errors. If none of the regressors
is a previous value—a lagged value—of the dependent variable, then the estimated
parameters themselves will be consistent and need not be adjusted for the effects
of serial correlation. But if one of the independent variables is a lagged value of the
dependent variable, serial correlation in the error term causes all parameter estimates
to be inconsistent—that is, invalid estimates of the true parameters. These key points
are summarized in Exhibit 7.

Exhibit 7: Impact of Serial Correlation on Multiple Regression Model

Independent Variable Is Lagged Invalid Coefficient Invalid Standard Error
Value of Dependent Variable Estimates Estimates

No No Yes

Yes Yes Yes

Positive serial correlation is present when a positive residual for one observation
increases the chance of a positive residual in a subsequent observation, resulting in a
stable pattern of residuals over time. Positive serial correlation also means a negative
residual for one observation increases the chance of a negative residual for another
observation. Conversely, negative serial correlation has the opposite effect, so a
positive residual for one observation increases the chance of a negative residual for
another observation, and so on. We examine positive serial correlation because it

61



62

Learning Module 3

© CFA Institute. For candidate use only. Not for distribution.
Model Misspecification

is the most common type and assume first-order serial correlation, or correlation
between adjacent observations. In a time series, this means the sign of the residual
tends to persist from one period to the next.

Positive serial correlation does not affect the consistency of regression coefficients,
but it does affect statistical tests. First, the F-statistic may be inflated because the
MSE will tend to underestimate the population error variance. Second, positive serial
correlation typically causes standard errors to be underestimated, so ¢-statistics are
inflated, which (as with heteroskedasticity) leads to more Type I errors.

Importantly, if a time series exhibits serial correlation, this means that there is
some degree of predictability to it. In the case of asset prices, if these prices were to
exhibit a pattern, investors would likely discern this pattern and exploit it to capture
alpha, thereby eliminating such a pattern. This idea follows directly from the efficient
market hypothesis. Consequently, assuming market efficiency (even weak form), we
should not observe serial correlation in financial market data.

Testing for Serial Correlation

There are a variety of tests for serial correlation, but the most common are the Durbin-
Watson (DW) test and the Breusch-Godfrey (BG) test. The DW test is a measure
of autocorrelation and compares the squared differences of successive residuals with
the sum of the squared residuals. However, the DW test is limiting because it applies
only to testing for first-order serial correlation. The BG test is more robust because it
can detect autocorrelation up to a pre-designated order p, where the error in period
t is correlated with the error in period ¢ — p. The steps and logic of the procedure are
outlined in Exhibit 8.

Exhibit 8: Breusch-Godfrey Test for Serial Correlation

EI——
I TEEEe——

Run the initial regression:
Y,=b,+ X, +bX, +u,
Run a new model with the fitted
residuals from Step 1 as the
dependent variable against the T

W

initial regressors plus the lagged
residual(s) from Step 1:

U=a,+aX,+aX,+pu,_ +e,

Here, order p =1, so there is one

lagged residual (pu, ) as an
independent variable.

est hypotheses on coefficient(s)
of the regressor(s) in Step 2 using
either a chi-square or F distributed
test statistic.

The hypothesis test in this case is:

Hy p,= 0 versus

H:p,#0

The null hypothesis of the BG test is that there is no serial correlation in the model’s
residuals up to lag p. As noted in Exhibit 8, to keep things simple for illustrative
purposes, the order p in Step 2 is 1, so there is one lagged residual, u#,_;, as an inde-
pendent variable. The alternative hypothesis is that the correlation of residuals for at
least one of the lags is different from zero and serial correlation exists up to that order.
The test statistic is approximately F-distributed with n — p — k — 1 and p degrees of
freedom, where p is the number of lags. This F-statistic is provided in most statistical
software, so to evaluate the hypotheses, the resulting P-value can be compared with
the desired level of significance.
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Suppose you want to assess the sensitivity of quarterly changes in GDP to changes
in personal consumption expenditures (CONS). You use 30 years of quarterly data
and estimate a model with the results shown in Exhibit 9, Panel A.

The coeflicient of CONS is different from zero at the 1% significance level, as indi-
cated by the ¢-statistic and the corresponding P-value. But because this is a time-series
model, the analyst must also assess the presence of serial correlation in the regression
residuals, especially given the significant F-statistic for the BG test in Panel B.

Exhibit 9: Regression of GDP on Consumer Expenditures

Panel A Regression Results

Regression Statistics

Multiple R 0.946
R Squared 0.896
Adjusted R Squared 0.895
F-statistic 1023.0
Prob. of F-statistic 0.000
Observations 121
Standard

Coefficients Error t Stat P-value Lower95% Upper 95%
Intercept 0.0991 0.050 1.974 0.051 0.000 0.198
CONS 0.8696 0.027 31.990 0.000 0.816 0.923

Panel B Breusch—-Godfrey Test for Serial Correlation

Test Statistic P-value
F-test 23.6113 0.0230

CODE: BREUSCH-GODFREY TEST
Using Python

import statsmodels.api as sm
from statsmodels.formula.api import ols
from statsmodels.graphics.tsaplots import plot_acf
df = pd.read_csv(“data.csv”)
model = ols(RETRF ~ MKTRF',data=df).fit()
print(model.summary())

r = model.resid
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results = sm.stats.diagnostic.acorr_breusch_godfrey(model,nlags=10)
print(results)
Using R
library(Imtest)
df <- read.csv(“data.csv”)
model <- Im(df$RETRF~df$MKTRF)
summary(model)
bgtest(model,order=10,type=c(“Chisq’;’F”))

r <- model$res

Correcting for Serial Correlation

The most common “fix” for a regression with significant serial correlation is to adjust
the coefficient standard errors to account for the serial correlation. Methods for
adjusting standard errors are standard in many software packages. The corrections
are known by various names, including serial-correlation consistent standard
errors, serial correlation and heteroskedasticity adjusted standard errors, Newey—West
standard errors, and robust standard errors. An advantage of these methods is that
they also correct for conditional heteroskedasticity. The robust standard errors, for
example, use heteroskedasticity- and autocorrelation-consistent (HAC) estimators of
the variance—covariance matrix in the regression estimation.

Exhibit 10 shows the results of correcting standard errors from the regression
of GDP on CONS. The coefficients for both the intercept and slope are unchanged.
However, the robust standard errors are larger than the original OLS standard errors,
so the ¢-statistics are now smaller and the P-values are larger. The key point is serial
correlation in the regression error caused OLS to underestimate the uncertainty about
the estimated parameters. Also, serial correlation is not eliminated, but the standard
errors now account for it.

Exhibit 10: Regression of GDP on Consumption Expenditures with Robust

Standard Errors (Correction for Serial Correlation)

Regression Statistics
Multiple R 0.946
R Squared 0.896
Adjusted R Squared 0.895
F-statistic 591.0
Prob. of F-statistic 0.000

Observations 121
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Standard
Coefficients Error t Stat P-value  Lower95% Upper 95%
Intercept 0.0991 0.058 1.701 0.091 -0.016 0.214
CONS 0.8696 0.036 24.310 0.000 0.799 0.940

As a reminder, correcting for serial correlation and heteroskedasticity is import-
ant for performing meaningful statistical tests. However, market efficiency implies
these conditions should not arise in financial market data. If serial correlation and/
or heteroskedasticity are observed, then discernible patterns in the fitted residuals
contain information that has the potential to be exploited before they are eliminated
by the trading activities of other market participants.

KNOWLEDGE CHECK

The senior analyst provides you, the junior analyst, with the following table for
various multiple regression models he has estimated and then asks you to do
the following:

1. Determine the critical F-value and correct conclusion for BG tests using a
5% significance level.

Breusch- Degrees Conclusion: Is there evi-
Godfrey of Critical dence of serial correla-
Model F-statistic freedom  F-value tion of residuals?
A 5.1634 4,13
B 22.0560 6,15
C 2.3400 4,15
D 1.9800 3,35

Solution

Conclusions for each model based on the comparison of the BG statistic and
the correct critical F-value are as follows:

Breusch- Conclusion: Is there evi-
Godfrey Degrees of Critical dence of serial correla-
F-statistic freedom F-value tion of residuals?

A 5.1634 4,13 3.1791 Yes

B 22.0560 6, 15 2.7905 Yes

C 2.3400 4, 15 3.0556 No

D 1.9800 3,35 2.8742 No

2. Describe robust standard errors and why they are useful.
Solution

Robust standard errors are regression coefficient standard errors that are
corrected for possible bias arising from autocorrelation and heteroskedastic-
ity. They are larger than OLS standard errors and allow the regression model
results to be used for statistical inference.
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VIOLATIONS OF REGRESSION ASSUMPTIONS:
MULTICOLLINEARITY

] explain multicollinearity and how it affects regression analysis

An assumption of multiple linear regression is that there is no exact linear relationship
between two or more independent variables. When this assumption is violated, it
becomes impossible to estimate the regression. However, multicollinearity may occur
when two or more independent variables are highly correlated or when there is an
approximate linear relationship among independent variables. With multicollinearity,
the regression can be estimated, but interpretation of the role and significance of the
independent variables is problematic. Multicollinearity is a serious concern because
approximate linear relationships among economic and financial variables are common.

Consequences of Multicollinearity

Multicollinearity does not affect the consistency of regression coefficient estimates, but
it makes these estimates imprecise and unreliable. Moreover, it becomes impossible
to distinguish the individual impacts of the independent variables on the dependent
variable. These consequences are reflected in inflated standard errors and dimin-
ished t-statistics, so t-tests of coefficients have little power (ability to reject the null
hypothesis).

Detecting Multicollinearity

Except in the case of exactly two independent variables, using the magnitude of pairwise
correlations among the independent variables to assess multicollinearity is generally
inadequate. With more than two independent variables, high pairwise correlations
are not a necessary condition for multicollinearity. For example, despite low pairwise
correlations, there may be approximate linear combinations among several indepen-
dent variables (which are unobservable) and that themselves are highly correlated.

The classic symptom of multicollinearity is a high R? and significant F-statistic but
t-statistics for the individual estimated slope coefficients that are not significant due
to inflated standard errors. While the coefficient estimates may be very imprecise,
the independent variables as a group may do a good job of explaining the dependent
variable.

Fortunately, we can use the variance inflation factor (VIF) to quantify multicol-
linearity issues. In a multiple regression, a VIF exists for each independent variable.
Suppose we have k independent variables Xj, . . ., X;. By regressing one independent
variable (X)) on the remaining k — 1 independent variables, we obtain Rjz for the

regression—the variation in X; explained by the other k — 1 independent variables—
from which the VIF for X; is
1
VIF; = lf—RjZ' @)
For a given independent variable, X;, the minimum VIF; is 1, which occurs when Rjz
is 0, so when there is no correlation between X; and the remaining independent vari-
ables. VIF increases as the correlation increases; the higher the VIF, the more likely
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a given independent variable can be accurately predicted from the remaining inde-
pendent variables, making it increasingly redundant. The following are useful rules
of thumb:

= VIF; > 5 warrants further investigation of the given independent variable.

= VIF; >10 indicates serious multicollinearity requiring correction.

IDENTIFYING MULTICOLLINEARITY AS A PROBLEM

Consider an analyst who is researching Fidelity Select Technology Portfolio
(FSPTX), a mutual fund specializing in technology stocks. She wants to know
if the fund behaves more like a large-cap growth fund or a large-cap value fund,
so she estimates the following regression using 60 months of data:

FSPTX, = by + b;SGX, + b,SVX, + ¢,
Where
ESPTX, is the monthly return to the Fidelity Select Technology Portfolio
SGX, is the monthly return to the S&P 500 Growth Index

SVX, is the monthly return to the S&P 500 Value Index

The regression results in Exhibit 11 indicate that the coefficients of SGX and
SVX are different from zero at the 1% and 5% levels, respectively, implying the
returns to the FSPTX fund are associated with returns to the growth index and
returns to the value index.

Exhibit 11: Results of Regressing FSPTX Returns on Returns of the

S&P 500 Growth and Value Indexes

Regression Statistics

Multiple R 0.884
R-Squared 0.782
Adjusted R-Squared 0.774
Standard Error 0.027
Observations 60
ANOVA
Significance
df Ss ms F F

Regression 2 0.1486 0.0743 102.2425 0.0000
Residual 57 0.0414 0.0007
Total 59 0.1900

Standard Lower Upper

Coefficients Error t-Stat. P-Value 95% 95%

Intercept -0.0069 0.004 -1.896 0.063 -0.014 0.000
SGX 1.7765 0.196 9.064 0.000 1.384 2.169

SVX -0.4488 0.196 -2.292 0.026 -0.841 -0.057
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Suppose the analyst runs another regression, adding returns to the S&P 500
Index (SPX) to the model with SGX and SVX. Importantly, the S&P 500 Index
includes the component stocks of these two style indexes (large-cap growth and
value), so the analyst is inadvertently introducing severe multicollinearity and
is over-specifying the model.

The results of the new regression are shown in Panel A of Exhibit 12. While
the adjusted R? is little changed, now standard errors of the coefficients are
higher: 6.166 for SGX and 5.503 for SVX versus 0.196 for both regressors in the
prior model. Adding SPX returns does not explain any more of the variance in
ESPTX fund returns, but now the coefficients for SGX and SVX are no longer
statistically significant. This situation represents classic multicollinearity. We
can visualize this in Panel B, with the correlogram representing the pairwise
correlations between the variables.

Exhibit 12: Results of Regressing FSPTX Returns on Returns to the
S&P 500 Growth and Value Indexes and the S&P 500 Index

Panel A Regression Results with SGX, SVX, and SPX

Regression Statistics

Multiple R 0.884
R-Squared 0.782
Adjusted R-Squared 0.770
Standard Error 0.027
Observations 60
ANOVA
Significance
df Ss MS F F

Regression 3 0.1486 0.0495 66.9683 0.0000
Residual 56 0.0414 0.0007
Total 59 0.1900

Standard Lower Upper

Coefficients Error t-Stat. P-Value 95% 95%

Intercept -0.0070 0.004 -1.877 0.066 -0.014 0.000
SGX 1.5302 6.166 0.248 0.805 -10.822 13.883
SVX -0.6686 5.503 -0.121 0.904 -11.693 10.356

SPX 0.4658 11.657 0.040 0.968 -22.887 23.818
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Panel B Correlogram of variables
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To understand the size of the multicollinearity problem, the analyst may compute
VIFs for each independent variable in both regressions, as shown in Exhibit 13. Clearly,
all three variables in the regression with SPX have large VIFs, indicating the error
variances of their estimated coefficients are highly inflated and these variables are
highly correlated. In contrast, VIFs for the coefficients of the two independent vari-
ables in the regression without SPX are both less than 5, suggesting multicollinearity
is likely not a concern.

Exhibit 13: Variance Inflation Factors and Multicollinearity Problem

Model Explaining FSPTX Returns

With S&P 500 Without S&P 500
Independent Variable VIF Independent Variable VIF
SGX 3,863.85 SGX 3.97
SVX 3,083.22 SVX 3.97
SPX 12,904.81 -

Correcting for Multicollinearity
Possible solutions to multicollinearity include

= excluding one or more of the regression variables,
= using a different proxy for one of the variables, and

= increasing the sample size.
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Often, however, there is no easy solution for handling multicollinearity. So, you must
experiment with including or excluding different independent variables to determine
the source of and best solution to multicollinearity. However, if your goal is simply to
use the model to predict the dependent variable—rather than to understand the roles
of the independent variables—then multicollinearity may not be a major issue for you.

KNOWLEDGE CHECK

Returning to the example of the three-feature (CAPEX, ADV, R&D) ROA model
for diversified manufacturers, for which the adjusted R? is 86.50% and the overall
F-statistic is 54.4039 (partial ANOVA results shown below), the senior analyst is
concerned about potential multicollinearity. So, she asks you, the junior analyst,
to estimate VIF for each feature and then do the following:

Partial ANOVA Results

Standard
Coefficient Error t-Stat. P-Value

Intercept 4.7022 1.2349 3.8078 0.0010
CAPEX 1.2302 0.1056 11.6490 0.0000
ADV -0.0371 0.1062 —0.3490 0.7304
R&D 0.1029 0.2837 0.3628 0.7203

Variable VIF
CAPEX 1.164
ADV 1.068
RD 1.095

1. Determine whether multicollinearity is a concern using the regression re-
sults alone.

Solution

The overall F-statistic is significant, indicating at least one slope coefficient
is non-zero. This is consistent with CAPEX’s highly significant ¢-statistic, so
multicollinearity should not be a concern.

2. Determine whether multicollinearity is a concern using the VIF results.
Solution

VIF for all features is well below 5 (closer to 1), indicating variances are not
inflated, ¢-statistics are reliable, and multicollinearity is not an issue.

Exhibit 14 provides a summary of the violations of the assumptions of multiple
linear regression that we have covered, the issues that result, and how to detect and
mitigate them.
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Exhibit 14: Summary of Violations of Assumptions from Model

Misspecification

Assumption Violation Issue Detection Correction
Homoskedastic Heteroskedastic Biased estimates Visual Revise model;
error terms error terms of coeflicients’ inspection  use robust stan-
standard errors  of residuals; dard errors
Breusch—
Pagan test
Independence of Serial correlation Inconsistent Breusch— Revise model;
observations estimates of Godfrey test use serial- cor-
coefficients and relation consis-
biased standard tent standard
errors errors
Independence Multicollinearity Inflated stan- Variance Revise model;
of independent dard errors inflation increase sample
variables factor size

n
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PRACTICE PROBLEMS

The following information relates to questions
1-4

You are a junior analyst at an asset management firm. Your supervisor asks you to
analyze the return drivers for one of the firm’s portfolios. She asks you to con-
struct three regression models of the portfolio’s monthly excess returns (RET),
starting with the following factors: the market excess return (MRKT), a value fac-
tor (HML), and the monthly percentage change in a volatility index (VIX). Next
you add a size factor (SMB), and finally you add a momentum factor (MOM).
Your three models are as follows:

+ €.
Model 3: RETL = bo + bMRKTMRI<TL + bHMLHMLL + bVIXVIXi + bSMBSMBi
+ bMOMMOMl + &

Your supervisor is concerned about conditional heteroskedasticity in Model 3
and asks you to perform the Breusch—Pagan (BP) test. At a 5% confidence level,
the BP critical value is 11.07. You run the regression for the BP test; the results
are shown in Exhibit 1.

Exhibit 1: Testing for Conditional Heteroskedasticity

Regression Statistics
Multiple R 0.25517
R-Squared 0.06511
Adjusted R-Squared 0.01317
Standard Error 18.22568
Observations 96

Now the chief investment officer (CIO) joins the meeting and asks you to analyze
two regression models (A and B) for the portfolio he manages. He gives you the
test results for each of the models, shown in Exhibit 2.

Exhibit 2: Breusch-Godfrey and Durbin-Watson Test Results

Independent Variable

Test Critical Is Lagged Value of
Test Type Statistic Value Dependent Variable
Model A Breusch—Godfrey 12.124 3.927 Yes
Model B Durbin—Watson 5.088 4.387 No

The CIO also asks you to test a factor model for multicollinearity among its four
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explanatory variables. You calculate the variance inflation factor (VIF) for each of
the four factors; the results are shown in Exhibit 3.

Exhibit 3: Multicollinearity Test Results

Variable R? VIF

X, 0.748 3.968
X, 0.451 1.820
X, 0.942 17.257
X, 0.926 13.434

1. Calculate the BP test statistic using the data in Exhibit 1 and determine whether
there is evidence of heteroskedasticity.

A. 1.264, so there is no evidence of heteroskedasticity
B. 6.251, so there is no evidence of heteroskedasticity

C. 81.792, so there is evidence of heteroskedasticity

2. Identify the type of error and its impacts on regression Model A indicated by the
data in Exhibit 2.

A. Serial correlation, invalid coefficient estimates, and deflated standard errors.
B. Heteroskedasticity, valid coefficient estimates, and deflated standard errors.

C. Serial correlation, valid coefficient estimates, and inflated standard errors.

3. Determine using Exhibit 3 which one of the following statements is most likely to
be correct. Multicollinearity issues exist for variables:

A. X1 and X2.
B. X2 and X3.
C. X3 and X4.

4. Identify the correct answer related to the following statement.

Possible solutions for addressing the multicollinearity issues identified in Exhibit
3 include:

1. excluding one or more of the regression variables.
2. using a different proxy for one of the variables.
3. increasing the sample size.

A. Only Solution 1 is correct.
B. Only Solution 2 is correct.

C. Solutions 1, 2, and 3 are each correct.
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SOLUTIONS

1. Bis correct. The BP test statistic is calculated as #R%, where 7 is the number of
observations and R? is from the regression for the BP test. So, the BP test statistic
=96 x 0.06511 = 6.251. This is less than the critical value of 11.07, so we cannot
reject the null hypothesis of no heteroskedasticity. Thus, there is no evidence of
heteroskedasticity.

2. Ais correct. The Breusch—Godfrey (BG) test is for serial correlation, and for
Model A, the BG test statistic exceeds the critical value. In the presence of serial
correlation, if the independent variable is a lagged value of the dependent vari-
able, then regression coefficient estimates are invalid and coefficients’ standard
errors are deflated, so ¢-statistics are inflated.

3. Cis correct. A VIF above 10 indicates serious multicollinearity issues requiring
correction, while a VIF above 5 warrants further investigation of the given vari-
able. Since X3 and X4 each have VIFs above 10, serious multicollinearity exists
for these two variables. VIFs for X1 and X2 are both well below 5, so multicol-
linearity does not appear to be an issue with these variables.

4. Cis correct. Possible solutions for addressing multicollinearity issues include all
of the solutions mentioned: excluding one or more of the regression variables,
using a different proxy for one of the variables, and increasing the sample size.
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LEARNING MODULE

Extensions of Multiple Regression

LEARNING OUTCOMES
Mastery | The candidate should be able to:

] describe influence analysis and methods of detecting influential data
points
] formulate and interpret a multiple regression model that includes

qualitative independent variables

] formulate and interpret a logistic regression model

LEARNING MODULE OVERVIEW

=  Two kinds of observations may potentially influence regression results: (1)
a high-leverage point, an observation with an extreme value of an indepen-
dent variable, and (2) an outlier, an observation with an extreme value of the
dependent variable.

= A measure for identifying a high-leverage point is leverage, the distance of

an extreme independent variable from the average of the independent

variable. If leverage is greater than B(k; 1), where k is the number of

independent variables and 7 is the number of observations, then the
observation is potentially influential. A measure for identifying an outlier is
studentized residuals, residuals from a model divided by its adjusted
standard error. If the studentized residual is greater than a certain critical
value of the ¢-statistic with (n — k — 2) degrees of freedom, then the observa-
tion is potentially influential.

= Cook’s distance, or Cook’s D (D,), is a metric for identifying influential data
points. In a single measure, it summarizes whether or not an observation is
likely to be an influential data point in a regression by quantifying how
much the estimazted values of the regression change if observation i is
deleted. If D; > Vk/n, then it is highly likely to be influential. An influence
plot visually presents leverage, studentized residuals, and Cook’s D for each
observation.
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=  Dummy, or indicator, variables represent qualitative independent variables
and take a value of 1 (for true) or O (for false) to indicate whether a specific
condition applies, such as whether a company belongs to a certain industry
sector. To capture # possible categories, the model must include (7 — 1)
dummy variables.

= An intercept dummy adds to or reduces the original intercept if a specific
condition is met. When the intercept dummy is 1, the regression line shifts
up or down parallel to the base regression line.

= A slope dummy allows for a changing slope if a specific condition is met.
When the slope dummy is 1, the slope changes to (d}- + b]-) x Xj, where d is
the coefficient on the dummy variable and b; is the slope of X; in the original
regression line.

= A logistic regression model is one with a qualitative (i.e., categorical) depen-
dent variable, so logistic regression is often used in binary classification
problems, which are common in machine learning and neural networks.

= To estimate a logistic regression, the logistic transformation of the event
probability (P) into the log odds, In[P/(1 — P)], is applied, which linearizes
the relation between the transformed dependent variable and the indepen-
dent variables.

= Logistic regression coefficients are typically estimated using the maximum
likelihood estimation (MLE) method, and slope coefficients are interpreted
as the change in the log odds that the event happens per unit change in the
independent variable, holding all other independent variables constant.

2 INFLUENCE ANALYSIS

[

describe influence analysis and methods of detecting influential data
points

Besides violations of regression assumptions, there is the issue that a small number
of observations in a sample could potentially influence and bias regression results.
An influential observation is an observation whose inclusion may significantly alter
regression results. We discuss how to detect them and how to determine whether
they do influence regression results.

Influential Data Points
Two kinds of observations may potentially influence regression results:

= A high-leverage point, a data point having an extreme value of an indepen-
dent variable

= An outlier, a data point having an extreme value of the dependent variable

Both are substantially different from the majority of sample observations, but each
presents itself in different ways.

Exhibit 1 shows a high-leverage point (triangle) in a sample of observations. Its X
value does not follow the trend of the other observations; rather, it has an unusually
high, possibly extreme, X value relative to the other observations. This observation
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should be investigated to determine whether it is an influential high-leverage point.
Also, note the two estimated regression lines: The dashed line includes the high-leverage
point in the regression sample; the solid line deletes it from the sample.

Exhibit 1: lllustration of High-Leverage Point

Exhibit 2 shows an outlier data point (triangle) in a sample of observations. Its Y value
does not follow the trend of the other observations; rather, it has an unusual, possibly
extreme, Y value relative to its predicted value, Y, resulting in a large residual, (Y —
Y). This observation should be investigated to determine whether it is an influential
outlier. Also, note the two estimated regression lines: The dashed line includes the
outlier in the regression sample; the solid line deletes it from the sample.

Exhibit 2: lllustration of Potentially Influential Outlier

Outliers and high-leverage points are unusual but not necessarily a problem. For
instance, a high-leverage point may deviate substantially from the other observa-
tions (in terms of values of the independent variable), but it may still lay close to the
(solid) regression line. Problems arise if the high-leverage point or the outlier point
are distant from the regression line. In these cases, the effect of the extreme value
is to “tilt” the estimated regression line toward it, affecting slope coefficients and
goodness-of-fit statistics.

77



78

Learning Module 4

© CFA Institute. For candidate use only. Not for distribution.
Extensions of Multiple Regression

Detecting Influential Points

A scatterplot is a straightforward way to identify outliers and high-leverage points in
simple linear regression. However, multiple linear regression requires a quantitative
way to measure the extreme values to reliably identify influential observations.

A high-leverage point can be identified using a measure called leverage (/;,). For a
particular independent variable, leverage measures the distance between the value of the
ith observation of that independent variable and the mean value of that variable across
all n observations. Leverage is a value between 0 and 1, and the higher the leverage,
the more distant the observation’s value is from the variable’s mean and, hence, the
more influence the ith observation can potentially exert on the estimated regression.

The sum of the individual leverages for all observations equals k + 1, where k is
the number of independent variables and 1 is added for the intercept. A useful rule

of thumb for the leverage measure is that if an observation’s leverage exceeds 3(k x 1),

then it is a potentially influential observation. Software packages can easily calculate
the leverage measure.

KNOWLEDGE CHECK y

Given the broad themes of “health consciousness” and “aging popula-

tion,” a senior specialty retail analyst tasks you, a junior analyst, with
initiating coverage of nutritional supplement retailers. You begin by analyzing
a cross-sectional dataset of 15 such specialty retailers to determine the impact
of the number of their unique products (PROD)—such as vitamins, probiotics,
antioxidants, and joint supplements—and the percentage of their online sales
(ONLINE) on operating profit margins (OPM).

Your partial regression results are shown in Panel A of Exhibit 3, the leverage
measure for each observation (i.e., company) is presented in Panel B, and your
revised regression results after removing an observation from the sample are
shown in Panel C.

Exhibit 3: Regression of Operating Profit Margin and Statistical Leverage

Measure

Panel A OPM Regression Results with Full Sample

Standard
Coefficient Error t-Statistic P-Value
Intercept 7.03 13.60 0.52 0.61
PROD 0.77 0.28 2.70 0.02

ONLINE -0.29 0.28 -1.02 0.33
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Panel B Leverage Measure
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Panel C OPM Regression Results after Removing One Sample Observation

Standard
Coefficient Error t-Statistic P-Value
Intercept 9.81 24.80 0.40 0.70
PROD 0.74 0.33 2.25 0.05
ONLINE -0.36 0.61 -0.59 0.57

1. Identify which independent variables from the results in Panel A, if any,
have slope coefficients different from zero at the 5% significance level.

Solution:

Only PROD has a slope coefficient different from zero at the 5% significance
level; more specifically, it has a P-value of 0.02, or 2%.

2. Identify which observation(s) may be influential based on leverage, and
justify your answer.

Solution:

Just one observation, Observation 7, is potentially influential. It has a
leverage measure of 0.80, which exceeds the rule of thumb value,
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S(kz 1) = 3 x 21+51 = % = 0.60, for flagging possible influential data

points.

Discuss how the regression results change after removing the potentially
influential observation from the dataset.

Solution:

After removing Observation 7, the revised regression results show a larger
intercept (9.81) and reduced significance for PROD, now with a P-value

of 5%. However, while this observation may be considered influential, the
full sample conclusion—PROD’s coefficient is different from zero at the 5%
significance level—still holds.

As for identifying outliers, observations with unusual dependent variable values,
the preferred method is to use studentized residuals. The logic and process behind
this method are as follows:

1.

1

Estimate the initial regression model with # observations, then sequentially
delete observations, one at a time, and each time re-estimate the regression
model on the remaining (n — 1) observations.

Compare the observed Y values (on 7 observations) with the predicted

Y values resulting from the models with the ith observation deleted—on

(n — 1) observations. For a given observation i, the difference (or resid-

ual) between the observed Y; and the predicted Y with the ith observation
deleted (e;) ise; = ;- ¥

Divide this residual by the estimated standard deviation or standard error of
the residuals, s,, which produces the studentized deleted residual, ¢;.:

E3
e

eA
th = 55 = ——— (1)

MSE(:‘)(1 - hii)

Also, note the equivalent formula (on the right) for ¢;: whose terms are all based
on the initial estimated regression with # observations, where

e/ = the residual with the ith observation deleted
5.+ = the standard deviation of all the residuals

k = the number of independent variables

MSE; = the mean squared error of the regression model that deletes the ith

observation

h;; = the leverage value for the ith observation

Studentized deleted residuals are effective for detecting influential outlying Y
observations. Exhibit 4 presents rules of thumb for using them to flag outliers and the
test to determine whether the outlier is influential. Automatically excluding one or
several influential datapoints may have a significant impact on the statistical estimates,
including the coefficient estimates and their possible interpretation.

Note the studentized residual value must be compared to the critical value of the
t-distributed statistic with (n — k — 2) degrees of freedom at the selected significance

level

to conclude whether the observation is potentially influential.
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Exhibit 4: Using Studentized Residuals to Identify Influential Outliers

If... Then ...
[t;* >3 Flag observation as being an outlier
|t;*| > critical value of ¢-statistic with » — k —  Flag outlier observation as being potentially

2 degrees of freedom at selected significance influential
level

Consider the junior analyst testing the OPM regression model with two regressors
(PROD and ONLINE) based on the sample of 15 nutritional supplement retailers. The
analyst wants to detect outliers and, if any, determine whether they are influential.
A visual of the studentized residuals for the regression model is provided in Exhibit
5. Note that the absolute value of the studentized residuals for Observations 2 and
3 exceeds the critical t-value of 2.2010 for 11, (n — k - 2) = 15 - 2 — 2, degrees of
freedom, indicating they may be influential. Consequently, these observations should
be flagged for further examination.

Exhibit 5: Detecting Influential Outliers Using Studentized Residuals

<
E]
=
7]
o
2
°
7]
N
=
c
a
°
3
2
n

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Observation

N Studentized residuals e e e« Critical t

Outliers and high-leverage points are not necessarily influential. An observation is
considered influential if its exclusion from the sample causes substantial changes in
the estimated regression function. Cook’s distance, or Cook’s D (D)), is a metric for
identifying influential data points. It measures how much the estimates of the regres-
sion change if observation i is deleted and the model is re-estimated. It is expressed as
e? h

i il ] (2)

Di = G OMSE [(1= 12|

where
e; = the residual for observation i
k = the number of independent variables
MSE = the mean squared error of the estimated regression model

h;; = the leverage value for observation i
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The following are some key points to note about Cook’s D:

= It depends on both residuals and leverages (dependent and independent
variable information plays a role), so it is a composite measure for detecting
extreme values of both types of variables.

= It summarizes in a single measure how much all of the regression’s esti-
mated values change when the ith observation is deleted from the sample.

= A large D; indicates that the ith observation strongly influences the regres-
sion’s estimated values.

Cook’s D is distributed as an F-distribution with (k + 1) and (n - k — 1) degrees
of freedom. If the probability value for the Cook’s distance is 50% or more, which is
roughly 1.0 for large #, the point has a significant influence on the fitted regression line.

Practical guidelines for using Cook’s D are shown in Exhibit 6. When using Cook’s
D, the challenge is that there are alternative rules of thumb. Recall when quantify-
ing the impact of a specific observation i, Cook’s D sums up all the changes in the
regression model’s estimates when that specific observation is removed from the data.
Typically, the rule of thumb suggests that observations with a Cook’s D value of 1.0
are highly likely to be an influential data point. However, the analyst should examine
any observation with an unusual Cook’s D, which should be further investigated as
being potentially influential.

Exhibit 6: Using Cook’s D to Identify Influential Observations: Common

Guidelines

If D; is greater than: Conclusion

0.5 The ith observation may be influential and merits further
investigation.

1.0 The ith observation is highly likely to be an influential data
point.

Vkin The ith observation is highly likely to be an influential data
point.

The roles of leverage, studentized residuals, and Cook’s D in detecting influential data
points are summarized in Exhibit 7. Although the calculation of these measures seems
daunting, most statistical software packages readily provide them. Importantly, while
Cook’s D by itself can identify influential data points, the leverage and studentized
residuals measures can reveal why a given observation is influential—that is, due to
it having an extreme X value or an extreme Y value, respectively. Additionally, data
visualization can reveal clues of influence.
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Exhibit 7: Summary of Measures of Influential Observations

Influence of ...

Dependent Independent Is observation
Measure variable variable Process influential?
Leverage x ]:éi Ianges from 0 Ifhy; > 3<k;rl 1)’ then
potentially influential
Studentized x Compare calcu- If calculated
residual lated |¢-statistic| |¢-statistic| > critical
with critical t-value, then poten-
t-value tially influential
C'OOICS x x Compare calcu- If calculated Cook’s D
distance lated Cqok’s D > Vk/n, then highly
against Vk/n likely influential

Exhibit 8 presents an influence plot for the OPM regression model of the 15 nutri-
tional supplement retailers from Exhibit 3, which shows leverages on the x-axis, stu-
dentized residuals on the y-axis, and values of Cook’s D as proportional to the sizes
of the circles for each observation.

Exhibit 8: Influence Plot: Leverage, Studentized Residuals, and Cook’s D for

OPM Model of Nutritional Supplement Retailers
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Leverage

Using the Cook’s D guideline of \k/n, which for this sample is 0.3651 (= V2715, we see
that Observations 7 and 3 are not influential, despite being a high-leverage point and
an outlier, respectively. Observation 2, as indicated by its large circle, has a relatively
large Cook’s D, 0.5965, which exceeds the 0.5 guideline for “potential influence” and
the threshold of 0.3651 for “highly likely to be influential”

Re-estimating the OPM model for the sample of nutritional supplement retailers
after removing Observation 2, the high Cook’s D observation, reveals that this data
point is indeed influential. In Exhibit 9, the full-sample regression results are repeated
in Panel A and the revised results are shown in Panel B. After removing Observation
2, the regression function changes substantially. Now, the slope coefficient for PROD
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increases (to 0.93) and its significance increases to the 1% level (P-value = 0.00), while
the coefficient for ONLINE decreases substantially (to —0.47) and becomes significant
at the 5% level (P-value = 0.04).

Exhibit 9: Comparison of OPM Regression Results with and without High

Cook’s D Observation 2

Panel A OPM Regression Results with Full Sample
(repeated from Exhibit 3)

Coefficient Standard Error t-Statistic P-Value
Intercept 7.03 13.60 0.52 0.61
PROD 0.77 0.28 2.70 0.02
ONLINE -0.29 0.28 -1.02 0.33

Panel B OPM Regression Results after Removing High
Cook’s D Observation 2

Coefficient Standard Error t-Statistic P-Value
Intercept 10.81 9.48 1.14 0.28
PROD 0.93 0.20 4.64 0.00
ONLINE -0.47 0.20 -2.35 0.04

To summarize, Cook’s D is important for detecting influential Observation 2,
as confirmed by the revised OPM regression results. Leverage is key for detecting
high-leverage data points, such as Observation 7, and studentized residuals are key for
revealing potentially influential outliers, such as Observations 3 and 2. Importantly,
Cook’s D by itself shows Observation 2 is influential, but the studentized residual mea-
sure reveals why it is influential: Observation 2 is an influential outlier. This exercise
demonstrates why all three measures (leverage, studentized residuals, and Cook’s D),
with the influence plot for visualizing them, and the revised regression results should
all be evaluated when the analyst’s objective is detection of influential data points.

Besides detecting influential data points, we must investigate why they occur and
determine a remedy. In some cases, an influential data point is simply due to data input
errors or inaccurate measurements. The remedy is to either correct the erroneous data
or discard them and then to re-estimate the regression using the cleansed sample.
Alternatively, the dataset can also be winsorized to mitigate the impact of outliers
found in the dataset. In other cases, the influential data points are valid, which may
indicate that important explanatory variables are omitted from the model or regres-
sion assumptions are being violated. We must resolve these issues by identifying and
including potentially useful explanatory variables and/or checking that our model
satisfies all regression assumptions; effectively, the modeling objective determines
whether influential observations are outliers or integral to the data.
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QUESTION SET

vation, as shown below.
Studentized residual

2.915
1.932
5 -4.033

Observation
]

21

23

25

-0.018
While meeting with the research director to discuss your results, she asks
you to do the following:

Observation

0

0.05

0.002

E4

You are analyzing a regression model of companies’ return on assets
(ROA) estimated with 26 observations and three independent variables
and are concerned about outliers and influential observations. Using software,
you calculate the studentized residual ¢-statistic and Cook’s D for each obser-

Cook's D
0.1 0.15 0.2 0.25

0.080

0.21n

residuals at a 5% significance level.

Solution:

the studentized residuals.

1. Identify which observations, if any, are considered outliers using studentized

There are 21 (= 26 — 3 — 2) degrees of freedom, so the critical ¢-statistics are
+2.080. Therefore, Observations 3 and 5 are considered outliers based on

based on Cook’s D.

Solution:

2. Identify which observations, if any, are considered influential observations

Using the 0.5 and 1.0 guidelines for C0012<’s D, thege are no influential obser-
vations. Using the alternative approach, Vk/n = V3/26=0.3397, there are
no influential observations. However, on visual inspection, Observation 5
has a Cook’s D much different from those of the other observations.
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3. Recommend what actions, if any, you should take to deal with any influential
observations.
Solution:

From the results of studentized residuals and Cook’s D, the analyst should
investigate outlier Observation 5 to ensure there are no data entry or quality
issues.

3 DUMMY VARIABLES IN A MULTIPLE LINEAR
REGRESSION

] formulate and interpret a multiple regression model that includes
qualitative independent variables

Analysts often must use qualitative variables as independent variables in a regression.
One such type of variable is a dummy variable (or indicator variable). A dummy
variable takes on a value of 1 if a particular condition is true and 0 if that condition
is false. A key purpose of using dummy variables is to distinguish between “groups”
or “categories” of data.

Defining a Dummy Variable
A dummy variable may arise in several ways, including the following:

= It may reflect an inherent property of the data (i.e., industry membership).

= It may be a characteristic of the data represented by a condition that is
either true or false (i.e., a date before or after a key market event).

= It may be constructed from some characteristic of the data where the
dummy variable reflects a condition that is either true or false (i.e., firm
sales less than or greater than some value).

We must be careful when choosing the number of dummy variables in a regres-
sion to represent a specific condition. If we want to distinguish among # categories,
we need 7 — 1 dummy variables. So, if we use dummy variables to denote companies
belonging to one of five industry sectors, we use four dummies, as shown in in Exhibit
10. The analysis still applies to five categories, but the category not assigned becomes
the “base” or “control” group and the slope of each dummy variable is interpreted
relative to the base. In this case, the base group is Food & Beverage.

Exhibit 10: Using Dummies to Represent Membership in Industry Sector

Dummy Variables

Financial
Industry Sector Technology Services Health Care Energy
Technology 1 0
Financial Services 0 1

Health Care 0 0
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Dummy Variables

Financial
Industry Sector Technology Services Health Care Energy
Energy 0 0 0 1
Food & Beverage* 0 0 0 0

*Food & Beverage is the base (i.e., control) group.

The reason for using » — 1 dummy variables is to avoid violating the assumption that
no exact linear relationship exists between two or more independent variables. If we
included dummy variables for all # categories, rather than # — 1, the regression would
fail because the dummies would sum to the variable used to estimate the intercept
in the regression.

Visualizing and Interpreting Dummy Variables

A common type of dummy variable is the intercept dummy. Consider a regression
model for the dependent variable Y that involves one continuous independent variable,
X, and one intercept dummy variable, D.

Y;= by + dyDb; + by X; + g;. 3)

This single regression model estimates two lines of best fit corresponding to the value
of the dummy variable:

= If D = 0, then the equation becomes Y = by + b1 X + € (base category).

= If D =1, then the equation becomes Y = (b, + d)) + b1 X + € (category to
which the changed intercept applies).

Panel A of Exhibit 11 illustrates the effect of the intercept shift from a dummy
variable; it is the vertical distance d,. The shift can be positive or negative (here it is
positive). The solid line where the dummy takes the value of zero (D = 0) relates to
the base category; the parallel dashed line where the dummy variable takes the value
of 1 (D = 1) relates to the category to which the dummy variable applies.
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Exhibit 11: Visualizing Intercept and Slope Dummies

Panel A: Model with intercept dummy variable

Without intercept or slope dummies = = = With intercept dummy

Panel B: Model with slope dummy variable

Without intercept or slope dummies = = = With slope dummy

Panel C: Model with intercept and slope dummy variable

Without intercept = . . = With intercept and
or slope dummy slope dummy

A different scenario uses a dummy that allows for slope differences, a slope dummy,
which can be explained using a simple model with one continuous variable (X) and
one slope dummy variable (D).

Y;=by+ b X;+d\ DX, + ¢, 4)
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The slope dummy variable creates an interaction term between the X variable and
the condition represented by D = 1. The slope dummy is interpreted as a change in
the slope between the categories captured by the dummy variable:

s IfD=0,then Y=by+ b X + € (base category).
= IfD=1,then Y=>5by+ (b; + d;) X + € (category to which changed slope
applies).

As before, the case of D = 0 is the base category. The dummy variable allows for
slopes to differ between the two categories. In Panel B of Exhibit 11, the base category
is the same as before (shown by the solid line). For the other category, the relation-
ship between Y and X is shown by the steeper-sloping dashed line for Y = by + (b; +
d;)X. The difference between slopes may be positive or negative, depending on the
scenario (here it is positive).

It is also possible for a regression to use dummies in both the slope and the inter-
cept. To do so, we combine the two previous models.

s IfD=0,then Y=by+ b X + € (base category).

s IfD=1,then Y= (by+dy + (b + dy)X + ¢; (category to which both changed
intercept and changed slope apply).

This model allows for a change in both intercept and slope across the two groups,
shown in Panel C of Exhibit 11 by the dashed line above the solid line. In this more
complex treatment, the difference between the two categories depends on both an
intercept effect (d,;) and a slope effect (d;X) that varies with the size of the independent
variable. Note in this scenario d; > 0. Finally, these scenarios are based on only two
categories. We may have more categories with more dummies and more independent
variables; in this case, the graphs would show more fitted lines, one relating to each
category.

Testing for Statistical Significance of Dummy Variables

As explained, dummy variables are useful for distinguishing between categories of
data. Tests of whether a regression function is different for one group versus another
are straightforward with dummy variables. Individual ¢-tests on the dummy variable
coefficients indicate whether they are significantly different from zero.

Exhibit 12 illustrates dummy variables in a regression using a cross-section of
mutual fund data. An analyst has been tasked with analyzing how mutual fund char-
acteristics affect fund returns. She uses a large database of mutual funds that includes
several styles: blend, growth, and value.

The dependent variable is fund five-year average annual return. The independent
variables are

= fund expense ratio (EXP),

= fund portfolio cash ratio (CASH),

= fund age (AGE), and

= the natural logarithm of fund size (SIZE).

Given three possible style categories, she uses n — 1 = 2 dummy variables:

= BLEND, which takes a value of 1 if the fund is a blend fund and 0 otherwise;

=  GROWTH, which takes a value of 1 if the fund is a growth fund and 0 oth-
erwise; and

= VALUE, the base category without a dummy.
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The classification for the dummy variables is shown in Panel A of Exhibit 12.
The regression model is

d,GROWTH, + ¢;.

The regression output in Panel B of Exhibit 12 shows that all slope coefficients and
the intercept are significantly different from zero. The R* estimate suggests that the
empirical specification explains 12.30% of the variation in the observed five-year
average annual return; its marginal difference from the adjusted R? estimate, 12.28%,
indicates that the model specification builds on statistically significant variables. The
dummy coefficients—0.66 for BLEND and 2.50 for GROW TH—suggest blend funds
deliver average annual returns exceeding those of the value category by 0.66% while
growth funds deliver 2.50% more than the base value category. Moreover, the intercept
coefficient suggests that an average annual return of —2.91% is unexplained by the
model’s independent variables.

Exhibit 12: Analysis of Mutual Funds in Different Categories

Panel A Classification of Mutual Funds

Mutual Fund Style Dummy Variable

Blend Growth
Blend 1 0
Growth 0 1
Value* 0 0

*Value is the base (i.e., control) group.

Panel B Explaining Mutual Fund Returns with Fund Type

Dummies
Regression Statistics
R2 0.1230
Adjusted R? 0.1228
Standard Error 4.224
Observations 23,025
ANOVA Df SS MsS F Significance F
Regression 6 57,636.46 9,606 538 0
Residual 23,018 410,816.9 17.85
Total 23,024 468,453.3
Coefficient Standard Error t-Statistic P-Value
Intercept -2.909 0.2990 -9.738 0.00
EXP -0.586 0.0495 -11.824 0.00
CASH -0.032 0.0029 -11.168 0.00
AGE 0.074 0.0033 22.605 0.00

SIZE 0.267 0.0141 18.924 0.00
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Coefficient Standard Error t-Statistic P-Value
BLEND 0.661 0.0678 9.749 0.00
GROWTH 2.498 0.0748 33.394 0.00

The analyst extends the study by adding slope dummies. Initial results suggests
a small impact of fund age on returns, 0.07% per year of age. She wonders whether
this relationship between age and performance differs by fund type. For example,
does the age factor affect growth or blend funds differently from how it affects value
funds? To explore this idea, she introduces two interaction variables—slope dummies,
AGE_BLEND and AGE_GROW TH—and estimates the following model:

Returns; = by + b;EXP, + b,CASH, + b;AGE, + b,SIZE, + d,BLEND, +
d,GROWTH, + d;AGE_BLEND, + d,AGE_GROWTH; + ¢,.

When BLEND = 1, the interaction term AGE_BLEND takes the value of AGE; other-
wise, it takes the value of zero. Similarly, when GROWTH = 1, the interaction term
AGE_GROWTH takes the value of AGE; otherwise, it takes the value of zero. Exhibit
13 presents the revised regression results.

Exhibit 13: Explaining Mutual Fund Returns with Intercept and Slope

Dummies

Regression Statistics

R2 0.123
Adjusted R? 0.123
Standard Error 4.224
Observations 23,025
ANOVA Df SS Ms F Significance F
Regression 8 57,760.46 7,220 404.6 0.000
Residual 23,016 410,692.9 17.84
Total 23,024 468,453.3

Coefficient Standard Error t-Statistic P-Value
Intercept -2.810 0.3060 -9.183 0.00
EXP -0.587 0.0496 -11.839 0.00
CASH -0.032 0.0029 -11.211 0.00
AGE 0.065 0.0059 11.012 0.00
SIZE 0.267 0.0141 18.906 0.00
BLEND 0.603 0.1088 5.546 0.00
GROWTH 2.262 0.1204 18.779 0.00
AGE_BLEND 0.005 0.0077 0.627 0.53

AGE_GROWTH 0.020 0.0081 2.478 0.01
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These results show that the values and significance of the slope coefficients are
little changed. But the revised model provides more information on AGE. For the base
group (value funds), the AGE coefficient suggests those funds earn an extra return of
0.065% as time passes. This is when BLEND = 0 and GROWTH = 0.

The interaction term AGE_GROW TH is statistically significant, with a p-value =
0.01, implying for growth funds an extra annual return with each year of age equal to
the sum of the AGE and AGE_GROW TH coefficients, or 0.085% (= 0.065% + 0.020%).
So, the “slope” coefficient for GROWTH (with respect to AGE) is the sum of those
two coefficients. Finally, we can interpret the overall result as suggesting that growth
funds’ returns exceed those of value funds by 2.347%, or 2.262% (GROWTH) plus
0.085% (AGE + AGE_GROWTH), for each year of a fund’s age (since inception).

QUESTION SET [ f

You are interviewing for the position of junior analyst at a global macro

hedge fund. The managing director (MD) interviewing you outlines the
following scenario: You are tasked with studying the relation between stock
market returns and GDP growth for multiple countries and must use a binary
variable in your regression model to categorize countries by stock market type,
emerging (1) or developed (0) markets. The MD provides the following three
modeling choices:

A. Slope dummy: It allows for a change in slope to classify countries
into weak stock performance countries and strong stock performance
countries.

B. Intercept dummy: It allows for a change in intercept to classify coun-
tries by their stock market development status.

C. Interaction term: It allows for a change in intercept to classify coun-
tries into low-GDP growth and high-GDP growth countries.

1. To answer the MD’s question, identify the appropriate new variable and its
function.

A. Slope dummy.

B. Intercept dummy.

(. Interaction term.
Solution:

B is correct. The new variable, an intercept dummy, allows for a change in
intercept to classify countries by emerging versus developed stock market
status.

The MD continues, indicating that you must refine the model to capture the
effect on stock returns of the interaction of each country’s GDP growth and its
stock market development status. He then asks you to do the following:

2. Identify the model you should use (noting the following definitions).
GDPG: Country GDP growth
EM: Indicates emerging stock market country
DM: Indicates developed stock market country

A. Stock return = by + b;GDPG + d{EM + d,DM + d3(EM x GDPG) + e.
B. Stock return = by + b;GDPG + d;EM + d,DM + &.
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(. Stock return = by + b;GDPG + d;EM + d,(EM x GDPG) + ¢.
Solution:

Cis correct. This model includes a variable for country GDP growth
(GDPG); one dummy for emerging stock market status (EM = 1, 0 other-
wise), with developed market status as the base case; and a term (EM x
GDPQG) for the interaction of EM status with GDP growth.

Another MD joins the interview and mentions that an analyst on her team esti-
mated a regression to explain a cross-section of returns on assets of companies
using a regulation dummy variable (REG = 1 if regulated, 0 otherwise), market
share (MKTSH), and an interaction term, REG_MKTSH, the product of REG
and MKTSH. She notes the resulting model is

RET = 0.50 — 0.5REG + 0.4MKTSH - 0.2REG_MKTSH

and asks you to do the following:

3. Identify which of the following statements is correct regarding interpretation
of the regression results (indicate all that apply).

A. The average return for a regulated firm is 0.5% lower than for a
non-regulated firm, holding the market share constant.

B. Non-regulated companies with larger market shares have lower ROAs
than regulated companies.

C. For each increase in market share, a regulated firm has a 0.3 lower
return on assets than a non-regulated firm.
Solution:

Both A and C are correct.

A is correct because the coefficient on REG is —0.5.

C is correct because the sum of coefficients is —0.3 = —0.5REG + 0.4MKTSH
—0.2REG_MKTSH).

B is incorrect because the coefficient on MKTSH is positive and the coeffi-
cient on REG is negative.

MULTIPLE LINEAR REGRESSION WITH QUALITATIVE
DEPENDENT VARIABLES

] formulate and interpret a logistic regression model

A qualitative dependent variable (categorical dependent variable) is an outcome
variable describing data that fit into categories. For example, to predict whether a
company will go bankrupt or not, we need a qualitative dependent variable (bankrupt
or not bankrupt) and company financial performance data (e.g., return on equity,
debt-to-equity ratio, or debt rating) as independent variables. In this example, the
bankrupt or not bankrupt qualitative dependent variable is binary, but a dependent
variable that falls into more than two categories is also possible.
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In contrast to a linear regression, the dependent variable here is not continuous but
discrete (binary). Estimating such a model using linear regression is not appropriate.
If we were to try to estimate this using the qualitative dependent variable, such as ¥
= 1 if bankrupt and 0 if not, in a linear model with three independent variables, then
we would be estimating a linear probability model:

Y;=bo + b1 Xy; + byXy; + b3 X5, t g (6)

The problem with this form is that the predicted value of the dependent variable
could be greater than 1 or less than 0, depending on the estimated coefficients b; and
the value of observed independent variables. Generating predicted values above 1.0
or below 0 would be invalid, because the probability of bankruptcy (or of anything)
cannot be greater than 1.0 or less than 0. Moreover, linear regression assumes the
relationship between the probability of bankruptcy and each financial variable is linear
over the range of the financial variable, which might be unrealistic. For example, one
can reasonably expect that the probability of bankruptcy and the debt-to-equity ratio
are not linearly related for very low or high levels of that variable.

To address these issues, we apply a non-linear transformation to the probability
of bankruptcy and relate the transformed probabilities linearly to the independent
variables. The most commonly used transformation is the logistic transformation.
Exhibit 14 shows the linear probability model (Panel A) and logistic regression model
(Panel B), where the logit model’s non-linear function takes on a sigmoidal shape and
is approximately linear except when probability estimates are close to zero or one.

Exhibit 14: Linear Probability Model versus Logistic Regression Model

Panel A. Linear Probability Model
Probability (Y=1)

Panel B. Logit Model
Probability (Y=1)

A A
7
7

7
Tre e @ o000 000 o Tre e @ 00 000 O
7/

Let P be the probability of bankruptcy or, generally, that a condition is fulfilled or an
event happens. The logistic transformation is
P

n(£5). ™)
The ratio (%) is a ratio of probabilities—the probability that the event of interest
happens (P) divided by the probability that it does not happen (1 — P), with the ratio
representing the odds of an event happening.

For example, if the probability of a company going bankrupt is 0.75 and P/(1 — P)
is 0.75/(1 - 0.75) = 3, the odds of bankruptcy are 3 to 1. This implies that the prob-
ability of bankruptcy is three times as large as the probability of the company not
going bankrupt. The natural logarithm (In) of the odds of an event happening is the
log odds, which is also known as the logit function.
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Logistic regression (logit) uses the logistic transformation of the event probability

(P) into the log odds, In(%), as the dependent variable:

P

Once the log odds are estimated, the event probability can be derived as

1

P = 1+exp[—(bg+ by X| + by Xy + b3 X3)]| ©

Logistic regression assumes a logistic distribution for the error term; the distribution’s
shape is similar to the normal distribution but with fatter tails.

Logistic regression coefficients are typically estimated using the maximum like-
lihood estimation (MLE) method rather than by least squares. The MLE method
estimates logistic regression coefficients that make it most likely that the choices in the
sample would occur by maximizing the likelihood function for the data. For logistic
regression, the probability distribution used to construct the likelihood function for
the data is the binomial distribution because each outcome is binary.

The prediction is binary (0 or 1), and the logistic regression function produces
the probability (P) that the outcome is 1. MLE estimates of the intercept and slope
coeflicients in the logistic regression are the values that make the data in the regression
sample “most likely” and are derived via statistical software. Notably, a hypothesis
test that a logit regression coefficient is significantly different from zero is similar to
the test in OLS regression.

For logistic regression, most statistical software packages produce the log-likelihood,
a chi-square-distributed test statistic. The performance of a logit model in classifying
the dependent variable (as 0 or 1) may be evaluated by examining the p-value of this
test statistic versus selected significance levels.

Logistic regression does not have an equivalent measure to R? because it cannot
be fitted using least squares. Pseudo-R? has been proposed to capture the explained
variation in a logistic regression and is generated in standard software output. The
pseudo-R? must be interpreted with care because it can only be used to compare
different specifications of the same model (not models based on different datasets).

Determining the marginal effect of a change in a variable in the logistic model is
not as straightforward as in a regression model. Unlike the linear OLS regression, a
logistic regression is non-linear and the interpretation of the estimates for a logistic
regression depends not only on the estimate for the specific variable estimate but also
on the level of the other variable estimates. The non-linear nature of the relationship
in the logistic regression estimate depicts the marginal contribution of each variable
estimate to the slope of the probability curve. That is why the impact of a one-unit
incremental change of an independent variable on the probability of ¥ = 1 depends
on the level of all the other independent variables.

In a logistic regression, the change in the probability for a given change in a variable
is the slope of the probability curve. The slope can be expressed as the derivative of
probability. That probability contains both an exponential function and the derivative
of that exponential function. The derivative is the exponential function itself multiplied
by the derivative of the contents of the exponential function. Effectively in a logistic
model, the value of the derivative changes depending on the slope and its relative
position. In the linear probability model, however, the derivative is a constant; thus,
the slope is constant and the marginal effect is a constant.

In Exhibit 15, it is clear that the impact of a one-unit change in X; on P(Y = 1)
will depend on the overall value of (1/9\0 + Ele + EZXZ + l/o\ngs . When

(1/9\0 + 51X1 + 1/9\2X2 + 1,9\3X3) is very small or very large for an observation, the impact

of a one-unit change in X; on P(Y = 1) will be small because the slope of P(Y = 1) is
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close to zero. However, when (50 + 51 X+ ZJ\ZXZ + ZJ\SXB) is near the inflection point,

P(Y =1) =0.5, a one-unit change in X; will have a larger impact on P(Y = 1), since the
slope of P(Y = 1) is large.

Exhibit 15: Fitted Logistic Regression

A
P(y =1|x) 0.5

60 + B,X, + 62X2 + .. Bka

One way to estimate this marginal effect of an independent variable is to find the
marginal effect for the “average” company/investment/observation. This process uses
the mean value in the dataset for each of the X/’s, calculates the probability using these
mean values, and then calculates the probability again using the mean values for all
variables except the independent variable of interest, which is increased from its mean
value by one unit. This provides an estimate of the marginal effect of a change in the
chosen independent variable on P(Y = 1). Most software programs have an option to
conduct this analysis. For instance in Python, “sklearn, get margeff” can be
used, and in R, in the margins package, “margins,” can be used.

It is equally reasonable to examine the marginal effect for a particular observation—
may it be associated with a company, an investment, or any other relevant observation—
by first specifying the observation values and using these in the calculations outlined
previously to calculate the marginal effect of the chosen variable based on its charac-
teristics. Then this result provides an estimate of the marginal probability: how much
the probability of the event changes should one or more of its characteristics change.
Effectively, this approach provides a sensitivity analysis to incremental changes.

The likelihood ratio (LR) test is a method to assess the fit of logistic regression
models and is based on the log-likelihood metric that describes the fit to the data.
The LR test statistic is

LR = -2 x (Log-likelihood restricted model — Log-likelihood unrestricted model).

The test is similar to the joint F-test of hypotheses used in least squares multiple
regression (discussed in an earlier learning module) in that it compares the fit of the
restricted and unrestricted models; however, it uses the log-likelihoods of each model.
The LR test is distributed as chi-squared with g degrees of freedom (i.e., number of
restrictions).
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Note the log-likelihood metric is always negative, so higher values (closer to 0) indi-
cate a better-fitting model. Importantly, unlike adjusted R? (or R?), the log-likelihood
metric for a given model is not meaningful by itself but is useful when comparing
regression models that have the same dependent variable. Most statistical software
produces the log-likelihood metric for the model being estimated, as well as the
log-likelihood metric for the intercept-only model (typically designated as LL-Null).

As with the joint F-statistic to compare nested models, the null hypothesis for the
LR test is that the smaller, restricted model is the better model. For example, if we
compare the unrestricted Model A,

11'1(%) = bo + b1X1 + b2X2 + b3X3 + &,
to Model B, with restrictions b, = b3 = 0,
In(t£5) = bo+b1x; +e,

then the null hypothesis is Hy: by = b3 = 0 and the alternative hypothesis is that
at least one of the coeflicients is different from zero.

Here, the LR test is a joint test of the restricted coefficients. Rejecting the null
hypothesis is a rejection of the smaller, restricted model in favor of the larger, unre-
stricted model. Finally, the LR test performs best when applied to large samples.

Logistic regression does not have an equivalent measure to R? because it cannot
be fitted using least squares. Pseudo-R? has been proposed to capture the explained
variation in a logistic regression and is generated in standard software output. The
pseudo-R? must be interpreted with care because it can be used only to compare
different specifications of the same model (not models based on different datasets).

KNOWLEDGE CHECK y

You are assigned to examine the propensity of companies to repurchase
their shares. For a sample of 500 companies, you have identified those
that repurchased shares (Repurchase = 1) and those that did not (Repurchase
= 0). You also collected company data for the year prior to the repurchase,
including cash-to-total-assets ratio (CASH), debt-to-equity ratio (DE), and net
profit margin (NPM), and estimated the following logistic regression:

Repurchase; = by + b{CASH; + b,DE; + bsNPM,; + ;.

Your regression results are shown in Exhibit 16.

Panel A Logistic Regression Results

Dep. Variable Repurchase No. Observations 500
Model: Logit Df Residuals 496
Method: MLE Df Model 3
Pseudo-R? 0.0271
Log-Likelihood —-304.20
Converged: TRUE LL-Null -312.68

Covariance Type: Non-Robust LLR-P-Value 0.0007
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95% CI
Coefficient Std. Error z-Stat. P-Value Lower Upper
Intercept -0.4738 0.196 -2.415 0.016 —0.858 —-0.089
CASH -0.9118 1.154 -0.790 0.430 -3.174 1.351
DE -0.3186 0.133 -2.396 0.017 -0.579 -0.058
NPM 0.9407 0.417 2.255 0.024 0.123 1.758
Panel B Statistics of Independent Variables
Standard
Independent Variable Median Mean Deviation
CASH 0.0515 0.083 0.0894
DE 0.8585 0.9182 0.7638
NPM 0.0775 -0.0535 1.4592

In the weekly research team meeting, the research director asks you to
explain your logistic regression model and assess how the model fits the data.

1. Interpret the logit regression intercept.
Solution:
The intercept of —0.4738 is the log odds of the probability of being a share
repurchaser if CASH, DE, and NPM are all zero. The odds are e~04738 =
0.6226, and the probability (P) = 0.6226/(1 + 0.6226) = 0.3837, or 38.37%.
This is the probability not being captured by the independent variables in
the logistic regression equation.

2. Estimate the marginal effect of each independent variable in explaining
companies’ propensity to repurchase shares.
Solution:
Starting with the equation for the probability to repurchase shares,

1

P =T [~(bo + b1 X, + by Xy + b3 X5)]7

we use the values of the coefficients from the logistic equation result and
the mean, or average values of the independent variables, to find the initial
average probability of repurchasing shares:

_ 1
T 1 +exp{~[-0.4738 + (=0.9118)(0.0830) + (0.9407)(—0.0535) + (—0.3186)(0.9182)]}°

P =29.06%.

This implies that for the average firm, there is a 29.06% probability of share
repurchase.

Now, for each independent variable, let us increase it by 1%, or 0.01, while
holding the others constant and see the marginal impact to probability of a
share buyback.

CASH:

We increase the CASH variable by 1%, from 0.083 to 0.093, and calculate the
new probability of share buyback:

_ 1
T 1+ exp{—[-0.4738 + (=0.9118)(0.0930) + (0.9407)(—0.0535) + (—0.3186)(0.9182)]} "
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P =28.87%.

Therefore, the marginal impact of increasing the CASH variable by 1% and
holding all the other variables constant is a change in the probability of a
share buyback of 28.87% — 29.06% = —0.19%; differently put, increasing the
CASH variable by 1% decreases the probability of a buyback by 0.19%.
NPM:

We increase the NPM variable by 1%, from —0.0535 to —0.0435, and calcu-
late the new probability of a share buyback:

_ 1
1+ exp{—[—0.4738 + (—0.9118)(0.0830) + (0.9407)(—0.0435) + (-=0.3186)(0.9182)1} *

P =29.26%

Therefore, the marginal impact of increasing the NPM variable by 1% is an
increase in the probability of a share buyback of 29.26% - 29.06% = 0.20%.
DE:

We increase the DE variable by 1%, from 0.9182 to 0.9282, and calculate the
new probability of a share buyback:

_ 1
1 +exp{—[0.4738 + (~0.9118)(0.0830) + (0.9407)(—0.0535) + (—0.3186)(0.9282)]}°

P =29.00%.

Therefore, the marginal impact of increasing the NPM variable by 1%,
rounded to two decimal places, is a decrease in the probability of a share
buyback of 29.00% — 29.06% = —0.07%; differently put, it increases the prob-
ability of a share buyback.

3. Evaluate how your logistic regression model fits the data using the LR test
and an intercept-only model as the restricted model.

Solution:

The log-likelihood statistics from the logistic regression results are as

follows:
Model Log-likelihood
Restricted: Intercept only -312.68
Unrestricted: Intercept, CASH, DE, NPM —304.20

The LR test is a test of the hypothesis for the restrictions, using the standard
six-step hypothesis test process, as follows:

Step 1 State the hypotheses. Hy: bycasny = bape) = b3npm) = 05 Hy: at
least one b; = 0.
Step 2 Identify the appropriate  Likelihood ratio (LR) = -2 (Log-likelihood
test statistic. restricted model — Log-likelihood unre-
stricted model), and degrees of freedom = 3.

Step 3 Specify the level of a=5%.
significance.

Step 4 State the decision rule.  Critical chi-square value = 7.8150, where df =
3 and a = 5%, then reject the null hypothesis
if the calculated LR is greater than 7.8150.
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Step 5 Calculate the test LR = -2(-312.68 — —304.20) = 16.960.
statistic.
Step 6 Make a decision. Reject the null hypothesis because the calcu-

lated chi-square statistic is greater than the
critical chi-square value. We conclude that
the unrestricted model fits the data better
than the restricted model.

Based on the LR test, your conclusion should be that the unrestricted model
fits the data better than the intercept-only model, indicating that the three
explanatory variables are jointly significant. Note the regression results
show the LR test statistic’s P-value is 0.0007. Moreover, individual (z-statis-
tic) tests of the coefficients show that DE and NPM are each significant at
the 5% level.

Code: Logistic Regression

In Python:

import pandas as pd
from statsmodels.formula.api import logit
df = pd.read csv(“data.csv”)
formula = ('Repurchase ~ CASH + DE + NPM')
model=logit(formula=formula,data=df).fit(method="newton')
print(model.summary())
InR:

df <- read.csv(‘data.csv')

logit <- glm(Repurchase ~ CASH+DE+NPM,
family=binomial(link="1logit”),data=df)

summary(logit)

Logistic regression plays a key role in binary classification problems in machine
learning and neural networks. For example, to enhance fundamental investment anal-
ysis, logistic regression can be applied with natural language processing techniques to
classify sentiment of financial texts, such as press releases. The dependent variable is
sentiment class: positive sentiment (1) and negative sentiment (0), which signal “good”
or “bad” corporate news, respectively. The independent variables are tokens (key words
or phrases) from financial text, such as company annual reports, earnings releases,
and corporate announcements. The logistic regression model is trained to recognize
and classify these tokens into good or bad news and is then tested and deployed to
enhance investment valuation models.
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PRACTICE PROBLEMS

The following information relates to questions
1-5

The chief investment officer asks you to analyze one of the firm’s portfolios to
identify influential outliers that might be skewing regression results of its return
drivers. For each observation, you calculate leverage, the studentized residual,
and Cook’s D. There are 96 observations and two independent variables (k = 2),
and the critical ¢-statistic is 2.63 at a 1% significance level. Partial results of your
calculations are shown in Exhibit 1.

Exhibit 1: Regression Data for Detecting Influential Observations

h;; Studentized Residual Cook’s D
Observation 1 0.043 2.784 0.161
Observation 2 0.022 -0.103 0.000
Observation 3 0.036 -0.731 0.010
Observation 4 0.059 -0.122 0.000
Observation 5 0.011 —-0.660 0.002
Observation 6 0.101 —-2.906 0.347
Observation 45 0.042 2.117 0.094
Observation 46 0.013 0.172 0.000
Observation 47 0.015 -0.672 0.003
Observation 48 0.012 -0.734 0.003
Observation 49 0.064 0.475 0.008
Observation 50 0.141 -2.788 0.594
Observation 51 0.011 1.679 0.016
Observation 52 0.023 -1.218 0.017
Observation 91 0.035 -1.260 0.029
Observation 92 0.025 3.001 0.106
Observation 93 0.017 1.483 0.019
Observation 94 0.097 -0.172 0.001
Observation 95 0.017 0.046 0.000
Observation 96 0.011 1.819 0.019

Finally, you are tasked with investigating whether there is any monthly seasonali-
ty in the excess portfolio returns. You construct a regression model using dum-
my variables for the months; your regression statistics and ANOVA results are
shown in Exhibit 2.
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Exhibit 2: Analysis of Monthly Seasonality of Excess Portfolio Returns

Regression Statistics

Multiple R 0.321
R-Squared 0.103
Adjusted R-Squared —-0.014
Standard Error 8.100
Observations 96.000
ANOVA
df SS MS F Signif. F
Regression 11 634.679 57.698 0.879 0.563
Residual 84 5511.369 65.612
Total 95 6146.048
Coeff. Std. Error t-Stat. P-Value
Intercept 1.263 2.864 0.441 0.660
Jan 1.311 4.050 0.324 0.747
Feb -3.756 4.050 -0.927 0.356
Mar 3.495 4.050 0.863 0.391
Apr 0.174 4.050 0.043 0.966
May 0.714 4.050 0.176 0.861
Jun 0.944 4.050 0.233 0.816
Jul -0.571 4.050 -0.141 0.888
Aug —-0.445 4.050 -0.110 0.913
Sep -1.744 4.050 -0.431 0.668
Oct 4.261 4.050 1.052 0.296
Nov -5.311 4.050 -1.311 0.193

1. Determine and justify the potentially influential observation(s) in Exhibit 1 using
the leverage measure.

A. 50, because it has the highest leverage, 0.141

B. Observations 6 and 50, because their leverage exceeds 0.100

k+1)

(. Observations 6, 50, and 94, because their leverage exceeds 3( i

2. Determine and justify the potentially influential observations in Exhibit 1 using
the studentized residuals measure.

A. Observations 1 and 92, because the values of their studentized residuals
exceed 2.63

B. Observations 1, 6, 50, and 92, because the absolute values of their studen-
tized residuals exceed 2.63

C. All the observations shown except Observation 95, because the absolute
value of its studentized residual is less than 0.094
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3. Determine and justify the potentially influential observations in Exhibit 1 using
the criteria for Cook’s D involving k and #.

A. Observations 6 and 50, because their Cook’s D values exceed 0.144
B. Observations 1, 6, and 50, because their Cook’s D values exceed 0.144

C. Observations 1, 6, 50, and 92, because their Cook’s D values exceed 0.100

4. Identify both the base month and the coefficient that represents its returns in
Exhibit 2.

A. December is the base month, and the intercept coefficient represents its
returns.

B. November is the base month, and the intercept coefficient represents its
returns.

C. December is the base month, and the average of the coefficients for the
other 11 months represents its returns.

5. Determine using Exhibit 2 which one of the following statements is most likely to
be correct. Monthly seasonality in the firm’s portfolio is:

A. highly likely.
B. highly unlikely.

(. not able to be determined from the given data.

The following information relates to questions
6-13

Your second-round interview for the Junior Quantitative Analyst position went
well, and the next day, you receive an email from the investment firm congratu-
lating you for making it this far. You are one of four remaining candidates from
more than 100 who applied for the position.

Because the position involves quantitative analysis, you are given an assignment
to complete within 72 hours. You are provided a dataset and tasked with creating
two logistic regression models to predict whether an exchange-traded fund (ETF)
will be a “winning” fund—that is, whether the ETF’s monthly return will be one
standard deviation or more above the mean monthly return across all ETFs in the
dataset or whether the ETF will be an “average” fund.

The variables in the dataset are as follows:

Variable Description
net_assets Net assets of ETF in US dollars
2 small_fund Dummy variable = 1 if a small-size fund and 0 otherwise,

with large-size fund as the base

3 medium_fund Dummy variable =1 if a medium-size fund and 0 otherwise,
with large-size fund as the base

4 portfolio_stocks Percentage of portfolio invested in stocks (1 — 100)
5 portfolio_bonds Percentage of portfolio invested in bonds (1 — 100)
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Variable Description

6 price_earnings Ratio of price per share to earnings per share

7 price_book Ratio of price per share to book value per share

8 price_sales Ratio of price per share to sales per share

9 price_cashflow Ratio of price per share to cash flow per share

10 label (dependent 1 = winning fund, an ETF whose monthly return is one

variable) standard deviation or more above the mean monthly

return across all ETFs in the dataset, and 0 = average fund,
otherwise

For the first logistic regression, you are asked to use all the independent variables,
except for the fund size dummy variables (small_fund and medium_fund). For
the second logistic regression, you are asked to use all the independent variables
except the fund size continuous variable (net assets).

You use a standard software package (in Python or R) to develop the logistic
regression models. Your results are as follows:

Logistic Regression 1

Logistic Regression Results

Model: Logit Pseudo-R%: 0.057
Dependent Variable: label
No. Observations: 1,594 Log-Likelihood: —451.66
Df Model: 7 LL-Null: -478.86
Df Residuals: 1,586 LLR P-Value: 1.97E-9
No. Iterations: 10
P-Value

Coefficient Std. Err. z-Statistic > |z [0.025 0.975]
Intercept —-2.0350 0.5221 -3.8979 0.0001 -3.0583  -1.0118
net_assets -0.7667 1.3571 -0.5649 0.5721 -3.4265 1.8932
portfolio_stocks —-0.0089 0.0051 -1.7550 0.0793 -0.0188 0.0010
portfolio_bonds -0.1113 0.0729 -1.5263 0.1269 —-0.2543 0.0316
price_earnings 0.0292 0.0200 1.4647 0.1430 —-0.0099 0.0683
price_book -0.0390 0.1029 -0.3791 0.7046 -0.2407 0.1627
price_sales 0.3432 0.0777 4.4160 0.0000 0.1909 0.4956
price_cashflow -0.0502 0.0363 —-1.3805 0.1674 -0.1214 0.0211

Logistic Regression 2

Logistic Regression Results

Model: Logit Pseudo-R%: 0.059
Dependent Variable: label
No. Observations: 1,594 Log-Likelihood: —-450.4
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Logistic Regression Results

Df Model: 8 LL-Null: —478.86
Df Residuals: 1,585 LLR P-Value: 1.87E-09
No. Iterations: 10
P-Value

Coefficient  Std.Err. z-Statistic > |z| [0.025 0.975]
Intercept -1.9589 0.5254 -3.7283 0.0002 —-2.9886 -0.9291
small_fund —0.4794 0.3719 —1.2888 0.1975 -1.2083 0.2496
medium_fund -0.3509 0.2348 —1.4948 0.1350 -0.8111 0.1092
portfolio_stocks -0.0092 0.0051 —1.8099 0.0703 -0.0191 0.0008
portfolio_bonds -0.1121 0.0727  -1.5433  0.1228  -0.2546 0.0303
price_earnings 0.0389 0.0211 1.8467  0.0648  -0.0024 0.0802
price_book -0.0803 0.1068  -0.7519  0.4521  -0.2897 0.1291
price_sales 0.3453 0.0796 4.3362 0.0000 0.1892 0.5014
price_cashflow —-0.0510 0.0376 -1.3573 0.1747 -0.1247 0.0227

6. Identify which one of the following choices is most likely to be correct: Logistic
regression is the appropriate regression method for your assignment because the:

A. independent variables include dummy variables for small- and medium-size
funds.

B. dependent variable is binary rather than continuous.

(. dependent variable is not continuous and the independent variables include
dummy variables for small- and medium-size funds.

7. ldentify which one of the following statements best describes the interpretation
of an independent variable’s slope coefficient in a logistic regression model: The
slope coefficient is the change in the:

A. log odds that the event happens per unit change in the independent vari-
able, while all other independent variables increase by one unit.

B. odds that the event happens per unit change in the independent variable,
holding all other independent variables constant.

C. log odds that the event happens per unit change in the independent vari-
able, holding all other independent variables constant.

8. Determine which one of the following statements is true. The intercept in these
logistic regressions is interpreted as the:

A. probability of the ETF being a winning fund if all independent variables are
one.

B. log odds of the ETF being a winning fund if all independent variables are
zero.

C. log odds of the ETF being an average fund if all independent variables are
zero.

9. Based on the output for Logistic Regression 1 in the table below, which of the
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following alternatives is closest to the probability that any ETF will be a winning

fund?

A. 6.75%

B. 5.96%

¢ 5.67%
Independent Variables Median Mean Standard Deviation
net_assets ($100B) 0.1687 0.2911 3.5255
portfolio_stocks 99.6400 92.9093 19.6162
portfolio_bonds 0 2.3068 11.9835
price_earnings 14.4750 15.1743 5.4087
price_book 1.7800 2.0711 1.1113
price_sales 1.2600 1.6060 1.1877
price_cashflow 7.0300 7.6489 3.7768

10. Based on the output for Logistic Regression 1 and the information in the table
above, which of the following alternatives is closest to the change in the probabil-
ity that an ETF will be a winning fund if its price-to-earnings ratio increases by
one unit and all else stays constant?

A. 17.0%
B. 0.16%
¢ 1.5%

11. Based on the output from with Logistic Regression 1, how will the change in the
probability that an ETF will be a winning fund increase if one of the other inde-
pendent variable values, except for net_assets, is decreased by one unit, holding
all else constant?

A. The probability will increase, but not as much as with the price-to-earnings
increasing by one unit.

B. The probability will increase more than the price-to-earnings increasing by
one unit.

(. The probability will not increase.

12. Identify which one of the following statements about the logistic regression mod-
el fit is most likely to be correct: Based on the log-likelihood criteria:

A. Model 2 has a better fit because it has a higher log-likelihood value.
B. Model 2 has a better fit because it has a lower log-likelihood value.

(. Model 1 has a better fit because it has a higher log-likelihood value.

13. Determine, using only the statistically significant variable estimate(s) in Logis-
tic Regression 2 and the information provided below, which of the following is
closest to the probability of the Alpha ETF being a winning fund and whether it
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would be classified as a winning fund.
Alpha ETF variable values:

= small_fund = 0.

= medium_fund = 0.

= portfolio_stocks = 99.3%.
= portfolio_bonds = 0.7%.
= price_earnings = 25.0.

= price_book =1.1.

= price_sales = 4.0.

= price_cashflow = 5.7.

Use a significance level of 5% and a probability threshold for being a winner of
65%.

A. 27.4%, and the Alpha ETF is not classified as a winning fund
B. 36.0%, and the Alpha ETF is not classified as a winning fund

(. 82.2%, and the Alpha ETF is classified as a winning fund
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SOLUTIONS

1. Cis correct. The rule of thumb for the leverage measure is that if it exceeds 3 (k ;’1 1 ) ,

where k is the number of independent variables, then it is a potentially influ-
ential observation. Since 7 = 96 and k = 2, then 3 = (221) = 0.09375. Three
observations exceed this value: 6, 50, and 94. So, they are potentially influential
observations.

2. Bis correct. For the studentized residuals measure, the critical ¢-value is 2.63. So,
any observation with a studentized residual whose absolute value exceeds 2.63 is
a potentially influential observation. The studentized residuals for Observations
1, 6, 50, and 92 have absolute values exceeding 2.63; therefore, they are potential-
ly influential observations.

3. Bis correct. The required criteria for using Cook’s D to identify influential obser-
vations is

2
k
Di > o

which implies the ith observation is highly likely to be an influential data point.
Sincen =96 and k = 2,

Ve - 2\/% — 0.144.

Observations 1, 6, and 50 have a Cook’s D that exceeds 0.144, so they are highly
likely to be influential observations.

4. Ais correct. December is the base month, and the intercept coefficient represents
its returns. We use 11 dummy variables to represent the returns for each month
from January through November. December results are measured when each of
these dummy variables equals zero, leaving the intercept coefficient to represent
December returns.

5. B is correct. Monthly seasonality in the firm’s portfolio is highly unlikely. The
variance explained by the model (R-squared) is only 10.3%, and after adjusting for
the number of independent variables (adjusted R-squared), it becomes negative.
Also, the insignificant F-statistic indicates a 56.3% chance that all variable coef-
ficients are zero. Finally, ¢-statistics and associated p-values indicate that all the
variable coefficients are insignificant (i.e., not significantly different from zero).
Consequently, monthly seasonality is highly unlikely to exist in this portfolio.

6. Bis correct. Logistic regression is the appropriate regression method because the
dependent variable is binary rather than continuous.

7. Cis correct. An independent variable’s slope coefficient in a logistic regression
model is the change in the log odds that the event happens per unit change in the
independent variable, holding all other independent variables constant.

8. Bis correct. The intercept in these logistic regressions is interpreted as the log
odds of the ETF being a winning fund if all independent variables are zero.

9. Cis correct. We calculate the probability that an that an ETF will be a winning
fund by using the variable estimates and the average values of the independent
variables.

Using the equation for the probability, where we have seven independent
variables,
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1

P=1vep [Fbo + b1 X) + by Xy + ... by Xo]°

Using the mean values and coefficient estimates of the independent variables, the
probability of the average ETF being a winner is

1

P= —2.0350 + (=0.7667)(0.2911) + (—=0.0089)(92.9093)+
I +expq —[(—0.1113)(2.3068) + (0.0292)(15.1743) + (0.0390)(2.071 D+
(0.3432)(1.6060) + (—0.0502)(7.6489)
P=5.67%.

This implies that for an ETF with the average values of the independent variables,
there is a 5.67% probability that it will be a winning ETFE.

10. B is correct. Keeping all the independent variables’ average values fixed and in-
creasing the P/E value by 1, from 15.1743 to 16.1743, yields the new probability.

— 1
p= —2.0350 + (—=0.7667)(0.2911) + (—0.0089)(92.9093)+
1 +expy — +

(=0.1113)(2.3068) + (0.0292)(16.1743) + (—0.0390)(2.0711)
(0.3432)(1.6060) + (=0.0502)(7.6489)

P =5.82%.

From the previous question, we know that the marginal probability is 5.67%.
Therefore, the marginal increase in the probability of an average ETF being a win-
ner went up 5.82% — 5.67% = 0.15%. A one-unit change in the P/E of an ETF will
increase the probability of it becoming a winning fund by 0.15%, and therefore, B
is the closest answer.

11. B is correct. In the previous question, the price-to-earnings variable value and
the coefficient are both positive. By increasing the variable value incrementally by
one, we are increasing the overall positive value of the series of items in the exp
function. Therefore, if we are reducing the product of a coefficient value pair that
is negative, we are increasing the overall value of the series of items in the exp
function.

The next step is to look to see how many negative coefficient and value prod-
ucts are in the series of items in the exp function, then calculate the coeffi-
cient value product, and compare them to the coefficient value product for the
price-to-earnings variable.

Avg. Avg.
Avg. Initial Value Value + New

Variable Coeff. Value Product Change Change Product Increase
portfolio_ -0.0089 92.9093 -0.8269 -1 91.9093 -0.8180 0.0089
stocks coeff

portfolio_ -0.1113  2.3068 -0.2567 -1 1.3068 -0.1454 0.1113
bonds coeff

price_earnings 0.0292 15.1743 0.4431 1 16.1743 0.4723  0.0292
coeff

price_book -0.0390 2.0711 -0.0808 -1 1.0711  -0.0418 0.0390
coeff

price_cashflow -0.0502 7.6489 -0.3840 -1 6.6489 -0.3338  0.0502
coeff

Therefore, as the portfolio_bonds variable increases by one unit, it results in
a larger increase in profit than the price-to-earnings variable (0.1113 versus
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13.

Extensions of Multiple Regression

0.0292), since its product is larger than the price-to-earnings product increase by
one unit.

A is correct. Model 2 has a better fit because it has a higher (less negative)
log-likelihood value, —450.40 versus —451.66, compared to Model 1.

B is correct. Besides the significant intercept, the only significant (at the 5% level)
variable in Logistic Regression 2 is price_sales. Using these two factors, the prob-
ability of this ETF being a winning fund is calculated to be 35.95%, as follows:

1
1 + exp[—(—1.9589) + (0.3453)(4.0)]"

Probability of being a winning fund = 0.3595 =

Because this probability is well below the 65% threshold for being a winner, the
Alpha ETF would not be classified as a winning fund.
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LEARNING OUTCOMES

Mastery

The candidate should be able to:

[

[

0O

0O

calculate and evaluate the predicted trend value for a time series,
modeled as either a linear trend or a log-linear trend, given the
estimated trend coefficients

describe factors that determine whether a linear or a log-linear trend
should be used with a particular time series and evaluate limitations
of trend models

explain the requirement for a time series to be covariance stationary
and describe the significance of a series that is not stationary

describe the structure of an autoregressive (AR) model of order
p and calculate one- and two-period-ahead forecasts given the
estimated coefficients

explain how autocorrelations of the residuals can be used to test
whether the autoregressive model fits the time series

explain mean reversion and calculate a mean-reverting level

contrast in-sample and out-of-sample forecasts and compare the
forecasting accuracy of different time-series models based on the
root mean squared error criterion

explain the instability of coefficients of time-series models

describe characteristics of random walk processes and contrast them
to covariance stationary processes

describe implications of unit roots for time-series analysis, explain
when unit roots are likely to occur and how to test for them, and
demonstrate how a time series with a unit root can be transformed
so it can be analyzed with an AR model

describe the steps of the unit root test for nonstationarity and
explain the relation of the test to autoregressive time-series models
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LEARNING OUTCOMES

Mastery | The candidate should be able to:

] explain how to test and correct for seasonality in a time-series model
and calculate and interpret a forecasted value using an AR model
with a seasonal lag

] explain autoregressive conditional heteroskedasticity (ARCH) and
describe how ARCH models can be applied to predict the variance of
a time series

] explain how time-series variables should be analyzed for
nonstationarity and/or cointegration before use in a linear regression
] determine an appropriate time-series model to analyze a given
investment problem and justify that choice

INTRODUCTION

As financial analysts, we often use time-series data to make investment decisions. A
time series is a set of observations on a variable’s outcomes in different time periods:
the quarterly sales for a particular company during the past five years, for example, or
the daily returns on a traded security. In this reading, we explore the two chief uses
of time-series models: to explain the past and to predict the future of a time series.
We also discuss how to estimate time-series models, and we examine how a model
describing a particular time series can change over time. The following two examples
illustrate the kinds of questions we might want to ask about time series.

Suppose it is the beginning of 2020 and we are managing a US-based investment
portfolio that includes Swiss stocks. Because the value of this portfolio would decrease
if the Swiss franc depreciates with respect to the dollar, and vice versa, holding all else
constant, we are considering whether to hedge the portfolio’s exposure to changes
in the value of the franc. To help us in making this decision, we decide to model the
time series of the franc/dollar exchange rate. Exhibit 1 shows monthly data on the
franc/dollar exchange rate. The data are monthly averages of daily exchange rates. Has
the exchange rate been more stable since 1987 than it was in previous years? Has the
exchange rate shown a long-term trend? How can we best use past exchange rates to
predict future exchange rates?
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Exhibit 1: Swiss Franc/US Dollar Exchange Rate, Monthly Average of Daily
Data
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Source: Board of Governors of the Federal Reserve System.

As another example, suppose it is the beginning of 2020. We cover retail stores for
a sell-side firm and want to predict retail sales for the coming year. Exhibit 2 shows
monthly data on US retail sales. The data are not seasonally adjusted, hence the spikes
around the holiday season at the turn of each year. Because the reported sales in the
stores’ financial statements are not seasonally adjusted, we model seasonally unadjusted
retail sales. How can we model the trend in retail sales? How can we adjust for the
extreme seasonality reflected in the peaks and troughs occurring at regular intervals?
How can we best use past retail sales to predict future retail sales?

Exhibit 2: Monthly US Retail Sales

US Dollars (millions)
600,000

500,000 |
400,000
300,000 |
200,000

100,000

0 1 1 1 1 1 1 1 1
Jan/95 Oct/97 Jul/00 Apr/03 Jan/06 Oct/08 Jul/11 Apr/14 Jan/17

Source: US Department of Commerce, Census Bureau.
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Some fundamental questions arise in time-series analysis: How do we model trends?
How do we predict the future value of a time series based on its past values? How do
we model seasonality? How do we choose among time-series models? And how do
we model changes in the variance of time series over time? We address each of these
issues in this reading.

We first describe typical challenges in applying the linear regression model to
time-series data. We present linear and log-linear trend models, which describe, respec-
tively, the value and the natural log of the value of a time series as a linear function of
time. We then present autoregressive time-series models—which explain the current
value of a time series in terms of one or more lagged values of the series. Such models
are among the most commonly used in investments, and the section addresses many
related concepts and issues. We then turn our attention to random walks. Because
such time series are not covariance stationary, they cannot be modeled using autore-
gressive models unless they can be transformed into stationary series. We therefore
explore appropriate transformations and tests of stationarity. The subsequent sections
address moving-average time-series models and discuss the problem of seasonality
in time series and how to address it. We also cover autoregressive moving-average
models, a more complex alternative to autoregressive models. The last two topics are
modeling changing variance of the error term in a time series and the consequences
of regression of one time series on another when one or both time series may not be
covariance stationary.

Challenges of Working with Time Series

Throughout the reading, our objective will be to apply linear regression to a given
time series. Unfortunately, in working with time series, we often find that the assump-
tions of the linear regression model are not satisfied. To apply time-series analysis,
we need to assure ourselves that the linear regression model assumptions are met.
When those assumptions are not satisfied, in many cases we can transform the time
series or specify the regression model differently, so that the assumptions of the linear
regression model are met.

We can illustrate assumption difficulties in the context of a common time-series
model, an autoregressive model. Informally, an autoregressive model is one in which
the independent variable is a lagged (that is, past) value of the dependent variable,
such as the model %, = by + byx,_; + €; (we could also write the equation as y, = b
+ b1y,_1 + €,). Specific problems that we often encounter in dealing with time series
include the following:

= The residual errors are correlated instead of being uncorrelated. In the
calculated regression, the difference between x, and b + byx,_; is called
the residual error (g,). The linear regression assumes that this error term
is not correlated across observations. The violation of that assumption is
frequently more critical in terms of its consequences in the case of time-se-
ries models involving past values of the time series as independent variables
than for other models (such as cross-sectional models) in which the depen-
dent and independent variables are distinct. As we discussed in the reading
on multiple regression, in a regression in which the dependent and indepen-
dent variables are distinct, serial correlation of the errors in this model does
not affect the consistency of our estimates of intercept or slope coefficients.
By contrast, in an autoregressive time-series regression, such as x; = by +
byx;_1 + €, serial correlation in the error term causes estimates of the inter-
cept (by) and slope coefficient (b;) to be inconsistent.
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= The mean or variance of the time series changes over time. Regression
results are invalid if we estimate an autoregressive model for a time series
with mean or variance that changes over time.

Before we try to use time series for forecasting, we may need to transform the
time-series model so that it is well specified for linear regression. With this objective in
mind, you will observe that time-series analysis is relatively straightforward and logical.

LINEAR TREND MODELS

] calculate and evaluate the predicted trend value for a time series,
modeled as either a linear trend or a log-linear trend, given the
estimated trend coefficients

Estimating a trend in a time series and using that trend to predict future values of the
time series is the simplest method of forecasting. For example, we saw in Exhibit 2
that monthly US retail sales show a long-term pattern of upward movement—that is,
a trend. In this section, we examine two types of trends—linear trends and log-linear
trends—and discuss how to choose between them.

Linear Trend Models

The simplest type of trend is a linear trend, one in which the dependent variable
changes at a constant rate with time. If a time series, y,, has a linear trend, then we
can model the series using the following regression equation:

yi=bygtbit+e,t=1,2,...,7T, )
where
v, = the value of the time series at time ¢ (value of the dependent variable)
b, = the y-intercept term
b, = the slope coefficient
¢t = time, the independent or explanatory variable
g, = a random error term

In Equation 1, the trend line, b, + bt, predicts the value of the time series at time
t (where ¢ takes on a value of 1 in the first period of the sample and increases by 1 in
each subsequent period). Because the coefficient b, is the slope of the trend line, we
refer to b; as the trend coefficient. We can estimate the two coefficients, by and b,
using ordinary least squares, denoting the estimated coefficients as b oand b 1- Recall

that ordinary least squares is an estimation method based on the criterion of mini-
mizing the sum of a regression’s squared residuals.

Now we demonstrate how to use these estimates to predict the value of the time
series in a particular period. Recall that ¢ takes on a value of 1 in Period 1. Therefore,
the predicted or fitted value of y, in Period 1 is j; = 50 + l/;l (1) . Similarly, in a sub-

sequent period—say, the sixth period—the fitted value is 74 = b o+ b 1(6) . Now

suppose that we want to predict the value of the time series for a period outside the
sample—say, perlod T + 1. The predlcted value of y, for period T + 1 is
Vi1 = bo + bl(T+ 1) . For example, 1fb0 is 5.1 and bl is 2, then at £ = 5 the pre-
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dicted value of y5 is 15.1 and at ¢ = 6 the predicted value of yg is 17.1. Note that each
consecutive observation in this time series increases by b = 2, irrespective of the
level of the series in the previous period.

EXAMPLE 1

The Trend in the US Consumer Price Index

It is January 2020. As a fixed-income analyst in the trust department of a bank,
Lisette Miller is concerned about the future level of inflation and how it might
affect portfolio value. Therefore, she wants to predict future inflation rates. For
this purpose, she first needs to estimate the linear trend in inflation. To do so,
she uses the monthly US Consumer Price Index (CPI) inflation data, expressed
as an annual percentage rate, (1% is represented as 1.0) shown in Exhibit 3. The
data include 228 months from January 1995 through June 2019, and the model
to be estimated is y, = by + byt + €, t = 1, 2, . . ., 294. The table in Exhibit 4
shows the results of estimating this equation. With 294 observations and two
parameters, this model has 292 degrees of freedom. At the 0.05 significance
level, the critical value for a ¢-statistic is 1.97. The intercept (5 0= 2.7845) is

statistically significant because the value of the ¢-statistic for the coefficient is
well above the critical value. The trend coefficient is negative (b 1= —0.0037) g

suggesting a slightly declining trend in inflation during the sample time period.
However, the trend is not statistically significant because the absolute value of
the ¢-statistic for the coefficient is below the critical value. The estimated regres-
sion equation can be written as

y;=2.7845 — 0.0037¢.

Exhibit 3: Monthly CPI Inflation, Not Seasonally Adjusted
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Source: Bureau of Labor Statistics.

Exhibit 4: Estimating a Linear Trend in Inflation: Monthly

Observations, January 1995-June 2019

Regression Statistics

R? 0.0099
Standard error 3.1912
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Regression Statistics

Observations 294
Durbin—Watson 1.2145
Coefficient Standard Error t-Statistic
Intercept 2.7845 0.3732 7.4611
t (Trend) -0.0037 0.0022 -1.68

Source: US Bureau of Labor Statistics.

Because the trend line slope is estimated to be —0.0037, Miller concludes that
the linear trend model’s best estimate is that the annualized rate of inflation
declined at a rate of about 37 bps per month during the sample time period.
The decline is not statistically significantly different from zero.

In January 1995, the first month of the sample, the predicted value of inflation
is ¥ = 2.7845 - 0.0037(1) = 2.7808%. In June 2019, the 294th, or last, month
of the sample, the predicted value of inflation is 75,5 = 2.7845 — 0.0037(294) =
1.697%. Note, though, that these predicted values are for in-sample periods. A
comparison of these values with the actual values indicates how well Miller’s
model fits the data; however, a main purpose of the estimated model is to predict
the level of inflation for out-of-sample periods. For example, for June 2020 (12
months after the end of the sample), t = 294 + 12 = 306, and the predicted level
of inflation is 7394 = 2.7845 — 0.0037(306) = 1.6523%.

Exhibit 5 shows the inflation data along with the fitted trend. Consistent with
the negative but small and statistically insignificant trend coefficient, the fitted
trend line is slightly downward sloping. Note that inflation does not appear to
be above or below the trend line for a long period of time. No persistent differ-
ences exist between the trend and actual inflation. The residuals (actual minus
trend values) appear to be unpredictable and uncorrelated in time. Therefore,
using a linear trend line to model inflation rates from 1995 through 2019 does
not appear to violate the assumptions of the linear regression model. Note also
that the R? in this model is quite low, indicating great uncertainty in the infla-
tion forecasts from this model. In fact, the estimated model explains only 0.99%
of the variation in monthly inflation. Although linear trend models have their
uses, they are often inappropriate for economic data. Most economic time series
reflect trends with changing slopes and/or intercepts over time. The linear trend
model identifies the slope and intercept that provides the best linear fit for all
past data. The model’s deviation from the actual data can be greatest near the
end of a data series, which can compromise forecasting accuracy. Later in this
reading, we will examine whether we can build a better model of inflation than
a model that uses only a trend line.
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Exhibit 5: Monthly CPI Inflation with Trend
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Source: US Bureau of Labor Statistics.

LOG-LINEAR TREND MODELS

] calculate and evaluate the predicted trend value for a time series,
modeled as either a linear trend or a log-linear trend, given the
estimated trend coefficients

] describe factors that determine whether a linear or a log-linear trend
should be used with a particular time series and evaluate limitations
of trend models

Sometimes a linear trend does not correctly model the growth of a time series. In those
cases, we often find that fitting a linear trend to a time series leads to persistent rather
than uncorrelated errors. If the residuals from a linear trend model are persistent, then
we need to employ an alternative model satisfying the conditions of linear regression.
For financial time series, an important alternative to a linear trend is a log-linear
trend. Log-linear trends work well in fitting time series that have exponential growth.

Exponential growth means constant growth at a particular rate. For example,
annual growth at a constant rate of 5% is exponential growth. How does exponential
growth work? Suppose we describe a time series by the following equation:

y,=ebothit =1, 2, ., T )
Exponential growth is growth at a constant rate (ebl - 1) with continuous com-

pounding. For instance, consider values of the time series in two consecutive periods.
In Period 1, the time series has the value y; = ebotb1(1) | and in Period 2, it has the
value y, = eb0*21(2) The resulting ratio of the values of the time series in the first two
periods is y5/y; = (eb0+b1 (2)) / (eh0+b1 (1)) = e/1(), Generally, in any period ¢, the

time series has the value y, = e20*21®  In period ¢ + 1, the time series has the value
Y1 = ePotb1+D) The ratio of the values in the periods (¢ + 1) and ¢ is y,,1/y, =
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ebotb1 (1) 1obothy O — ¢b1 (1) Thys, the proportional rate of growth in the time series

over two consecutive periods is always the same: (y,,1 — ¥,)/9, = ¥;,1/v, - 1 = eb1 - 1.
For example, if we use annual periods and e?1 = 1.04 for a particular series, then that
series grows by 1.04 — 1 = 0.04, or 4% a year. Therefore, exponential growth is growth
at a constant rate. Continuous compounding is a mathematical convenience that allows
us to restate the equation in a form that is easy to estimate.

If we take the natural log of both sides of Equation 2, the result is the following
equation:

Iny,=by+bit,t=1,2,...,T.

Therefore, if a time series grows at an exponential rate, we can model the natural
log of that series using a linear trend (an exponential growth rate is a compound
growth rate with continuous compounding). Of course, no time series grows exactly
at a constant rate. Consequently, if we want to use a log-linear model, we must esti-
mate the following equation:

lnyt=b0+b1t+8t,t=1,2,...,T. (3)

Note that this equation is linear in the coefficients by and b;. In contrast to a linear
trend model, in which the predicted trend value of y, is b 5 + b ¢, the predicted trend

value of y, in a log-linear trend model is ebotb1t because e = Yy

Examining Equation 3, we see that a log-linear model predicts that In y, will increase
by b; from one time period to the next. The model predicts a constant growth rate
in y, of e1 — 1. For example, if b; = 0.05, then the predicted growth rate of y, in each
period is €%0% - 1 = 0.051271, or 5.13%. In contrast, the linear trend model (Equation
1) predicts that y, grows by a constant amount from one period to the next.

Example 2 illustrates the problem of nonrandom residuals in a linear trend model,
and Example 3 shows a log-linear regression fit to the same data.

EXAMPLE 2

A Linear Trend Regression for Quarterly Sales at Starbucks

In September 2019, technology analyst Ray Benedict wants to use Equation 1
to fit the data on quarterly sales for Starbucks Corporation shown in Exhibit 6.
Starbucks’ fiscal year ends in June. Benedict uses 74 observations on Starbucks’
sales from the second quarter of fiscal year 2001 (starting in April 2001) to the
third quarter of fiscal year 2019 (ending in June 2019) to estimate the linear
trend regression model y, = by + byt + €, t =1, 2, .. ., 74. Exhibit 7 shows the
results of estimating this equation.
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Exhibit 6: Starbucks Quarterly Sales by Fiscal Year
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Source: Bloomberg.

Exhibit 7: Estimating a Linear Trend in Starbucks Sales

31/Mar/13

2/Apr/17

Regression Statistics

R? 0.9603
Standard error 353.36
Observations 74
Durbin—Watson 0.40
Coefficient Standard Error t-Statistic
Intercept 137.4213 82.99 1.6559
t (Trend) 80.2060 1.9231 41.7066

Source: Bloomberg.

At first glance, the results shown in Exhibit 7 seem quite reasonable: The trend
coefficient is highly statistically significant. When Benedict plots the data on
Starbucks’ sales and the trend line, however, he sees a different picture. As Exhibit
8 shows, before 2008 the trend line is persistently below sales. Subsequently,
until 2015, the trend line is persistently above sales and then varies somewhat

thereafter.
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Exhibit 8: Starbucks Quarterly Sales with Trend
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Source: Bloomberg.

Recall a key assumption underlying the regression model: that the regression
errors are not correlated across observations. If a trend is persistently above or
below the value of the time series, however, the residuals (the difference between
the time series and the trend) are serially correlated. Exhibit 9 shows the resid-
uals (the difference between sales and the trend) from estimating a linear trend
model with the raw sales data. The figure shows that the residuals are persistent:
They are consistently negative from 2008 to 2015 and consistently positive from
2001 to 2008 and from 2017 to 2019.

Because of this persistent serial correlation in the errors of the trend model,
using a linear trend to fit sales at Starbucks would be inappropriate, even though
the R? of the equation is high (0.96). The assumption of uncorrelated residual
errors has been violated. Because the dependent and independent variables
are not distinct, as in cross-sectional regressions, this assumption violation is
serious and causes us to search for a better model.

Exhibit 9: Residual from Predicting Starbucks Sales with a Trend
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Source: Bloomberg.
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A Log-Linear Regression for Quarterly Sales at Starbucks

1. Having rejected a linear trend model in Example 2, technology analyst

Benedict now tries a different model for the quarterly sales for Starbucks
Corporation from the second quarter of 2001 to the third quarter of 2019.
The curvature in the data plot shown in Exhibit 6 provides a hint that an
exponential curve may fit the data. Consequently, he estimates the following
linear equation:

Iny,=by+bit+e,t=1,2,...,74

This equation seems to fit the sales data well. As Exhibit 10 shows, the R2 for
this equation is 0.95. An R? of 0.95 means that 95% of the variation in the
natural log of Starbucks’ sales is explained solely by a linear trend.

Exhibit 10: Estimating a Linear Trend in Lognormal

Starbucks Sales

Regression Statistics

R? 0.9771
Standard error 0.1393
Observations 74
Durbin—Watson 0.26
Coefficient Standard Error t-Statistic
Intercept 6.7617 0.0327 206.80
t (Trend) 0.0295 0.0008 36.875

Source: Compustat.

Although both Equations 1 and Equation 3 have a high R?, Exhibit 11 shows
how well a linear trend fits the natural log of Starbucks’ sales (Equation 3).
The natural logs of the sales data lie very close to the linear trend during the
sample period, and log sales are not substantially above or below the trend
for long periods of time. Thus, a log-linear trend model seems better suited
for modeling Starbucks’ sales than a linear trend model is.

1. Benedict wants to use the results of estimating Equation 3 to predict
Starbucks’ sales in the future. What is the predicted value of Starbucks
sales for the fourth quarter of 2019?

’

Solution:

The estimated value b 015 6.7617, and the estimated value b 1 is 0.0295.

Therefore, for fourth quarter of 2019 (¢ = 75), the estimated model predicts
that In 75 = 6.7617 + 0.0295(75) = 8.9742 and that sales will be § = e!"/75 =
89742 = $7,896.7 million. Note that a b 1 of 0.0295 implies that the exponen-
tial growth rate per quarter in Starbucks’ sales will be 2.99394% (0929 — 1
= 0.0299394).
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Exhibit 11: Natural Log of Starbucks Quarterly Sales
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Source: Compustat.

2. How much different is the previous forecast from the prediction of the
linear trend model?

Solution:

Exhibit 7 showed that for the linear trend model, the estimated value of b ois

137.4213 and the estimated value of b 1 is 80.2060. Thus, if we predict
Starbucks’ sales for the fourth quarter of 2019 (¢ = 75) using the linear trend
model, the forecast is ¥,5 = 137.4213 + 80.2060(75) = $6,152.87 million. This
forecast is far below the prediction made by the log-linear regression model.
Later we will examine whether we can build a better model of Starbucks’
quarterly sales than a model that uses only a log-linear trend.

TREND MODELS AND TESTING FOR CORRELATED
ERRORS

] describe factors that determine whether a linear or a log-linear trend
should be used with a particular time series and evaluate limitations
of trend models

Both the linear trend model and the log-linear trend model are single-variable regres-
sion models. If they are to be correctly specified, the regression model assumptions
must be satisfied. In particular, the regression error for one period must be uncorrelated
with the regression error for all other periods. In Example 2 in the previous section, we
could infer an obvious violation of that assumption from a visual inspection of a plot
of residuals (Exhibit 9). The log-linear trend model of Example 3 appeared to fit the
data much better, but we still need to confirm that the uncorrelated errors assumption
is satisfied. To address that question formally, we must carry out a Durbin—Watson
test on the residuals.
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LOGICAL ORDERING OF TIME-SERIES OBSERVATIONS

In contrast to cross-sectional observations, time-series observations have a logical
ordering. They must be processed in chronological order of the time periods
involved. For example, we should not make a prediction of the inflation rate using
a CPI series in which the order of the observations had been scrambled, because
time patterns such as growth in the independent variables can negatively affect
the statistical properties of the estimated regression coefficients.

In the reading on regression analysis, we showed how to test whether regression
errors are serially correlated using the Durbin—Watson statistic. For example, if the
trend models shown in Examples 1 and 3 really capture the time-series behavior of
inflation and the log of Starbucks’ sales, then the Durbin—Watson statistic for both
of those models should not differ significantly from 2.0. Otherwise, the errors in the
model are either positively or negatively serially correlated, and that correlation can
be used to build a better forecasting model for those time series.

In Example 1, estimating a linear trend in the monthly CPI inflation yielded a
Durbin—Watson statistic of 1.2145. Is this result significantly different from 2.0? To
find out, we need to test the null hypothesis of no positive serial correlation. For a
sample with 228 observations and one independent variable, the critical value, d), for
the Durbin—Watson test statistic at the 0.05 significance level is above 1.77. Because
the value of the Durbin—Watson statistic (1.09) is below this critical value, we can
reject the hypothesis of no positive serial correlation in the errors. (Remember that
significantly small values of the Durbin—Watson statistic indicate positive serial
correlation; significantly large values point to negative serial correlation; here the
Durbin—Watson statistic of 1.09 indicates positive serial correlation.) We can conclude
that a regression equation that uses a linear trend to model inflation has positive serial
correlation in the errors. We will need a different kind of regression model because
this one violates the least squares assumption of no serial correlation in the errors.

In Example 3, estimating a linear trend with the natural logarithm of sales for the
Starbucks example yielded a Durbin—Watson statistic of 0.26. Suppose we wish to test
the null hypothesis of no positive serial correlation. The critical value, dj, is above 1.60
at the 0.05 significance level. The value of the Durbin—Watson statistic (0.12) is below
this critical value, so we can reject the null hypothesis of no positive serial correlation
in the errors. We can conclude that a regression equation that uses a trend to model
the log of Starbucks’ quarterly sales has positive serial correlation in the errors. So,
for this series as well, we need to build a different kind of model.

Overall, we conclude that the trend models sometimes have the limitation that
errors are serially correlated. Existence of serial correlation suggests that we can build
better forecasting models for such time series than trend models.

ARTIME-SERIES MODELS AND
COVARIANCE-STATIONARY SERIES

[

explain the requirement for a time series to be covariance stationary
and describe the significance of a series that is not stationary

A key feature of the log-linear model’s depiction of time series, and a key feature of
time series in general, is that current-period values are related to previous-period
values. For example, Starbucks’ sales for the current period are related to its sales in
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the previous period. An autoregressive model (AR), a time series regressed on its
own past values, represents this relationship effectively. When we use this model, we
can drop the normal notation of y as the dependent variable and x as the independent
variable because we no longer have that distinction to make. Here we simply use x;.
For example, Equation 4 shows a first-order autoregression, AR(1), for the variable x;:

X = bo + b].xt,1 + &g (4)

Thus, in an AR(1) model, we use only the most recent past value of x, to predict the
current value of x,. In general, a pth-order autoregression, AR(p), for the variable x;
is shown by

xt = bo + blxt,l + ble,2 +...+ bpxtfp + Sl‘ (5)

In this equation, p past values of x; are used to predict the current value of x,. In the
next section, we discuss a key assumption of time-series models that include lagged
values of the dependent variable as independent variables.

Covariance-Stationary Series

Note that the independent variable (x;_;) in Equation 4 is a random variable. This fact
may seem like a mathematical subtlety, but it is not. If we use ordinary least squares to
estimate Equation 4 when we have a randomly distributed independent variable that
is a lagged value of the dependent variable, our statistical inference may be invalid. To
make a valid statistical inference, we must make a key assumption in time-series anal-
ysis: We must assume that the time series we are modeling is covariance stationary.!

What does it mean for a time series to be covariance stationary? The basic idea is
that a time series is covariance stationary if its properties, such as mean and variance,
do not change over time. A covariance stationary series must satisfy three principal
requirements. First, the expected value of the time series must be constant and finite
in all periods: E(y,) = pand |p | <o, t=1,2,..., T (for this first requirement, we use
the absolute value to rule out the case in which the mean is negative without limit—i.e.,
minus infinity). Second, the variance of the time series must be constant and finite in
all periods. Third, the covariance of the time series with itself for a fixed number of
periods in the past or future must be constant and finite in all periods. The second
and third requirements can be summarized as follows:

CoV(Yy Vo) = A Al <05 t=1,2,...,T;s=0,£1,£2,...,£T,

where A signifies a constant. (Note that when s in this equation equals 0, this equa-
tion imposes the condition that the variance of the time series is finite, because the
covariance of a random variable with itself is its variance: cov(y;, y,) = var(y,).) What
happens if a time series is not covariance stationary but we model it using Equation 4?
The estimation results will have no economic meaning. For a non-covariance-stationary
time series, estimating the regression in Equation 4 will yield spurious results. In
particular, the estimate of b; will be biased, and any hypothesis tests will be invalid.

How can we tell if a time series is covariance stationary? We can often answer this
question by looking at a plot of the time series. If the plot shows roughly the same
mean and variance over time without any significant seasonality, then we may want
to assume that the time series is covariance stationary.

Some of the time series we looked at in the exhibits appear to be covariance sta-
tionary. For example, the inflation data shown in Exhibit 3 appear to have roughly
the same mean and variance over the sample period. Many of the time series one

1 “Weakly stationary” is a synonym for covariance stationary. Note that the terms “stationary” and “sta-
tionarity” are often used to mean “covariance stationary” or “covariance stationarity,” respectively. You may
also encounter the more restrictive concept of “strictly” stationary, which has little practical application.
For details, see Diebold (2008).
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encounters in business and investments, however, are not covariance stationary. For
example, many time series appear to grow (or decline) steadily over time and thus
have a mean that is nonconstant, which implies that they are nonstationary. As an
example, the time series of quarterly sales in Exhibit 8 clearly shows the mean increas-
ing as time passes. Thus, Starbucks’ quarterly sales are not covariance stationary (in
general, any time series accurately described with a linear or log-linear trend model
is not covariance stationary, although a transformation of the original series might be
covariance stationary). Macroeconomic time series such as those relating to income
and consumption are often strongly trending as well. A time series with seasonality
(regular patterns of movement with the year) also has a nonconstant mean, as do
other types of time series that we discuss later (in particular, random walks are not
covariance stationary).

Exhibit 2 showed that monthly retail sales (not seasonally adjusted) are also not
covariance stationary. Sales in December are always much higher than sales in other
months (these are the regular large peaks), and sales in January are always much lower
(these are the regular large drops after the December peaks). On average, sales also
increase over time, so the mean of sales is not constant.

Later we will show that we can often transform a nonstationary time series into a
stationary time series. But whether a stationary time series is original or transformed,
a warning is necessary: Stationarity in the past does not guarantee stationarity in the
future. There is always the possibility that a well-specified model will fail when the
state of the world changes and yields a different underlying model that generates the
time series.

DETECTING SERIALLY CORRELATED ERRORS IN AN AR
MODEL

] describe the structure of an autoregressive (AR) model of order
p and calculate one- and two-period-ahead forecasts given the
estimated coefficients

] explain how autocorrelations of the residuals can be used to test
whether the autoregressive model fits the time series

We can estimate an autoregressive model using ordinary least squares if the time
series is covariance stationary and the errors are uncorrelated. Unfortunately, our
previous test for serial correlation, the Durbin—Watson statistic, is invalid when the
independent variables include past values of the dependent variable. Therefore, for
most time-series models, we cannot use the Durbin—Watson statistic. Fortunately, we
can use other tests to determine whether the errors in a time-series model are serially
correlated. One such test reveals whether the autocorrelations of the error term are
significantly different from 0. This test is a ¢-test involving a residual autocorrelation
and the standard error of the residual autocorrelation. As background for the test,
we next discuss autocorrelation in general before moving to residual autocorrelation.

The autocorrelations of a time series are the correlations of that series with its
own past values. The order of the correlation is given by k, where k represents the
number of periods lagged. When k = 1, the autocorrelation shows the correlation of
the variable in one period with its occurrence in the previous period. For example,
the kth-order autocorrelation (p;) is
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_ cov (xtaxt—k> _ E[(%ﬁ“) (x,,k*,u)]
PR 7 ’

where E stands for the expected value. Note that we have the relationship cov(x,,
x,_4) < 02, with equality holding when k = 0. This means that the absolute value of p
is less than or equal to 1.

Of course, we can never directly observe the autocorrelations, p;. Instead, we must
estimate them. Thus, we replace the expected value of x;, y, with its estimated value, ¥,
to compute the estimated autocorrelations. The kth-order estimated autocorrelation
of the time series x;, which we denote py, is

T

2 [(xt—f) (x,_k—f)]

=kt

Pr =

Analogous to the definition of autocorrelations for a time series, we can define the
autocorrelations of the error term for a time-series model as?

_ cov (e0804)

Pek ~ o2

_E[(&=0) (e = 0)]

a;
_ E (5151—k>
a2

We assume that the expected value of the error term in a time-series model is 0.3

We can determine whether we are using the correct time-series model by test-
ing whether the autocorrelations of the error term (error autocorrelations) differ
significantly from 0. If they do, the model is not specified correctly. We estimate the
error autocorrelation using the sample autocorrelations of the residuals (residual
autocorrelations) and their sample variance.

A test of the null hypothesis that an error autocorrelation at a specified lag equals
0 is based on the residual autocorrelation for that lag and the standard error of the
residual correlation, which is equal to 1/VT, where T is the number of observations
in the time series (Diebold 2008). Thus, if we have 100 observations in a time series,
the standard error for each of the estimated autocorrelations is 0.1. We can compute
the t-test of the null hypothesis that the error correlation at a particular lag equals
0 by dividing the residual autocorrelation at that lag by its standard error (1/VT).

How can we use information about the error autocorrelations to determine
whether an autoregressive time-series model is correctly specified? We can use a
simple three-step method. First, estimate a particular autoregressive model—say, an
AR(1) model. Second, compute the autocorrelations of the residuals from the model.*
Third, test to see whether the residual autocorrelations differ significantly from 0. If
significance tests show that the residual autocorrelations differ significantly from 0,

2 Whenever we refer to autocorrelation without qualification, we mean autocorrelation of the time series
itself rather than autocorrelation of the error term or residuals.

3 This assumption is similar to the one made in earlier coverage of regression analysis about the expected
value of the error term.

4 We can compute these residual autocorrelations easily with most statistical software packages. In Microsoft
Excel, for example, to compute the first-order residual autocorrelation, we compute the correlation of the
residuals from Observations 1 through T - 1 with the residuals from Observations 2 through T.
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the model is not correctly specified; we may need to modify it in ways that we will
discuss shortly.> We now present an example to demonstrate how this three-step
method works.

EXAMPLE 4

Predicting Gross Margins for Intel Corporation

1. Analyst Melissa Jones decides to use a time-series model to predict In-
tel Corporation’s gross margin [(Sales — Cost of goods sold)/Sales] using
quarterly data from the first quarter of 2003 through the second quarter of
2019. She does not know the best model for gross margin but believes that
the current-period value will be related to the previous-period value. She
decides to start out with a first-order autoregressive model, AR(1): Gross
margin, = by + b;(Gross margin,_;) + €, Her observations on the depen-
dent variable are 1Q 2003 through 2Q 2019. Exhibit 12 shows the results of
estimating this AR(1) model, along with the autocorrelations of the residuals
from that model.

Exhibit 12: Autoregression: AR(1) Model Gross Margin of Intel

Quarterly Observations, January 2003-June 2019

Regression Statistics

R? 0.5746
Standard error 0.03002
Observations 65
Durbin—Watson 1.743

Coefficient Standard Error t-Statistic
Intercept 0.1513 0.0480 3.15
Gross 0.7462 0.0809 9.2236
margin,_;

Autocorrelations of the Residual

Lag Autocorrelation Standard Error t-Statistic
1 0.1308 0.1240 1.0545
2 -0.2086 0.1240 -1.6818
3 0.0382 0.1240 0.3080
4 0.0608 0.1240 0.4903

Source: Bloomberg.

The first thing to note about Exhibit 12 is that both the intercept (b 0=

0.1513) and the coefficient on the first lag (b, = 0.7462) of the gross margin
are highly significant in the regression equation. The first lag of a time series

5 Often, econometricians use additional tests for the significance of residual autocorrelations. For example,
the Box—Pierce Q-statistic is frequently used to test the joint hypothesis that all autocorrelations of the
residuals are equal to 0. For further discussion, see Diebold (2008).
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is the value of the time series in the previous period. The ¢-statistic for the
intercept is about 3.2, whereas the ¢-statistic for the first lag of the gross
margin is more than 9. With 65 observations and two parameters, this
model has 63 degrees of freedom. At the 0.05 significance level, the critical
value for a ¢-statistic is about 2.0. Therefore, Jones must reject the null
hypotheses that the intercept is equal to 0 (b, = 0) and the coefficient on the
first lag is equal to 0 (b; = 0) in favor of the alternative hypothesis that the
coefficients, individually, are not equal to 0. But are these statistics valid?
Although the Durbin—Watson statistic is presented in Exhibit 12, it cannot
be used to test serial correlation when the independent variables include
past values of the dependent variable. The correct approach is to test
whether the residuals from this model are serially correlated.

At the bottom of Exhibit 12, the first four autocorrelations of the residual
are displayed along with the standard error and the ¢-statistic for each of
those autocorrelations.® The sample has 65 observations, so the standard
error for each of the autocorrelations is 1/v65 = 0.1240. Exhibit 12 shows
that none of the first four autocorrelations has a ¢-statistic larger than 1.6818
in absolute value. Therefore, Jones can conclude that none of these autocor-
relations differs significantly from 0. Consequently, she can assume that the
residuals are not serially correlated and that the model is correctly specified,
and she can validly use ordinary least squares to estimate the parameters
and the parameters’ standard errors in the autoregressive model (for other
tests for serial correlation of residuals, see Diebold 2008).

Now that Jones has concluded that this model is correctly specified, how
can she use it to predict Intel’s gross margin in the next period? The estimat-
ed equation is Gross margin, = 0.1513 + 0.7462(Gross margin,_;) + ;. The
expected value of the error term is 0 in any period. Therefore, this model
predicts that gross margin in period ¢ + 1 will be Gross margin,,; = 0.1513

+ 0.7462(Gross margin,). For example, if gross margin is 55% in this quarter
(0.55), the model predicts that in the next quarter gross margin will increase
to 0.1513 + 0.7462(0.55) = 0.5617, or 56.17%. However, if gross margin is
currently 65% (0.65), the model predicts that in the next quarter, gross mar-
gin will fall to 0.1513 + 0.7462(0.65) = 0.6363, or 63.63%. As we show in the
following section, the model predicts that gross margin will increase if it is
below a certain level (59.61%) and decrease if it is above that level.

MEAN REVERSION AND MULTIPERIOD FORECASTS 7

explain mean reversion and calculate a mean-reverting level

describe the structure of an autoregressive (AR) model of order
p and calculate one- and two-period-ahead forecasts given the
estimated coefficients

[
[

6 For seasonally unadjusted data, analysts often compute the same number of autocorrelations as there
are observations in a year (for example, four for quarterly data). The number of autocorrelations computed
also often depends on sample size, as discussed in Diebold (2008).
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We say that a time series shows mean reversion if it tends to fall when its level is
above its mean and rise when its level is below its mean. Much like the temperature in
aroom controlled by a thermostat, a mean-reverting time series tends to return to its
long-term mean. How can we determine the value that the time series tends toward? If
a time series is currently at its mean-reverting level, then the model predicts that the
value of the time series will be the same in the next period. At its mean-reverting level,
we have the relationship x,,; = x;. For an AR(1) model (x,,; = by + b1x,), the equality
%;,1 = %, implies the level x, = by + b, or that the mean-reverting level, x,, is given by
by
R

So the AR(1) model predicts that the time series will stay the same if its current value
is by/(1 - by), increase if its current value is below by/(1 - b;), and decrease if its
current value is above by/(1 - by).

In the case of gross margins for Intel, the mean-reverting level for the model
shown in Exhibit 12 is 0.1513/(1 - 0.7462) = 0.5961. If the current gross margin is
above 0.5961, the model predicts that the gross margin will fall in the next period. If
the current gross margin is below 0.5961, the model predicts that the gross margin
will rise in the next period. As we will discuss later, all covariance-stationary time
series have a finite mean-reverting level.

Multiperiod Forecasts and the Chain Rule of Forecasting

Often, financial analysts want to make forecasts for more than one period. For exam-
ple, we might want to use a quarterly sales model to predict sales for a company for
each of the next four quarters. To use a time-series model to make forecasts for more
than one period, we must examine how to make multiperiod forecasts using an AR(1)
model. The one-period-ahead forecast of x, from an AR(1) model is as follows:

£ = botbyx (6)
If we want to forecast x,_, using an AR(1) model, our forecast will be based on
Xpp = botb Xy O

Unfortunately, we do not know x;,; in period ¢, so we cannot use Equation 7 directly
to make a two-period-ahead forecast. We can, however, use our forecast of x, ; and
the AR(1) model to make a prediction of x,,,. The chain rule of forecasting is a
process in which the next period’s value, predicted by the forecasting equation, is
substituted into the equation to give a predicted value two periods ahead. Using the
chain rule of forecasting, we can substitute the predicted value of x,,; into Equation
7toget®,,,=by+b,%,, ;. Wealready know &, 1 from our one-period-ahead forecast

in Equation 6. Now we have a simple way of predicting x,, ,.

Multiperiod forecasts are more uncertain than single-period forecasts because
each forecast period has uncertainty. For example, in forecasting x,,,, we first have
the uncertainty associated with forecasting x,, ; using x,, and then we have the uncer-
tainty associated with forecasting x,, , using the forecast of x,, ;. In general, the more
periods a forecast has, the more uncertain it is. Note that if a forecasting model is
well specified, the prediction errors from the model will not be serially correlated.
If the prediction errors for each period are not serially correlated, then the variance
of a multiperiod forecast will be higher than the variance of a single-period forecast.
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EXAMPLE 5

Multiperiod Prediction of Intel’s Gross Margin

Suppose that at the beginning of 2020, we want to predict Intel’s gross margin
in two periods using the model shown in Exhibit 12. Assume that Intel’s gross
margin in the current period is 63%. The one-period-ahead forecast of Intel’s
gross margin from this model is 0.6214 = 0.1513 + 0.7462(0.63). By substituting
the one-period-ahead forecast, 0.6214, back into the regression equation, we can
derive the following two-period-ahead forecast: 0.6150 = 0.1513 + 0.7462(0.6214).
Therefore, if the current gross margin for Intel is 63%, the model predicts that
Intel’s gross margin in two quarters will be 61.50%.

EXAMPLE 6

Modeling US CPI Inflation

Analyst Lisette Miller has been directed to build a time-series model for monthly
US inflation. Inflation and expectations about inflation, of course, have a signif-
icant effect on bond returns. For a 24-year period beginning January 1995 and
ending December 2018, she selects as data the annualized monthly percentage
change in the CPI. Which model should Miller use?

The process of model selection parallels that of Example 4 relating to Intel’s
gross margins. The first model Miller estimates is an AR(1) model, using the
previous month’s inflation rate as the independent variable: Inflation, = b +
by(Inflation,_;) + &, £=1,2, ..., 287. To estimate this model, she uses monthly
CPl inflation data from January 1995 to December 2018 (¢ = 1 denotes February
1995). Exhibit 13 shows the results of estimating this model.

Exhibit 13: Monthly CPI Inflation at an Annual Rate: AR(1) Model—

Monthly Observations, February 1995-December 2018

Regression Statistics

R? 0.1586
Standard error 2.9687
Observations 287
Durbin—Watson 1.8442

Coefficient Standard Error t-Statistic
Intercept 1.3346 0.2134 6.2540
Inflation,_; 0.3984 0.0544 7.3235

Autocorrelations of the Residual

Lag Autocorrelation Standard Error t-Statistic
1 0.0777 0.0590 1.3175
2 -0.1653 0.0590 -2.8013
3 -0.1024 0.0590 -1.7362
4 -0.0845 0.0590 1.4324

Source: US Bureau of Labor Statistics.
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As Exhibit 13 shows, both the intercept (b o = 1.3346) and the coefficient on

the first lagged value of inflation (b ; = 0.3984) are highly statistically significant,
with large ¢-statistics. With 287 observations and two parameters, this model
has 285 degrees of freedom. The critical value for a ¢-statistic at the 0.05 signif-
icance level is about 1.97. Therefore, Miller can reject the individual null hypoth-
eses that the intercept is equal to 0 (b, = 0) and the coefficient on the first lag
is equal to 0 (b7 = 0) in favor of the alternative hypothesis that the coefficients,
individually, are not equal to 0.

Are these statistics valid? Miller will know when she tests whether the
residuals from this model are serially correlated. With 287 observations in this
sample, the standard error for each of the estimated autocorrelations is 1/v287
= 0.0590. The critical value for the ¢-statistic is 1.97. Because the second esti-
mated autocorrelation has ¢-statistic larger than 1.97 in absolute value, Miller
concludes that the autocorrelations are significantly different from 0. This model
is thus misspecified because the residuals are serially correlated.

If the residuals in an autoregressive model are serially correlated, Miller
can eliminate the correlation by estimating an autoregressive model with more
lags of the dependent variable as explanatory variables. Exhibit 14 shows the
result of estimating a second time-series model, an AR(2) model using the
same data as in the analysis shown in Exhibit 13. With 286 observations and
three parameters, this model has 283 degrees of freedom. Because the degrees
of freedom are almost the same as those for the estimates shown in Exhibit 13,
the critical value of the ¢-statistic at the 0.05 significance level also is almost
the same (1.97). If she estimates the equation with two lags—Inflation, = b, +
b;(Inflation,_;) + by(Inflation,_,) + e,—Miller finds that all three of the coef-
ficients in the regression model (an intercept and the coefficients on two lags
of the dependent variable) differ significantly from 0. The bottom portion of
Exhibit 14 shows that none of the first four autocorrelations of the residual has
a ¢-statistic greater in absolute value than the critical value of 1.97. Therefore,
Miller fails to reject the hypothesis that the individual autocorrelations of the
residual equal 0. She concludes that this model is correctly specified because
she finds no evidence of serial correlation in the residuals.

Exhibit 14: Monthly CPI Inflation at an Annual Rate: AR(2) Model—

Monthly Observations, March 1995-December 2018

Regression Statistics

R? 0.1907
Standard error 2.9208
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Regression Statistics

Observations 286
Durbin—Watson 1.9934

Coefficient Standard Error t-Statistic
Intercept 1.5996 0.2245 7.1252
Inflation,_; 0.4759 0.0583 8.1636
Inflation,_, -0.1964 0.0583 -3.368

Autocorrelations of the Residual

Lag Autocorrelation Standard Error t-Statistic
1 0.0032 0.0591 0.0536
2 0.0042 0.0591 0.0707
3 -0.0338 0.0591 -0.5696
4 0.0155 0.0591 0.2623

Source: US Bureau of Labor Statistics.

1.

The analyst selected an AR(2) model because the residuals from the AR(1)
model were serially correlated. Suppose that in a given month, inflation

had been 4% at an annual rate in the previous month and 3% in the month
before that. What would be the difference in the analyst forecast of inflation
for that month if she had used an AR(1) model instead of the AR(2) model?

Solution to 1:

The AR(1) model shown in Exhibit 13 predicted that inflation in the next
month would be 1.3346 + 0.3984(4) = 2.93%, approximately, whereas the
AR(2) model shown in Exhibit 14 predicts that inflation in the next month
will be 1.5996 + 0.4759(4) - 0.1964(3) = 2.91% approximately. If the analyst
had used the incorrect AR(1) model, she would have predicted inflation

to be 2 bps higher (2.93% versus 2.91%) than when using the AR(2) model.
Although in this case the difference in the predicted inflation is actually very
small, this kind of scenario illustrates that using an incorrect forecast could
adversely affect the quality of her company’s investment choices.

COMPARING FORECAST MODEL PERFORMANCE

] contrast in-sample and out-of-sample forecasts and compare the

forecasting accuracy of different time-series models based on the
root mean squared error criterion
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One way to compare the forecast performance of two models is to compare the vari-
ance of the forecast errors that the two models make. The model with the smaller
forecast error variance will be the more accurate model, and it will also have the
smaller standard error of the time-series regression. (This standard error usually is
reported directly in the output for the time-series regression.)

In comparing forecast accuracy among models, we must distinguish between
in-sample forecast errors and out-of-sample forecast errors. In-sample forecast
errors are the residuals from a fitted time-series model. For example, when we esti-
mated a linear trend with raw inflation data from January 1995 to December 2018, the
in-sample forecast errors were the residuals from January 1995 to December 2018.
If we use this model to predict inflation outside this period, the differences between
actual and predicted inflation are out-of-sample forecast errors.

EXAMPLE 7

In-Sample Forecast Comparisons of US CPI Inflation

In Example 6, the analyst compared an AR(1) forecasting model of monthly US
inflation with an AR(2) model of monthly US inflation and decided that the AR(2)
model was preferable. Exhibit 13 showed that the standard error from the AR(1)
model of inflation is 2.9687, and Exhibit 14 showed that the standard error from
the AR(2) model is 2.9208. Therefore, the AR(2) model had a lower in-sample
forecast error variance than the AR(1) model had, which is consistent with our
belief that the AR(2) model was preferable. Its standard error is 2.9208/2.9687
= 98.39% of the forecast error of the AR(1) model.

Often, we want to compare the forecasting accuracy of different models after the
sample period for which they were estimated. We wish to compare the out-of-sample
forecast accuracy of the models. Out-of-sample forecast accuracy is important because
the future is always out of sample. Although professional forecasters distinguish
between out-of-sample and in-sample forecasting performance, many articles that
analysts read contain only in-sample forecast evaluations. Analysts should be aware that
out-of-sample performance is critical for evaluating a forecasting model’s real-world
contribution.

Typically, we compare the out-of-sample forecasting performance of forecasting
models by comparing their root mean squared error (RMSE), which is the square
root of the average squared error. The model with the smallest RMSE is judged the
most accurate. The following example illustrates the computation and use of RMSE
in comparing forecasting models.
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EXAMPLE 8

Out-of-Sample Forecast Comparisons of US CPI Inflation

1. Suppose we want to compare the forecasting accuracy of the AR(1) and
AR(2) models of US inflation estimated over 1995 to 2018, using CPI data
from January 2019 to September 2019.

Exhibit 15: Out-of-Sample Forecast Error Comparisons: January 2019-September 2019 US CPI Inflation

(Annualized)

Date Infi(t) Infl(t-1) Infl(t-2) AR(1) Error Squared Error AR(2) Error Squared Error
2019
January 0.0000 0.0000 0.0000 0.1335 0.0178 -1.6000 2.5599
February 2.4266 0.0000 0.0000 -2.2931 5.2585 0.8266 0.6833
March 4.9070 2.4266 0.0000 -3.8068 14.4916 2.1522 4.6320
April 3.6600 4.9070 2.4266 -1.5716 2.4699 0.2014 0.0406
May 1.2066 3.6600 4.9070 0.3850 0.1482 -1.1714 1.3722
June 1.2066 1.2066 3.6600 -0.5924 0.3510 -0.2488 0.0619
July 3.6600 1.2066 1.2066 -3.0458 9.2770 1.7228 2.9680
August 1.2066 3.6600 1.2066 0.3850 0.1482 -1.8982 3.6030
September 0.0000 1.2066 3.6600 0.6142 0.3772 -1.4554 2.1181
Average 3.6155 Average 2.0043
RMSE 1.9014 RMSE 1.4157

Note: Any apparent discrepancies between error and squared error results are due to rounding.

Source: US Bureau of Labor Statistics.

Solution:

For each month from January 2019 to September 2019, the first column of
numbers in Exhibit 15 shows the actual annualized inflation rate during
the month. The second and third columns show the rate of inflation in the
previous two months. The fourth column shows the out-of-sample errors
(Actual — Forecast) from the AR(1) model shown in Exhibit 13. The fifth
column shows the squared errors from the AR(1) model. The sixth column
shows the out-of-sample errors from the AR(2) model shown in Exhibit 14.
The final column shows the squared errors from the AR(2) model. The bot-
tom of the table displays the average squared error and the RMSE. Accord-
ing to these measures, the AR(2) model was slightly more accurate than the
AR(1) model in its out-of-sample forecasts of inflation from January 2019 to
September 2019. The RMSE from the AR(2) model was only 1.4157/1.9014
= 74.46% as large as the RMSE from the AR(1) model. Therefore, the AR(2)
model was more accurate both in sample and out of sample. Of course, this
was a small sample to use in evaluating out-of-sample forecasting perfor-
mance. Sometimes, an analyst may have conflicting information about
whether to choose an AR(1) or an AR(2) model. We must also consider
regression coefficient stability. We will continue the comparison between
these two models in the following section.
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INSTABILITY OF REGRESSION COEFFICIENTS

] explain the instability of coefficients of time-series models

One of the important issues an analyst faces in modeling a time series is the sample
period to use. The estimates of regression coefficients of the time-series model can
change substantially across different sample periods used for estimating the model.
Often, the regression coefficient estimates of a time-series model estimated using an
earlier sample period can be quite different from those of a model estimated using a
later sample period. Similarly, the estimates can be different between models estimated
using relatively shorter and longer sample periods. Further, the choice of model for a
particular time series can also depend on the sample period. For example, an AR(1)
model may be appropriate for the sales of a company in one particular sample period,
but an AR(2) model may be necessary for an earlier or later sample period (or for a
longer or shorter sample period). Thus, the choice of a sample period is an important
decision in modeling a financial time series.

Unfortunately, there is usually no clear-cut basis in economic or financial the-
ory for determining whether to use data from a longer or shorter sample period to
estimate a time-series model. We can get some guidance, however, if we remember
that our models are valid only for covariance-stationary time series. For example, we
should not combine data from a period when exchange rates were fixed with data
from a period when exchange rates were floating. The exchange rates in these two
periods would not likely have the same variance because exchange rates are usually
much more volatile under a floating-rate regime than when rates are fixed. Similarly,
many US analysts consider it inappropriate to model US inflation or interest-rate
behavior since the 1960s as a part of one sample period, because the Federal Reserve
had distinct policy regimes during this period. A simple way to determine appropriate
samples for time-series estimation is to look at graphs of the data to see whether the
time series looks stationary before estimation begins. If we know that a government
policy changed on a specific date, we might also test whether the time-series relation
was the same before and after that date.

In the following example, we illustrate how the choice of a longer versus a shorter
period can affect the decision of whether to use, for example, a first- or second-order
time-series model. We then show how the choice of the time-series model (and the
associated regression coefficients) affects our forecast. Finally, we discuss which sample
period, and accordingly which model and corresponding forecast, is appropriate for
the time series analyzed in the example.

EXAMPLE 9

Instability in Time-Series Models of US Inflation

In Example 6, the analyst Lisette Miller concluded that US CPI inflation should
be modeled as an AR(2) time series. A colleague examined her results and
questioned estimating one time-series model for inflation in the United States
since 1995, given that the Federal Reserve responded aggressively to the financial
crisis that emerged in 2007. He argues that the inflation time series from 1995
to 2018 has two regimes or underlying models generating the time series: one
running from 1995 through 2007 and another starting in 2008. Therefore, the
colleague suggests that Miller estimate a new time-series model for US inflation


Example 6

© CFA Institute. For candidate use only. Not for distribution.
Instability of Regression Coefficients

starting in 2008. Because of his suggestion, Miller first estimates an AR(1) model
for inflation using data for a sample period from 2008 to 2018. Exhibit 16 shows
her AR(1) estimates.

Exhibit 16: Autoregression: AR(1) Model Monthly CPI Inflation at an

Annual Rate, January 2008-December 2018

Regression Statistics

R2 0.2536
Standard error 3.0742
Observations 132
Durbin—Watson 1.8164

Coefficient Standard Error t-Statistic
Intercept 0.8431 0.2969 2.8397
Inflation,_; 0.5036 0.0758 6.6438

Autocorrelations of the Residual

Lag Autocorrelation Standard Error t-Statistic
1 0.0999 0.087 1.1479
2 -0.1045 0.087 -1.2015
3 -0.1568 0.087 -1.8051
4 0.0500 0.087 0.5750

Source: US Bureau of Labor Statistics.

The bottom part of Exhibit 16 shows that the first four autocorrelations of the
residuals from the AR(1) model are quite small. None of these autocorrelations
has a ¢-statistic larger than 1.99, the critical value for significance. Consequently,
Miller cannot reject the null hypothesis that the residuals are serially uncorrelated.
The AR(1) model is correctly specified for the sample period from 2008 to 2018,
so there is no need to estimate the AR(2) model. This conclusion is very different
from that reached in Example 6 using data from 1995 to 2018. In that example,
Miller initially rejected the AR(1) model because its residuals exhibited serial
correlation. When she used a larger sample, an AR(2) model initially appeared
to fit the data much better than did an AR(1) model.

How deeply does our choice of sample period affect our forecast of future
inflation? Suppose that in a given month, inflation was 4% at an annual rate, and
the month before that it was 3%. The AR(1) model shown in Exhibit 16 predicts
that inflation in the next month will be 0.8431 + 0.5036(4) ~ 2.86%. Therefore,
the forecast of the next month’s inflation using the 2008 to 2018 sample is 2.86%.
Remember from the analysis following Example 6 that the AR(2) model for the
1995 to 2018 sample predicts inflation of 2.91% in the next month. Thus, using
the correctly specified model for the shorter sample produces an inflation fore-
cast 0.05 pps below the forecast made from the correctly specified model for the
longer sample period. Such a difference might substantially affect a particular
investment decision.

Which model is correct? Exhibit 17 suggests an answer. Monthly US inflation
was so much more volatile during the middle part of the study period than in
the earlier or later years that inflation is probably not a covariance-stationary
time series from 1995 to 2018. Therefore, we can reasonably believe that the
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data have more than one regime and Miller should estimate a separate model for
inflation from 2009 to 2018, as shown previously. In fact, the standard deviation
of annualized monthly inflation rates is just 2.86% for 1995—2007 but 3.54% for
2008-2018, largely because of volatility during the 2008 crisis. As the example
shows, experience (such as knowledge of government policy changes) and judg-
ment play a vital role in determining how to model a time series. Simply relying
on autocorrelations of the residuals from a time-series model cannot tell us the
correct sample period for our analysis.

Exhibit 17: Monthly CPI Inflation

25

20
15

10

_25 1 1 1 1 1
Jan/95 May /99 Sep/03 Jan/08 May /12 Sep/16

Source: US Bureau of Labor Statistics.

RANDOM WALKS

] describe characteristics of random walk processes and contrast them
to covariance stationary processes

] explain mean reversion and calculate a mean-reverting level

So far, we have examined those time series in which the time series has a tendency
to revert to its mean level as the change in a variable from one period to the next
follows a mean-reverting pattern. In contrast, there are many financial time series in
which the changes follow a random pattern. We discuss these “random walks” in the
following section.

Random Walks

A random walk is one of the most widely studied time-series models for financial
data. A random walk is a time series in which the value of the series in one period
is the value of the series in the previous period plus an unpredictable random error.
A random walk can be described by the following equation:
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X = Xt e E(g[) =0, E(“:tz) = g2, cov (‘Sz’gs) = E(gtgs)
= 0ift # s. ®

Equation 8 means that the time series x; is in every period equal to its value in the
previous period plus an error term, g, that has constant variance and is uncorrelated
with the error term in previous periods. Note two important points. First, this equa-
tion is a special case of an AR(1) model with by = 0 and b; = 1.7 Second, the expected
value of g, is zero. Therefore, the best forecast of x, that can be made in period ¢ - 1
is x;_1. In fact, in this model, x,_; is the best forecast of x in every period after ¢ - 1.

Random walks are quite common in financial time series. For example, many
studies have tested whether and found that currency exchange rates follow a random
walk. Consistent with the second point made in the previous paragraph, some studies
have found that sophisticated exchange rate forecasting models cannot outperform
forecasts made using the random walk model and that the best forecast of the future
exchange rate is the current exchange rate.

Unfortunately, we cannot use the regression methods we have discussed so far to
estimate an AR(1) model on a time series that is actually a random walk. To see why
this is so, we must determine why a random walk has no finite mean-reverting level
or finite variance. Recall that if x, is at its mean-reverting level, then x, = by + byx;, or
x; = bo/(1 - by). In a random walk, however, by = 0 and b; = 1, so by/(1 - b;) = 0/0.
Therefore, a random walk has an undefined mean-reverting level.

What is the variance of a random walk? Suppose that in Period 1, the value of x; is
0. Then we know that x, = 0 + €,. Therefore, the variance of x, = var(e,) = 6. Now x5 =
%o + €3 = €5 + £3. Because the error term in each period is assumed to be uncorrelated
with the error terms in all other periods, the variance of x3 = var(e,) + var(ez) = 202
By a similar argument, we can show that for any period ¢, the variance of x, = (£ - 1)
2. But this means that as ¢ grows large, the variance of x, grows without an upper
bound: It approaches infinity. This lack of upper bound, in turn, means that a random
walk is not a covariance-stationary time series, because a covariance-stationary time
series must have a finite variance.

What is the practical implication of these issues? We cannot use standard regression
analysis on a time series that is a random walk. We can, however, attempt to convert
the data to a covariance-stationary time series if we suspect that the time series is a
random walk. In statistical terms, we can difference it.

We difference a time series by creating a new time series—say, y,—that in each
period is equal to the difference between x; and x,_;. This transformation is called
first-differencing because it subtracts the value of the time series in the first prior
period from the current value of the time series. Sometimes the first difference of
x; is written as Ax; = x, — x;_1. Note that the first difference of the random walk in
Equation 8 yields

Ve T %7 X1 T &p E(gt) =0, E(gtz) =02, cov (gzags) = E(Stgs)
= 0 fort # s.

The expected value of ¢, is 0. Therefore, the best forecast of y, that can be made
in period ¢ — 1 is 0. This implies that the best forecast is that there will be no change
in the value of the current time series, x;_.

The first-differenced variable, y,, is covariance stationary. How is this so? First, note
that this model (y, = €,) is an AR(1) model with b, = 0 and b; = 0. We can compute the
mean-reverting level of the first-differenced model as by/(1 - b;) = 0/1 = 0. Therefore,
a first-differenced random walk has a mean-reverting level of 0. Note also that the
variance of y, in each period is var(e,) = 02 Because the variance and the mean of y,

7 Equation 8 with a nonzero intercept added (as in Equation 9, given later) is sometimes referred to as a
random walk with drift.
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are constant and finite in each period, y, is a covariance-stationary time series and we
can model it using linear regression. Of course, modeling the first-differenced series
with an AR(1) model does not help us predict the future, because by = 0 and b; = 0.
We simply conclude that the original time series is, in fact, a random walk.

Had we tried to estimate an AR(1) model for a time series that was a random walk,
our statistical conclusions would have been incorrect because AR models cannot be
used to estimate random walks or any time series that is not covariance stationary.
The following example illustrates this issue with exchange rates.

EXAMPLE 10

The Yen/US Dollar Exchange Rate

1. Financial analysts often assume that exchange rates are random walks. Con-
sider an AR(1) model for the Japanese yen/US dollar exchange rate (JPY/
USD). Exhibit 18 shows the results of estimating the model using month-
end observations from October 1980 through August 2019.

Exhibit 18: Yen/US Dollar Exchange Rate: AR(1) Model Month-End

Observations, October 1980-August 2019

Regression Statistics

R? 0.9897
Standard error 4.5999
Observations 467
Durbin—Watson 1.9391

Coefficient Standard Error t-Statistic
Intercept 0.8409 0.6503 1.2931
JPY/USD,_; 0.9919 0.0047 211.0426

Autocorrelations of the Residual

Lag Autocorrelation Standard Error t-Statistic
1 0.0302 0.0465 0.6495
2 0.0741 0.0465 1.5935
3 0.0427 0.0465 0.9183
4 -0.0034 0.0465 0.0731

Source: US Federal Reserve Board of Governors.

The results in Exhibit 18 suggest that the yen/US dollar exchange rate is a
random walk because the estimated intercept does not appear to be signifi-
cantly different from 0 and the estimated coefficient on the first lag of the
exchange rate is very close to 1. Can we use the ¢-statistics in Exhibit 18 to
test whether the exchange rate is a random walk? Unfortunately, no, because
the standard errors in an AR model are invalid if the model is estimated
using a data series that is a random walk (remember, a random walk is not
covariance stationary). If the exchange rate is, in fact, a random walk, we
might come to an incorrect conclusion based on faulty statistical tests and
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then invest incorrectly. We can use a test presented in the next section to
test whether the time series is a random walk.

Suppose the exchange rate is a random walk, as we now suspect. If so, the
first-differenced series, y; = x; — x,_;, will be covariance stationary. We
present the results from estimating y, = by + b1y,_; + €, in Exhibit 19. If the
exchange rate is a random walk, then b = 0, b; = 0, and the error term will
not be serially correlated.

Exhibit 19: First-Differenced Yen/US Dollar Exchange Rate: AR(1)

Model Month-End Observations, November 1980-August 2019

Regression Statistics

R? 0.0008
Standard error 4.6177
Observations 466
Durbin—Watson 2.0075

Coefficient Standard Error t-Statistic
Intercept -0.2185 0.2142 -1.0200
JPY/USD,_; 0.0287 0.0464 0.6185
- JPY/USD,.,

Autocorrelations of the Residual

Lag Autocorrelation Standard Error t-Statistic
1 -0.0023 0.0463 -0.0501
2 0.0724 0.0463 1.5643
3 0.0387 0.0463 0.8361
4 -0.0062 0.0463 -0.1329

Source: US Federal Reserve Board of Governors.

In Exhibit 19, neither the intercept nor the coefficient on the first lag of the
first-differenced exchange rate differs significantly from 0, and no residual
autocorrelations differ significantly from 0. These findings are consistent
with the yen/US dollar exchange rate being a random walk.

We have concluded that the differenced regression is the model to choose.
Now we can see that we would have been seriously misled if we had based
our model choice on an R2 comparison. In Exhibit 18, the R? is 0.9897,
whereas in Exhibit 19, the R2 is 0.0008. How can this be, if we just concluded
that the model in Exhibit 19 is the one that we should use? In Exhibit 18, the
R? measures how well the exchange rate in one period predicts the exchange
rate in the next period. If the exchange rate is a random walk, its current
value will be an extremely good predictor of its value in the next period, and
thus the R? will be extremely high. At the same time, if the exchange rate

is a random walk, then changes in the exchange rate should be completely
unpredictable. Exhibit 19 estimates whether changes in the exchange rate
from one month to the next can be predicted by changes in the exchange
rate over the previous month. If they cannot be predicted, the R? in Exhibit
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19 should be very low. In fact, it is low (0.0008). This comparison provides a
good example of the general rule that we cannot necessarily choose which
model is correct solely by comparing the R? from the two models.

The exchange rate is a random walk, and changes in a random walk are by
definition unpredictable. Therefore, we cannot profit from an investment
strategy that predicts changes in the exchange rate.

To this point, we have discussed only simple random walks—that is, random walks
without drift. In a random walk without drift, the best predictor of the time series
in the next period is its current value. A random walk with drift, however, should
increase or decrease by a constant amount in each period. The equation describing a
random walk with drift is a special case of the AR(1) model:

X = byt byxy e
by =1, by # 0,0r )
X = bytx te, Elg) =0

A random walk with drift has b = 0, compared to a simple random walk, which
has b = 0.

We have already seen that »; = 1 implies an undefined mean-reversion level and
thus nonstationarity. Consequently, we cannot use an AR model to analyze a time
series that is a random walk with drift until we transform the time series by taking
first differences. If we first-difference Equation 9, the result is y, = %, — x;,_1, y; = by
+&,by=0.

THE UNIT ROOT TEST OF NONSTATIONARITY

] describe implications of unit roots for time-series analysis, explain
when unit roots are likely to occur and how to test for them, and
demonstrate how a time series with a unit root can be transformed
so it can be analyzed with an AR model

] describe the steps of the unit root test for nonstationarity and
explain the relation of the test to autoregressive time-series models

In this section, we discuss how to use random walk concepts to determine whether a
time series is covariance stationary. This approach focuses on the slope coefficient in
the random-walk-with-drift case of an AR(1) model in contrast with the traditional
autocorrelation approach, which we discuss first.

The examination of the autocorrelations of a time series at various lags is a
well-known prescription for inferring whether or not a time series is stationary.
Typically, for a stationary time series, either autocorrelations at all lags are statistically
indistinguishable from zero or the autocorrelations drop off rapidly to zero as the
number of lags becomes large. Conversely, the autocorrelations of a nonstationary
time series do not exhibit those characteristics. However, this approach is less definite
than a currently more popular test for nonstationarity known as the Dickey—Fuller
test for a unit root.

We can explain what is known as the unit root problem in the context of an AR(1)
model. If a time series comes from an AR(1) model, then to be covariance stationary,
the absolute value of the lag coefficient, b;, must be less than 1.0. We could not rely
on the statistical results of an AR(1) model if the absolute value of the lag coefficient
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were greater than or equal to 1.0 because the time series would not be covariance
stationary. If the lag coefficient is equal to 1.0, the time series has a unit root: It is
a random walk and is not covariance stationary (note that when b, is greater than 1
in absolute value, we say that there is an “explosive root”). By definition, all random
walks, with or without a drift term, have unit roots.

How do we test for unit roots in a time series? If we believed that a time series, x,,
was a random walk with drift, it would be tempting to estimate the parameters of the
AR(1) model x; = by + byx;_; + €, using linear regression and conduct a t-test of the
hypothesis that b; = 1. Unfortunately, if b; = 1, then x, is not covariance stationary and
the t-value of the estimated coefficient, b 1» does not actually follow the ¢-distribution;
consequently, a ¢-test would be invalid.

Dickey and Fuller (1979) developed a regression-based unit root test based on a
transformed version of the AR(1) model x; = by + byx,_; + €, Subtracting x;_; from
both sides of the AR(1) model produces

X = X1 = b+ (by = Dxpy 8
or
X~ X1 = bo t gixp g Eg) =0, (10)

where g; = (b; - 1). If b; = 1, then g; = 0 and thus a test of g; = O is a test of b; =
1. If there is a unit root in the AR(1) model, then g; will be 0 in a regression where
the dependent variable is the first difference of the time series and the independent
variable is the first lag of the time series. The null hypothesis of the Dickey—Fuller test
is Hy: g = 0—that is, that the time series has a unit root and is nonstationary—and
the alternative hypothesis is H,: g; < 0, that the time series does not have a unit root
and is stationary.

To conduct the test, one calculates a ¢-statistic in the conventional manner for §;
but instead of using conventional critical values for a ¢-test, one uses a revised set
of values computed by Dickey and Fuller; the revised critical values are larger in
absolute value than the conventional critical values. A number of software packages
incorporate Dickey—Fuller tests.

EXAMPLE 11

(Historical Example)

AstraZeneca’s Quarterly Sales (1)

In January 2012, equity analyst Aron Berglin is building a time-series model
for the quarterly sales of AstraZeneca, a British/Swedish biopharmaceutical
company headquartered in London. He is using AstraZeneca’s quarterly sales
in US dollars for January 2000 to December 2011 and any lagged sales data that
he may need prior to 2000 to build this model. He finds that a log-linear trend
model seems better suited for modeling AstraZeneca’s sales than does a linear
trend model. However, the Durbin—Watson statistic from the log-linear regres-
sion is just 0.7064, which causes him to reject the hypothesis that the errors in
the regression are serially uncorrelated. He concludes that he cannot model the
log of AstraZeneca’s quarterly sales using only a time trend line. He decides to
model the log of AstraZeneca’s quarterly sales using an AR(1) model. He uses
In Sales, = by + b;(In Sales,_;) + €,

Before he estimates this regression, the analyst should use the Dickey—Fuller
test to determine whether there is a unit root in the log of AstraZeneca’s quarterly
sales. If he uses the sample of quarterly data on AstraZeneca’s sales from the
first quarter of 2000 through the fourth quarter of 2011, takes the natural log
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of each observation, and computes the Dickey—Fuller ¢-test statistic, the value
of that statistic might cause him to fail to reject the null hypothesis that there
is a unit root in the log of AstraZeneca’s quarterly sales.

If a time series appears to have a unit root, how should we model it? One method
that is often successful is to model the first-differenced series as an autoregressive
time series. The following example demonstrates this method.

EXAMPLE 12

AstraZeneca’s Quarterly Sales (2)

1. The plot of the log of AstraZeneca’s quarterly sales is shown in Exhibit 20.
By looking at the plot, Berglin is convinced that the log of quarterly sales is
not covariance stationary (that it has a unit root).

Exhibit 20: Log of AstraZeneca’s Quarterly Sales

Ln ($ millions)
10,000

8,000 r

6,000 r

4,000

2,000 r

Source: Compustat.

So he creates a new series, y;, that is the first difference of the log of Astra-
Zeneca’s quarterly sales. Exhibit 21 shows that series.

Berglin compares Exhibit 21 to Exhibit 20 and notices that first-differencing
the log of AstraZeneca’s quarterly sales eliminates the strong upward trend
that was present in the log of AstraZeneca’s sales. Because the first-differ-
enced series has no strong trend, Berglin is better off assuming that the
differenced series is covariance stationary rather than assuming that Astra-
Zeneca’s sales or the log of AstraZeneca’s sales is a covariance-stationary
time series.
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Exhibit 21: Log Difference, AstraZeneca’s Quarterly Sales

Ln Difference
0.2

0.1

00 02 04 06 08 10 12

Year

Source: Compustat.

Now suppose Berglin decides to model the new series using an AR(1) mod-
el. Berglin uses In(Sales,) — In(Sales;_;) = by + b;[In(Sales,_;) — In(Sales;_,)]
+ &;. Exhibit 22 shows the results of that regression.

Exhibit 22: Log Differenced Sales: AR(1) Model of AstraZeneca

Quarterly Observations, January 2000-December 2011

Regression Statistics

R? 0.3005
Standard error 0.0475
Observations 48
Durbin—Watson 1.6874

Coefficient Standard Error t-Statistic
Intercept 0.0222 0.0071 3.1268
In Sales,_; - -0.5493 0.1236 -4.4442
In Sales,_,

Autocorrelations of the Residual

Lag Autocorrelation Standard Error t-Statistic
1 0.2809 0.1443 1.9466
2 -0.0466 0.1443 -0.3229
3 0.0081 0.1443 0.0561
4 0.2647 0.1443 1.8344

Source: Compustat.

The lower part of Exhibit 22 suggests that the first four autocorrelations of
residuals in this model are not statistically significant. With 48 observations
and two parameters, this model has 46 degrees of freedom. The critical

145



© CFA Institute. For candidate use only. Not for distribution.
146 Learning Module 5 Time-Series Analysis

value for a ¢-statistic in this model is above 2.0 at the 0.05 significance level.
None of the ¢-statistics for these autocorrelations has an absolute value
larger than 2.0. Therefore, we fail to reject the null hypotheses that each of
these autocorrelations is equal to 0 and conclude instead that no significant
autocorrelation is present in the residuals.

This result suggests that the model is well specified and that we could use
the estimates. Both the intercept (b, = 0.0222) and the coefficient (b | =

-0.5493) on the first lag of the new first-differenced series are statistically
significant.

1. Explain how to interpret the estimated coefficients in the model.

Solution:

The value of the intercept (0.0222) implies that if sales have not changed in
the current quarter (y, = In Sales, — In Sales;_; = 0), sales will grow by 2.22%
next quarter.8 If sales have changed during this quarter, however, the model
predicts that sales will grow by 2.22% minus 0.5493 times the sales growth in
this quarter.

2. AstraZeneca’s sales in the third and fourth quarters of 2011 were
$8,405 million and $8,872 million, respectively. If we use the previous
model soon after the end of the fourth quarter of 2011, what will be
the predicted value of AstraZeneca’s sales for the first quarter of 2012?

Solution:

Let us say that ¢ is the fourth quarter of 2011, so ¢ — 1 is the third quarter
of 2011 and £ + 1 is the first quarter of 2012. Then we would have to com-
pute 7,1 = 0.0222 - 0.5493y,. To compute ¥,,;, we need to know y, = In
Sales, — In Sales;_;. In the third quarter of 2011, AstraZeneca’s sales were
$8,405 million, so In Sales,_; = In 8,405 = 9.0366. In the fourth quarter

of 2011, AstraZeneca’s sales were $8,872 million, so In Sales, = In 8,872
=9.0907. Thus y; = 9.0907 - 9.0366 = 0.0541. Therefore, 7,,; = 0.0222 —
0.5493(0.0541) = -0.0075. If 7,1 = —0.0075, then —0.0075 = In Sales,, ; — In
Sales; = In(Sales,, ;/Sales,). If we exponentiate both sides of this equation,
the result is

000075 — et
Sales;

Sales,,; = Sales,e 0-0075

= $8, 872 million x 0.9925
= $8,805 million.

Thus, based on fourth quarter sales for 2011, this model would have pre-
dicted that AstraZeneca’s sales in the first quarter of 2012 would be $8,805
million. This sales forecast might have affected our decision to buy Astra-
Zeneca’s stock at the time.

8 Note that 2.22 percent is the exponential growth rate, not [(Current quarter sales/Previous quarter sales)
— 1]. The difference between these two methods of computing growth is usually small.
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MOVING-AVERAGE TIME-SERIES MODELS

So far, many of the forecasting models we have used have been autoregressive models.
Because most financial time series have the qualities of an autoregressive process,
autoregressive time-series models are probably the most frequently used time-series
models in financial forecasting. Some financial time series, however, seem to more
closely follow another kind of time-series model, called a moving-average model. For
example, as we will show, returns on the S&P BSE 100 Index can be better modeled
as a moving-average process than as an autoregressive process.

In this section, we present the fundamentals of moving-average models so that
you can ask the right questions when considering their use. We first discuss how to
smooth past values with a moving average and then how to forecast a time series
using a moving-average model. Even though both methods include the words “moving
average” in the name, they are very different.

Smoothing Past Values with an n-Period Moving Average

Suppose you are analyzing the long-term trend in the past sales of a company. In
order to focus on the trend, you may find it useful to remove short-term fluctuations
or noise by smoothing out the time series of sales. One technique to smooth out
period-to-period fluctuations in the value of a time series is an n-period moving
average. An n-period moving average of the current and past n — 1 values of a time
series, x,, is calculated as

XXt XD

7 (11)

The following example demonstrates how to compute a moving average of AstraZeneca’s
quarterly sales.

EXAMPLE 13

AstraZeneca’s Quarterly Sales (3)

Suppose we want to compute the four-quarter moving average of AstraZeneca’s
sales as of the beginning of the first quarter of 2012. AstraZeneca’s sales in the
previous four quarters were as follows: 1Q 2011, $8,490 million; 2Q 2011, $8,601
million; 3Q 2011, $8,405 million; and 4Q 2011, $8,872 million. The four-quarter
moving average of sales as of the beginning of the first quarter of 2012 is thus
(8,490 + 8,601 + 8,405 + 8,872)/4 = $8,592 million.

We often plot the moving average of a series with large fluctuations to help discern
any patterns in the data. Exhibit 23 shows monthly retail sales for the United States
from December 1995 to June 2019, along with a 12-month moving average of the
data (data from January 1995 are used to compute the 12-month moving average).

12
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Exhibit 23: Monthly US Real Retail Sales and 12-Month Moving Average of

Retail Sales
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Source: Bloomberg.

As Exhibit 23 shows, each year has a very strong peak in retail sales (December)
followed by a sharp drop in sales (January). Because of the extreme seasonality in the
data, a 12-month moving average can help us focus on the long-term movements
in retail sales instead of seasonal fluctuations. Note that the moving average does
not have the sharp seasonal fluctuations of the original retail sales data. Rather, the
moving average of retail sales grows steadily—for example, from 1995 through the
second half of 2008—and then declines for about a year and grows steadily thereafter.
We can see that trend more easily by looking at a 12-month moving average than by
looking at the time series itself.

Exhibit 24 shows monthly Europe Brent Crude Oil spot prices along with a
12-month moving average of oil prices. Although these data do not have the same
sharp regular seasonality displayed in the retail sales data in Exhibit 23, the moving
average smooths out the monthly fluctuations in oil prices to show the longer-term
movements.
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Exhibit 24: Monthly Europe Brent Crude Oil Price and 12-Month Moving

Average of Prices
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Source: US Energy Information Administration.

Exhibit 24 also shows one weakness with a moving average: It always lags large
movements in the actual data. For example, when oil prices rose quickly in late 2007
and the first half of 2008, the moving average rose only gradually. When oil prices
fell sharply toward the end of 2008, the moving average also lagged. Consequently,
a simple moving average of the recent past, though often useful in smoothing out a
time series, may not be the best predictor of the future. A main reason for this is that
a simple moving average gives equal weight to all the periods in the moving average.
In order to forecast the future values of a time series, it is often better to use a more
sophisticated moving-average time-series model. We discuss such models below.

Moving-Average Time-Series Models for Forecasting
Suppose that a time series, x,, is consistent with the following model:
x, =¢+0e_, E (8t) =0, E (etz) = o2,

12
cov(e,e,) = E(ee,) = 0fort # s. W

This equation is called a moving-average model of order 1, or simply an MA(1) model.
Theta () is the parameter of the MA(1) model.?

Equation 12 is a moving-average model because in each period, x; is a moving aver-
age of ¢, and g,_;, two uncorrelated random variables that each have an expected value
of zero. Unlike the simple moving-average model of Equation 11, this moving-average
model places different weights on the two terms in the moving average (1 on €, and
Ooneg, ;).

9 Note that a moving-average time-series model is very different from a simple moving average, as
discussed in Section 6.1. The simple moving average is based on observed values of a time series. In a
moving-average time-series model, we never directly observe &, or any other g,_;, but we can infer how a
particular moving-average model will imply a particular pattern of serial correlation for a time series, as
we will discuss.
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We can see if a time series fits an MA(1) model by looking at its autocorrelations
to determine whether x, is correlated only with its preceding and following values.
First, we examine the variance of x, in Equation 12 and its first two autocorrelations.
Because the expected value of x, is 0 in all periods and ¢, is uncorrelated with its own
past values, the first autocorrelation is not equal to 0, but the second and higher auto-
correlations are equal to 0. Further analysis shows that all autocorrelations except for
the first will be equal to 0 in an MA(1) model. Thus for an MA(1) process, any value
x; is correlated with x,_; and x,,; but with no other time-series values; we could say
that an MA(1) model has a memory of one period.

Of course, an MA(1) model is not the most complex moving-average model. A
qth-order moving-average model, denoted MA(g) and with varying weights on lagged
terms, can be written as

Xp =&t O1E gt +6qgt*q’ E(Sz) =0, E(Stz) = a2,

13
cov(e,e) = E(ge) = 0forz # s. -

How can we tell whether an MA(g) model fits a time series? We examine the auto-
correlations. For an MA(g) model, the first g autocorrelations will be significantly
different from 0, and all autocorrelations beyond that will be equal to 0; an MA(g)
model has a memory of g periods. This result is critical for choosing the right value
of g for an MA model. We discussed this result previously for the specific case of g =
1 that all autocorrelations except for the first will be equal to 0 in an MA(1) model.

How can we distinguish an autoregressive time series from a moving-average time
series? Once again, we do so by examining the autocorrelations of the time series
itself. The autocorrelations of most autoregressive time series start large and decline
gradually, whereas the autocorrelations of an MA(g) time series suddenly drop to 0
after the first g autocorrelations. We are unlikely to know in advance whether a time
series is autoregressive or moving average. Therefore, the autocorrelations give us our
best clue about how to model the time series. Most time series, however, are best
modeled with an autoregressive model.

EXAMPLE 14

(Historical Example)

A Time-Series Model for Monthly Returns on the S&P BSE
100 Index

The S&P BSE 100 Index is designed to reflect the performance of India’s top 100
large-cap companies listed on the BSE Ltd. (formerly Bombay Stock Exchange).
Are monthly returns on the S&P BSE 100 Index autocorrelated? If so, we may
be able to devise an investment strategy to exploit the autocorrelation. What is
an appropriate time-series model for S&P BSE 100 monthly returns?

Exhibit 25 shows the first six autocorrelations of returns to the S&P BSE 100
using monthly data from January 2000 through December 2013. Note that all
of the autocorrelations are quite small. Do they reach significance? With 168
observations, the critical value for a t-statistic in this model is about 1.98 at
the 0.05 significance level. None of the autocorrelations has a t-statistic larger
in absolute value than the critical value of 1.98. Consequently, we fail to reject
the null hypothesis that those autocorrelations, individually, do not differ sig-
nificantly from 0.
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Exhibit 25: Annualized Monthly Returns to the S&P BSE 100,

January 2000-December 2013

Autocorrelations

Lag Autocorrelation Standard Error t-Statistic
1 0.1103 0.0772 1.4288
2 -0.0045 0.0772 -0.0583
3 0.0327 0.0772 0.4236
4 0.0370 0.0772 0.4793
5 -0.0218 0.0772 -0.2824
6 0.0191 0.0772 0.2474
Observations 168

Source: BSE Ltd.

If returns on the S&P BSE 100 were an MA(g) time series, then the first g auto-
correlations would differ significantly from 0. None of the autocorrelations is
statistically significant, however, so returns to the S&P BSE 100 appear to come
from an MA(0) time series. An MA(0) time series in which we allow the mean
to be nonzero takes the following form:10

X, = ute, E(St) =0, E(Stz) = o2,

14
cov (e,6,) = E(ee,) = 0fort # s, 5

which means that the time series is not predictable. This result should not be
surprising, because most research suggests that short-term returns to stock
indexes are difficult to predict.

We can see from this example how examining the autocorrelations allowed
us to choose between the AR and MA models. If returns to the S&P BSE 100 had
come from an AR(1) time series, the first autocorrelation would have differed
significantly from 0 and the autocorrelations would have declined gradually.
Not even the first autocorrelation is significantly different from 0, however.
Therefore, we can be sure that returns to the S&P BSE 100 do not come from
an AR(1) model—or from any higher-order AR model, for that matter. This
finding is consistent with our conclusion that the S&P BSE 100 series is MA(0).

SEASONALITY IN TIME-SERIES MODELS 1 3

] explain how to test and correct for seasonality in a time-series model
and calculate and interpret a forecasted value using an AR model
with a seasonal lag

10 On the basis of investment theory and evidence, we expect that the mean monthly return on the S&P
BSE 100 is positive (p > 0). We can also generalize Equation 13 for an MA(g) time series by adding a
constant term, . Including a constant term in a moving-average model does not change the expressions
for the variance and autocovariances of the time series. A number of early studies of weak-form market
efficiency used Equation 14 as the model for stock returns. See Garbade (1982).
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As we analyze the results of the time-series models in this reading, we encounter
complications. One common complication is significant seasonality, a case in which
the series shows regular patterns of movement within the year. At first glance, sea-
sonality might appear to rule out using autoregressive time-series models. After all,
autocorrelations will differ by season. This problem can often be solved, however, by
using seasonal lags in an autoregressive model.

A seasonal lag is usually the value of the time series one year before the current
period, included as an extra term in an autoregressive model. Suppose, for example,
that we model a particular quarterly time series using an AR(1) model, x, = by + byx,_;
+ g, If the time series had significant seasonality, this model would not be correctly
specified. The seasonality would be easy to detect because the seasonal autocorrela-
tion (in the case of quarterly data, the fourth autocorrelation) of the error term would
differ significantly from 0. Suppose this quarterly model has significant seasonality. In
this case, we might include a seasonal lag in the autoregressive model and estimate

Xy =botbyxpy + x4t g (15)

to test whether including the seasonal lag would eliminate statistically significant
autocorrelation in the error term.

In Example 15 and Example 16, we illustrate how to test and adjust for seasonality

in a time-series model. We also illustrate how to compute a forecast using an autore-
gressive model with a seasonal lag.

EXAMPLE 15

Seasonality in Sales at Starbucks

1. Earlier, we concluded that we could not model the log of Starbucks’ quar-
terly sales using only a time-trend line (as shown in Example 3) because the
Durbin—Watson statistic from the regression provided evidence of positive
serial correlation in the error term. Based on methods presented in this
reading, we might next investigate using the first difference of log sales to
remove an exponential trend from the data to obtain a covariance-stationary
time series.

Using quarterly data from the last quarter of 2001 to the second quarter of
2019, we estimate the following AR(1) model using ordinary least squares:
(In Sales, — In Sales;_;) = by + b;(In Sales,_; — In Sales;_,) + €, Exhibit 26
shows the results of the regression.

Exhibit 26: Log Differenced Sales: AR(1) Model—Starbucks,

Quarterly Observations, 2001-2019

Regression Statistics

R? 0.2044
Standard error 0.0611
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Regression Statistics

Observations 72
Durbin—Watson 1.9904

Coefficient Standard Error t-Statistic
Intercept 0.0469 0.0080 5.8625
In Sales,_; - -0.4533 0.1069 -4.2404
In Sales,_,

Autocorrelations of the Residual

Lag Autocorrelation Standard Error t-Statistic
1 0.0051 0.1179 -0.0433
2 -0.1676 0.1179 -1.4218
3 -0.0130 0.1179 -0.1099
4 0.7630 0.1179 6.4720

Source: Bloomberg.

The first thing to note in Exhibit 26 is the strong seasonal autocorrelation of
the residuals. The bottom portion of the table shows that the fourth auto-
correlation has a value of 0.7630 and a ¢-statistic of 6. With 72 observations
and two parameters, this model has 70 degrees of freedom.!! The critical
value for a ¢-statistic is about 1.99 at the 0.05 significance level. Given this
value of the ¢-statistic, we must reject the null hypothesis that the fourth
autocorrelation is equal to 0 because the ¢-statistic is larger than the critical
value of 1.99.

In this model, the fourth autocorrelation is the seasonal autocorrelation
because this AR(1) model is estimated with quarterly data. Exhibit 26 shows
the strong and statistically significant seasonal autocorrelation that occurs
when a time series with strong seasonality is modeled without taking the
seasonality into account. Therefore, the AR(1) model is misspecified, and we
should not use it for forecasting.

Suppose we decide to use an autoregressive model with a seasonal lag
because of the seasonal autocorrelation. We are modeling quarterly data, so
we estimate Equation 15: (In Sales; — In Sales;_;) = by + b;(In Sales;_; — In
Sales;_,) + by(In Sales;_, — In Sales,_5) + €;,. Adding the seasonal difference In
Sales;_, — In Sales;_; is an attempt to remove a consistent quarterly pattern
in the data and could also eliminate a seasonal nonstationarity if one existed.
The estimates of this equation appear in Exhibit 27.

11 In this example, we restrict the start of the sample period to the beginning of 2001, and we do not use
prior observations for the lags. Accordingly, the number of observations decreases with an increase in the
number of lags. In Exhibit 26, the first observation is for the third quarter of 2001 because we use up to two
lags. In Exhibit 27, the first observation is for the second quarter of 2002 because we use up to five lags.
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Exhibit 27: Log Differenced Sales: AR(1) Model with Seasonal Lag—

Starbucks, Quarterly Observations, 2005-2019

Regression Statistics

R? 0.7032
Standard error 0.0373
Observations 69
Durbin—Watson 2.0392

Coefficient Standard Error t-Statistic
Intercept 0.0107 0.0059 1.8136
In Sales,_; - -0.1540 0.0729 -2.1125
In Sales,_,
In Sales, 4 — 0.7549 0.0720 10.4847
In Sales,_s

Autocorrelations of the Residual

Lag Autocorrelation Standard Error t-Statistic
1 0.0135 0.1204 0.1121
2 -0.0171 0.1204 -0.1420
3 0.1589 0.1204 1.3198
4 -0.1498 0.1204 -1.2442

Source: Compustat.

Note the autocorrelations of the residual shown at the bottom of Exhibit 27.
None of the ¢-statistics on the first four autocorrelations is now significant.
Because the overall regression is highly significant (an F-test, not shown in
the exhibit, is significant at the 0.01 level), we can take an AR(1) model with
a seasonal lag as a reasonable working model for Starbucks sales. (A model
having only a seasonal lag term was investigated and not found to improve
on this model.)

How can we interpret the coefficients in this model? To predict the cur-
rent quarter’s sales growth at Starbucks, we need to know two things: sales
growth in the previous quarter and sales growth four quarters ago. If sales
remained constant in each of those two quarters, the model in Exhibit 27
would predict that sales will grow by 0.0107 (1.07%) in the current quarter.
If sales grew by 1% last quarter and by 2% four quarters ago, then the model
would predict that sales growth this quarter will be 0.0107 — 0.0154(0.01) +
0.7549(0.02) = 0.0256, or 2.56%. Note that all of these growth rates are expo-
nential growth rates. Notice also that the R? in the model with the seasonal
lag (0.7032 in Exhibit 27) was more than three times higher than the R? in
the model without the seasonal lag (0.2044 in Exhibit 26). Again, the season-
al lag model does a much better job of explaining the data.
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EXAMPLE 16

(Historical Example)

Retail Sales Growth

We want to predict the growth in monthly retail sales of Canadian furniture
and home furnishing stores so that we can decide whether to recommend the
shares of these stores. We decide to use non-seasonally adjusted data on retail
sales. To begin with, we estimate an AR(1) model with observations on the
annualized monthly growth in retail sales from January 1995 to December 2012.
We estimate the following equation: Sales growth, = b, + b;(Sales growth, ;) +
g;. Exhibit 28 shows the results from this model.

The autocorrelations of the residuals from this model, shown at the bottom of
Exhibit 28, indicate that seasonality is extremely significant in this model. With
216 observations and two parameters, this model has 214 degrees of freedom.
At the 0.05 significance level, the critical value for a ¢-statistic is about 1.97. The
12th-lag autocorrelation (the seasonal autocorrelation, because we are using
monthly data) has a value of 0.7620 and a ¢-statistic of 11.21. The ¢-statistic on
this autocorrelation is larger than the critical value (1.97), implying that we can
reject the null hypothesis that the 12th autocorrelation is 0. Note also that many
of the other ¢-statistics for autocorrelations shown in the table differ significantly
from 0. Consequently, the model shown in Exhibit 28 is misspecified, so we
cannot rely on it to forecast sales growth.

Suppose we add the seasonal lag of sales growth (the 12th lag) to the AR(1)
model to estimate the equation Sales growth, = b, + b;(Sales growth, ;) +
by(Sales growth;_;5) + €. In this example, although we state that the sample
period begins in 1995, we use prior observations for the lags. This results in
the same number of observations irrespective of the number of lags. Exhibit
29 presents the results of estimating this equation. The estimated value of the
seasonal autocorrelation (the 12th autocorrelation) has fallen to —0.1168. None
of the first 12 autocorrelations has a ¢-statistic with an absolute value greater
than the critical value of 1.97 at the 0.05 significance level. We can conclude that
there is no significant serial correlation in the residuals from this model. Because
we can reasonably believe that the model is correctly specified, we can use it to
predict retail sales growth. Note that the R? in Exhibit 29 is 0.6724, much larger
than the R? in Exhibit 28 (computed by the model without the seasonal lag).

Exhibit 28: Monthly Retail Sales Growth of Canadian Furniture and

Home Furnishing Stores: AR(1) Model, January 1995-December
2012

Regression Statistics

R? 0.0509
Standard error 1.8198
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Regression Statistics

Observations 216
Durbin—Watson 2.0956

Coefficient Standard Error t-Statistic
Intercept 1.0518 0.1365 7.7055
Sales -0.2252 0.0665 -3.3865
growth,_;

Autocorrelations of the Residual

Lag Autocorrelation Standard Error t-Statistic
1 -0.0109 0.0680 -0.1603
2 -0.1949 0.0680 -2.8662
3 0.1173 0.0680 1.7250
4 -0.0756 0.0680 -1.1118
5 -0.1270 0.0680 -1.8676
6 -0.1384 0.0680 —-2.0353
7 -0.1374 0.0680 -2.0206
8 -0.0325 0.0680 -0.4779
9 0.1207 0.0680 1.7750
10 -0.2197 0.0680 -3.2309
11 -0.0342 0.0680 -0.5029
12 0.7620 0.0680 11.2059

Source: Statistics Canada (Government of Canada).

How can we interpret the coefficients in the model? To predict growth in retail
sales in this month, we need to know last month’s retail sales growth and retail
sales growth 12 months ago. If retail sales remained constant both last month
and 12 months ago, the model in Exhibit 29 would predict that retail sales will
grow at an annual rate of about 23.7% this month. If retail sales grew at an annual
rate of 10% last month and at an annual rate of 5% 12 months ago, the model in
Exhibit 29 would predict that retail sales will grow in the current month at an
annual rate of 0.2371 — 0.0792(0.10) + 0.7798(0.05) = 0.2682, or 26.8%.

Exhibit 29: Monthly Retail Sales Growth of Canadian Furniture and

Home Furnishing Stores: AR(1) Model with Seasonal Lag, January
1995-December 2012

Regression Statistics

R? 0.6724
Standard error 1.0717
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Regression Statistics

Observations 216
Durbin—Watson 2.1784

Coefficient Standard Error t-Statistic
Intercept 0.2371 0.0900 2.6344
Sales -0.0792 0.0398 -1.9899
growth,_;
Sales 0.7798 0.0388 20.0979
growth;_;

Autocorrelations of the Residual

Lag Autocorrelation Standard Error t-Statistic
1 -0.0770 0.0680 -1.1324
2 -0.0374 0.0680 -0.5500
3 0.0292 0.0680 0.4294
4 -0.0358 0.0680 -0.5265
5 -0.0399 0.0680 -0.5868
6 0.0227 0.0680 0.3338
7 -0.0967 0.0680 -1.4221
8 0.1241 0.0680 1.8250
9 0.0499 0.0680 0.7338
10 -0.0631 0.0680 -0.9279
11 0.0231 0.0680 0.3397
12 -0.1168 0.0680 -1.7176

Source: Statistics Canada (Government of Canada).

AR MOVING-AVERAGE MODELS AND ARCH MODELS 1 4

] explain autoregressive conditional heteroskedasticity (ARCH) and
describe how ARCH models can be applied to predict the variance of
a time series

So far, we have presented autoregressive and moving-average models as alternatives
for modeling a time series. The time series we have considered in examples have usu-
ally been explained quite well with a simple autoregressive model (with or without
seasonal lags).12 Some statisticians, however, have advocated using a more general
model, the autoregressive moving-average (ARMA) model. The advocates of ARMA
models argue that these models may fit the data better and provide better forecasts

12 For the returns on the S&P BSE 100 (see Example 14), we chose a moving-average model over an
autoregressive model.
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than do plain autoregressive (AR) models. However, as we discuss later in this section,
there are severe limitations to estimating and using these models. Because you may
encounter ARMA models, we next provide a brief overview.

An ARMA model combines both autoregressive lags of the dependent variable and
moving-average errors. The equation for such a model with p autoregressive terms
and g moving-average terms, denoted ARMA(p, g), is

xp = byt byxgte tbyx, te 018t 0,6,

16
E(gt) =0, E(gtz) = g% cov (gt,gs) = E(elgs) = O fort # s, (16)

where by, by, . . ., bp are the autoregressive parameters and 6;, 6, . . ., Gq are the
moving-average parameters.

Estimating and using ARMA models has several limitations. First, the parameters
in ARMA models can be very unstable. In particular, slight changes in the data sample
or the initial guesses for the values of the ARMA parameters can result in very different
final estimates of the ARMA parameters. Second, choosing the right ARMA model
is more of an art than a science. The criteria for deciding on p and g for a particular
time series are far from perfect. Moreover, even after a model is selected, that model
may not forecast well.

To reiterate, ARMA models can be very unstable, depending on the data sample
used and the particular ARMA model estimated. Therefore, you should be skeptical
of claims that a particular ARMA model provides much better forecasts of a time
series than any other ARMA model. In fact, in most cases, you can use an AR model
to produce forecasts that are just as accurate as those from ARMA models without
nearly as much complexity. Even some of the strongest advocates of ARMA models
admit that these models should not be used with fewer than 80 observations, and
they do not recommend using ARMA models for predicting quarterly sales or gross
margins for a company using even 15 years of quarterly data.

Autoregressive Conditional Heteroskedasticity Models

Up to now, we have ignored any issues of heteroskedasticity in time-series models and
have assumed homoskedasticity. Heteroskedasticity is the dependence of the error
term variance on the independent variable; homoskedasticity is the independence
of the error term variance from the independent variable. We have assumed that the
error term’s variance is constant and does not depend on the value of the time series
itself or on the size of previous errors. At times, however, this assumption is violated
and the variance of the error term is not constant. In such a situation, the standard
errors of the regression coefficients in AR, MA, or ARMA models will be incorrect,
and our hypothesis tests would be invalid. Consequently, we can make poor investment
decisions based on those tests.

For example, suppose you are building an autoregressive model of a company’s sales.
If heteroskedasticity is present, then the standard errors of the regression coefficients
of your model will be incorrect. It is likely that because of heteroskedasticity, one or
more of the lagged sales terms may appear statistically significant when in fact they
are not. Therefore, if you use this model for your decision making, you may make
some suboptimal decisions.

In work responsible in part for his shared 2003 Nobel Prize in Economics, Robert
E. Engle in 1982 first suggested a way of testing whether the variance of the error in
a particular time-series model in one period depends on the variance of the error in
previous periods. He called this type of heteroskedasticity “autoregressive conditional
heteroskedasticity” (ARCH).

As an example, consider the ARCH(1) model

8t~N(O,a0+a18t2,1), (17)
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where the distribution of ¢, conditional on its value in the previous period, ¢;_;,
is normal, with mean 0 and variance ay + a; &7 ;. If a; = 0, the variance of the error
in every period is just a,. The variance is constant over time and does not depend on
past errors. Now suppose that a; > 0. Then the variance of the error in one period
depends on how large the squared error was in the previous period. If a large error
occurs in one period, the variance of the error in the next period will be even larger.

Engle showed that we can test whether a time series is ARCH(1) by regressing
the squared residuals from a previously estimated time-series model (AR, MA, or
ARMA) on a constant and one lag of the squared residuals. We can estimate the
linear regression equation

a2 — a2

8f = agtaéi tu, (18)
where u, is an error term. If the estimate of a; is statistically significantly different

from zero, we conclude that the time series is ARCH(1). If a time-series model has

ARCH(1) errors, then the variance of the errors in period ¢ + 1 can be predicted in

period ¢ using the formula 67,, = @, + a,8%

EXAMPLE 17

Testing for ARCH(1) in Monthly Inflation

Analyst Lisette Miller wants to test whether monthly data on CPI inflation con-
tain autoregressive conditional heteroskedasticity. She could estimate Equation
18 using the residuals from the time-series model. Based on the analyses in
Examples 6 through 9, she has concluded that if she modeled monthly CPI
inflation from 1995 to 2018, there would not be much difference in the perfor-
mance of AR(1) and AR(2) models in forecasting inflation. The analyst looked
at the AR(1) model for 2008—2018, found it sufficient, and decided to further
explore the AR(1) model for the entire period, 1995-2018. She decides to further
explore the AR(1) model for the entire period 1995 to 2018. Exhibit 30 shows
the results of testing whether the errors in that model are ARCH(1). Because
the test involves the first lag of residuals of the estimated time-series model, the
number of observations in the test is one less than that in the model.

The t-statistic for the coefficient on the previous period’s squared residu-
als is greater than 4.8. Therefore, Miller easily rejects the null hypothesis that
the variance of the error does not depend on the variance of previous errors.
Consequently, the test statistics she computed in Exhibits 6 through 9 are not
valid, and she should not use them in deciding her investment strategy.

Exhibit 30: Test for ARCH(1) in an AR(1) Model: Residuals from

Monthly CPI Inflation at an Annual Rate, March 1995-December
2018

Regression Statistics

R2 0.0759
Standard error 23.7841
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Regression Statistics

Observations 286
Durbin—Watson 2.0569

Coefficient Standard Error t-Statistic
Intercept 6.3626 1.4928 4.2622
5%—1 0.2754 0.0570 4.8316

Source: US Bureau of Labor Statistics.

It is possible Miller’s conclusion—that the AR(1) model for monthly inflation has
ARCH in the errors—may have been due to the sample period used (1995-2018).
In Example 9, she used a shorter sample period, 2008—2018, and concluded that
monthly CPI inflation follows an AR(1) process. (These results were shown in
Exhibit 16.) Exhibit 30 shows that errors for a time-series model of inflation for
the entire sample (1995-2018) have ARCH errors. Do the errors estimated with
a shorter sample period (2008—-2018) also display ARCH? For the shorter sample
period, Miller estimated an AR(1) model using monthly inflation data. Now
she tests to see whether the errors display ARCH. Exhibit 31 shows the results.

In this sample, the coefficient on the previous period’s squared residual has
a t-statistic of 4.0229. Consequently, Miller rejects the null hypothesis that the
errors in this regression have no autoregressive conditional heteroskedasticity.
The error variance appears to be heteroskedastic, and Miller cannot rely on the
t-statistics.

Exhibit 31: Test for ARCH(1) in an AR(1) Model: Monthly CPI

Inflation at an Annual Rate, February 2008-December 2018

Regression Statistics

R2 0.1113
Standard error 24.64
Observations 131
Durbin—Watson 2.0385

Coefficient Standard Error t-Statistic
Intercept 6.2082 2.2873 2.7142
5?71 0.3336 0.0830 4.0229

Source: US Bureau of Labor Statistics.

Suppose a model contains ARCH(1) errors. What are the consequences of that fact?
First, if ARCH exists, the standard errors for the regression parameters will not be
correct. We will need to use generalized least squares!2 or other methods that correct
for heteroskedasticity to correctly estimate the standard error of the parameters in the
time-series model. Second, if ARCH exists and we have it modeled—for example, as
ARCH(1)—we can predict the variance of the errors. Suppose, for instance, that we
want to predict the variance of the error in inflation using the estimated parameters

13 See Greene (2018).
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from Exhibit 30: 67 = 6.3626 + 0.2754£% . If the error in one period were 0%, the
predicted variance of the error in the next period would be 6.3626 + 0.2754(0) =
6.3626. If the error in one period were 1%, the predicted variance of the error in the
next period would be 6.3626 + 0.2754(12) = 6.6380.

Engle and other researchers have suggested many generalizations of the ARCH(1)
model, including ARCH(p) and generalized autoregressive conditional heteroskedas-
ticity (GARCH) models. In an ARCH(p) model, the variance of the error term in the
current period depends linearly on the squared errors from the previous p periods:
0f = ag+aye}q+ - +ﬂp5r2—p- GARCH models are similar to ARMA models of
the error variance in a time series. Just like ARMA models, GARCH models can be
finicky and unstable: Their results can depend greatly on the sample period and the
initial guesses of the parameters in the GARCH model. Financial analysts who use
GARCH models should be well aware of how delicate these models can be, and they
should examine whether GARCH estimates are robust to changes in the sample and
the initial guesses about the parameters.!#

REGRESSIONS WITH MORE THAN ONE TIME SERIES

] explain how time-series variables should be analyzed for
nonstationarity and/or cointegration before use in a linear regression

Up to now, we have discussed time-series models only for one time series. Although in
the readings on correlation and regression and on multiple regression we used linear
regression to analyze the relationship among different time series, in those readings we
completely ignored unit roots. A time series that contains a unit root is not covariance
stationary. If any time series in a linear regression contains a unit root, ordinary least
squares estimates of regression test statistics may be invalid.

To determine whether we can use linear regression to model more than one time
series, let us start with a single independent variable; that is, there are two time series,
one corresponding to the dependent variable and one corresponding to the indepen-
dent variable. We will then extend our discussion to multiple independent variables.

We first use a unit root test, such as the Dickey—Fuller test, for each of the two
time series to determine whether either of them has a unit root.!> There are several
possible scenarios related to the outcome of these tests. One possible scenario is that
we find that neither of the time series has a unit root. Then we can safely use linear
regression to test the relations between the two time series. Otherwise, we may have
to use additional tests, as we discuss later in this section.

EXAMPLE 18

Unit Roots and the Fisher Effect

Researchers at an asset management firm examined the Fisher effect by estimating
the regression relation between expected inflation and US Treasury bill (T-bill)
returns. They used 181 quarterly observations on expected inflation rates and
T-bill returns from the sample period extending from the fourth quarter of 1968
through the fourth quarter of 2013. They used linear regression to analyze the

14 For more on ARCH, GARCH, and other models of time-series variance, see Hamilton (1994).
15 For theoretical details of unit root tests, see Greene (2018) or Tsay (2010). Unit root tests are available
in some econometric software packages, such as EViews.
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relationship between the two time series. The results of this regression would
be valid if both time series are covariance stationary; that is, neither of the two
time series has a unit root. So, if they compute the Dickey—Fuller ¢-test statistic
of the hypothesis of a unit root separately for each time series and find that they
can reject the null hypothesis that the T-bill return series has a unit root and the
null hypothesis that the expected inflation time series has a unit root, then they
can use linear regression to analyze the relation between the two series. In that
case, the results of their analysis of the Fisher effect would be valid.

A second possible scenario is that we reject the hypothesis of a unit root for the
independent variable but fail to reject the hypothesis of a unit root for the dependent
variable. In this case, the error term in the regression would not be covariance station-
ary. Therefore, one or more of the following linear regression assumptions would be
violated: (1) that the expected value of the error term is 0, (2) that the variance of the
error term is constant for all observations, and (3) that the error term is uncorrelated
across observations. Consequently, the estimated regression coefficients and standard
errors would be inconsistent. The regression coefficients might appear significant, but
those results would be spurious.!® Thus we should not use linear regression to analyze
the relation between the two time series in this scenario.

A third possible scenario is the reverse of the second scenario: We reject the
hypothesis of a unit root for the dependent variable but fail to reject the hypothesis
of a unit root for the independent variable. In this case also, like the second scenario,
the error term in the regression would not be covariance stationary, and we cannot
use linear regression to analyze the relation between the two time series.

EXAMPLE 19

(Historical Example)

Unit Roots and Predictability of Stock Market Returns by
Price-to-Earnings Ratio

Johann de Vries is analyzing the performance of the South African stock market.
He examines whether the percentage change in the Johannesburg Stock Exchange
(JSE) All Share Index can be predicted by the price-to-earnings ratio (P/E) for
the index. Using monthly data from January 1994 to December 2013, he runs
a regression using (P; — P;_;)/P;_; as the dependent variable and P,_;/E;_, as
the independent variable, where P, is the value of the JSE index at time ¢ and
E, is the earnings on the index. De Vries finds that the regression coefficient is
negative and statistically significant and the value of the R? for the regression
is quite high. What additional analysis should he perform before accepting the
regression as valid?

De Vries needs to perform unit root tests for each of the two time series.
If one of the two time series has a unit root, implying that it is not stationary;,
the results of the linear regression are not meaningful and cannot be used to
conclude that stock market returns are predictable by P/E.17

The next possibility is that both time series have a unit root. In this case, we
need to establish whether the two time series are cointegrated before we can rely
on regression analysis.!® Two time series are cointegrated if a long-term financial or

16 The problem of spurious regression for nonstationary time series was first discussed by Granger and
Newbold (1974).

17 Barr and Kantor (1999) contains evidence that the P/E time series is nonstationary.

18 Engle and Granger (1987) first discussed cointegration.
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economic relationship exists between them such that they do not diverge from each
other without bound in the long run. For example, two time series are cointegrated
if they share a common trend.

In the fourth scenario, both time series have a unit root but are not cointegrated.
In this scenario, as in the second and third scenarios, the error term in the linear
regression will not be covariance stationary, some regression assumptions will be
violated, the regression coefficients and standard errors will not be consistent, and we
cannot use them for hypothesis tests. Consequently, linear regression of one variable
on the other would be meaningless.

Finally, the fifth possible scenario is that both time series have a unit root but they
are cointegrated. In this case, the error term in the linear regression of one time series
on the other will be covariance stationary. Accordingly, the regression coefficients and
standard errors will be consistent, and we can use them for hypothesis tests. However,
we should be very cautious in interpreting the results of a regression with cointegrated
variables. The cointegrated regression estimates the long-term relation between the
two series but may not be the best model of the short-term relation between the two
series. Short-term models of cointegrated series (error correction models) are dis-
cussed in Engle and Granger (1987) and Tsay (2010), but these are specialist topics.

Now let us look at how we can test for cointegration between two time series
that each have a unit root, as in the fourth and fifth scenarios.!® Engle and Granger
suggested the following test. If y, and «x; are both time series with a unit root, we
should do the following:

1. Estimate the regression y, = by + b1x; + €,

2. Test whether the error term from the regression in Step 1 has a unit root
using a Dickey—Fuller test. Because the residuals are based on the estimated
coefficients of the regression, we cannot use the standard critical values for
the Dickey—Fuller test. Instead, we must use the critical values computed by
Engle and Granger, which take into account the effect of uncertainty about
the regression parameters on the distribution of the Dickey—Fuller test.

3. If the (Engle—Granger) Dickey—Fuller test fails to reject the null hypothesis
that the error term has a unit root, then we conclude that the error term in
the regression is not covariance stationary. Therefore, the two time series
are not cointegrated. In this case, any regression relation between the two
series is spurious.

4. 1If the (Engle—Granger) Dickey—Fuller test rejects the null hypothesis that
the error term has a unit root, then we may assume that the error term
in the regression is covariance stationary and that the two time series are
cointegrated. The parameters and standard errors from linear regression will
be consistent and will let us test hypotheses about the long-term relation
between the two series.

19 Consider a time series, x;, that has a unit root. For many such financial and economic time series, the
first difference of the series, x; — x;_;, is stationary. We say that such a series, whose first difference is sta-
tionary, has a single unit root. However, for some time series, even the first difference may not be stationary
and further differencing may be needed to achieve stationarity. Such a time series is said to have multiple
unit roots. In this section, we consider only the case in which each nonstationary series has a single unit
root (which is quite common).
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EXAMPLE 20

Testing for Cointegration between Intel Sales and
Nominal GDP

Suppose we want to test whether the natural log of Intel’s sales and the natural log
of GDP are cointegrated (that is, whether there is a long-term relation between
GDP and Intel sales). We want to test this hypothesis using quarterly data from
the first quarter of 1995 through the fourth quarter of 2019. Here are the steps:

1. Test whether the two series each have a unit root. If we cannot reject
the null hypothesis of a unit root for both series, implying that both
series are nonstationary, we must then test whether the two series are
cointegrated.

2. Having established that each series has a unit root, we estimate the
regression In Intel sales, = by + b;(In GDP)) + ¢;, then conduct the
(Engle—Granger) Dickey—Fuller test of the hypothesis that there is a
unit root in the error term of this regression using the residuals from
the estimated regression. If we reject the null hypothesis of a unit root
in the error term of the regression, we reject the null hypothesis of
no cointegration. That is, the two series would be cointegrated. If the
two series are cointegrated, we can use linear regression to estimate
the long-term relation between the natural log of Intel sales and the
natural log of GDP.

We have so far discussed models with a single independent variable. We now
extend the discussion to a model with two or more independent variables, so that
there are three or more time series. The simplest possibility is that none of the time
series in the model has a unit root. Then, we can safely use multiple regression to test
the relation among the time series.

EXAMPLE 21

Unit Roots and Returns to the Fidelity Select Technology
Fund

In earlier coverage of multiple regression, we used a multiple linear regression
model to examine whether returns to either the S&P 500 Growth Index or the
S&P 500 Value Index explain returns to the Fidelity Select Technology Portfolio
using monthly observations between October 2015 and August 2019. Of course,
if any of the three time series has a unit root, then the results of our regression
analysis may be invalid. Therefore, we could use a Dickey—Fuller test to deter-
mine whether any of these series has a unit root.

If we reject the hypothesis of unit roots for all three series, we can use linear
regression to analyze the relation among the series. In that case, the results of
our analysis of the factors affecting returns to the Fidelity Select Technology
Portfolio would be valid.

If at least one time series (the dependent variable or one of the independent vari-
ables) has a unit root while at least one time series (the dependent variable or one
of the independent variables) does not, the error term in the regression cannot be
covariance stationary. Consequently, we should not use multiple linear regression to
analyze the relation among the time series in this scenario.
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Another possibility is that each time series, including the dependent variable
and each of the independent variables, has a unit root. If this is the case, we need
to establish whether the time series are cointegrated. To test for cointegration, the
procedure is similar to that for a model with a single independent variable. First,
estimate the regression y, = by + b1x1; + byxo; + . . . + byxy, + €, Then conduct the
(Engle—Granger) Dickey—Fuller test of the hypothesis that there is a unit root in the
errors of this regression using the residuals from the estimated regression.

If we cannot reject the null hypothesis of a unit root in the error term of the regres-
sion, we cannot reject the null hypothesis of no cointegration. In this scenario, the
error term in the multiple regression will not be covariance stationary, so we cannot
use multiple regression to analyze the relationship among the time series.

If we can reject the null hypothesis of a unit root in the error term of the regression,
we can reject the null hypothesis of no cointegration. However, modeling three or more
time series that are cointegrated may be difficult. For example, an analyst may want
to predict a retirement services company’s sales based on the country’s GDP and the
total population over age 65. Although the company’s sales, GDP, and the population
over 65 may each have a unit root and be cointegrated, modeling the cointegration
of the three series may be difficult, and doing so is beyond the scope of this volume.
Analysts who have not mastered all these complex issues should avoid forecasting
models with multiple time series that have unit roots; the regression coefficients may
be inconsistent and may produce incorrect forecasts.

OTHER ISSUES IN TIME SERIES

] determine an appropriate time-series model to analyze a given
investment problem and justify that choice

Time-series analysis is an extensive topic and includes many highly complex issues.
Our objective in this reading has been to present those issues in time series that are
the most important for financial analysts and can also be handled with relative ease.
In this section, we briefly discuss some of the issues that we have not covered but
could be useful for analysts.

In this reading, we have shown how to use time-series models to make forecasts.
We have also introduced the RMSE as a criterion for comparing forecasting models.
However, we have not discussed measuring the uncertainty associated with forecasts
made using time-series models. The uncertainty of these forecasts can be very large,
and should be taken into account when making investment decisions. Fortunately, the
same techniques apply to evaluating the uncertainty of time-series forecasts as apply
to evaluating the uncertainty about forecasts from linear regression models. To accu-
rately evaluate forecast uncertainty, we need to consider both the uncertainty about
the error term and the uncertainty about the estimated parameters in the time-series
model. Evaluating this uncertainty is fairly complicated when using regressions with
more than one independent variable.

In this reading, we used the US CPI inflation series to illustrate some of the prac-
tical challenges analysts face in using time-series models. We used information on US
Federal Reserve policy to explore the consequences of splitting the inflation series in
two. In financial time-series work, we may suspect that a time series has more than
one regime but lack the information to attempt to sort the data into different regimes.
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If you face such a problem, you may want to investigate other methods, especially
switching regression models, to identify multiple regimes using only the time series

itself.

If you are interested in these and other advanced time-series topics, you can learn
more from Diebold (2008) and Tsay (2010).

Suggested Steps in Time-Series Forecasting

The following is a step-by-step guide to building a model to predict a time series.

1.

Understand the investment problem you have, and make an initial choice

of model. One alternative is a regression model that predicts the future
behavior of a variable based on hypothesized causal relationships with other
variables. Another is a time-series model that attempts to predict the future
behavior of a variable based on the past behavior of the same variable.

If you have decided to use a time-series model, compile the time series and
plot it to see whether it looks covariance stationary. The plot might show
important deviations from covariance stationarity, including the following:

e alinear trend,
¢ an exponential trend,
e seasonality, or

» asignificant shift in the time series during the sample period (for exam-
ple, a change in mean or variance).

If you find no significant seasonality or shift in the time series, then perhaps
either a linear trend or an exponential trend will be sufficient to model the
time series. In that case, take the following steps:

¢ Determine whether a linear or exponential trend seems most reasonable
(usually by plotting the series).

e Estimate the trend.
e Compute the residuals.

¢ Use the Durbin—Watson statistic to determine whether the residuals
have significant serial correlation. If you find no significant serial correla-
tion in the residuals, then the trend model is sufficient to capture the
dynamics of the time series and you can use that model for forecasting.

If you find significant serial correlation in the residuals from the trend
model, use a more complex model, such as an autoregressive model. First,
however, reexamine whether the time series is covariance stationary. The
following is a list of violations of stationarity, along with potential methods
to adjust the time series to make it covariance stationary:

e [f the time series has a linear trend, first-difference the time series.

e If the time series has an exponential trend, take the natural log of the
time series and then first-difference it.

¢ If the time series shifts significantly during the sample period, estimate
different time-series models before and after the shift.

« If the time series has significant seasonality, include seasonal lags (dis-
cussed in Step 7).
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5. After you have successfully transformed a raw time series into a covari-
ance-stationary time series, you can usually model the transformed series
with a short autoregression.?? To decide which autoregressive model to use,
take the following steps:

e Estimate an AR(1) model.

o Test to see whether the residuals from this model have significant serial
correlation.

e Ifyou find no significant serial correlation in the residuals, you can use
the AR(1) model to forecast.

6. If you find significant serial correlation in the residuals, use an AR(2) model
and test for significant serial correlation of the residuals of the AR(2) model.

¢ Ifyou find no significant serial correlation, use the AR(2) model.

e Ifyou find significant serial correlation of the residuals, keep increas-
ing the order of the AR model until the residual serial correlation is no
longer significant.

7. Your next move is to check for seasonality. You can use one of two
approaches:

¢ Graph the data and check for regular seasonal patterns.

¢ Examine the data to see whether the seasonal autocorrelations of the
residuals from an AR model are significant (for example, the fourth auto-
correlation for quarterly data) and whether the autocorrelations before
and after the seasonal autocorrelations are significant. To correct for
seasonality, add seasonal lags to your AR model. For example, if you are
using quarterly data, you might add the fourth lag of a time series as an
additional variable in an AR(1) or an AR(2) model.

8. Next, test whether the residuals have autoregressive conditional heteroske-
dasticity. To test for ARCH(1), for example, do the following:

¢ Regress the squared residual from your time-series model on a lagged
value of the squared residual.

¢ Test whether the coefficient on the squared lagged residual differs sig-
nificantly from 0.

e If the coefficient on the squared lagged residual does not differ signifi-
cantly from 0, the residuals do not display ARCH and you can rely on
the standard errors from your time-series estimates.

¢ If the coefficient on the squared lagged residual does differ significantly

from 0, use generalized least squares or other methods to correct for
ARCH.

9. Finally, you may also want to perform tests of the model’s out-of-sample
forecasting performance to see how the model’s out-of-sample performance
compares to its in-sample performance.

20 Most financial time series can be modeled using an autoregressive process. For a few time series, a
moving-average model may fit better. To see whether this is the case, examine the first five or six autocor-
relations of the time series. If the autocorrelations suddenly drop to 0 after the first g autocorrelations, a
moving-average model (of order g) is appropriate. If the autocorrelations start large and decline gradually,
an autoregressive model is appropriate.
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Using these steps in sequence, you can be reasonably sure that your model is
correctly specified.

SUMMARY

The predicted trend value of a time series in period ¢ is 50 + I;\lt in a linear
trend model; the predicted trend value of a time series in a log-linear trend
model is e?ot01t,

Time series that tend to grow by a constant amount from period to period

should be modeled by linear trend models, whereas time series that tend to
grow at a constant rate should be modeled by log-linear trend models.

Trend models often do not completely capture the behavior of a time series,
as indicated by serial correlation of the error term. If the Durbin—Watson
statistic from a trend model differs significantly from 2, indicating serial
correlation, we need to build a different kind of model.

An autoregressive model of order p, denoted AR(p), uses p lags of a time
series to predict its current value: x, = by + byx, 1 + byx, o + ... + bpxt_p +
€

A time series is covariance stationary if the following three conditions are
satisfied: First, the expected value of the time series must be constant and
finite in all periods. Second, the variance of the time series must be con-
stant and finite in all periods. Third, the covariance of the time series with
itself for a fixed number of periods in the past or future must be constant
and finite in all periods. Inspection of a nonstationary time-series plot may
reveal an upward or downward trend (nonconstant mean) and/or noncon-
stant variance. The use of linear regression to estimate an autoregressive
time-series model is not valid unless the time series is covariance stationary.

For a specific autoregressive model to be a good fit to the data, the autocor-
relations of the error term should be 0 at all lags.

A time series is mean reverting if it tends to fall when its level is above its
long-run mean and rise when its level is below its long-run mean. If a time
series is covariance stationary, then it will be mean reverting.

The one-period-ahead forecast of a variable x; from an AR(1) model made
in period ¢ for period t + 1is ¥,,; = 50 + 51 x;. This forecast can be used
to create the two-period-ahead forecast from the model made in period

L ®po = 1;\0 + 1,9\1 %;,1. Similar results hold for AR(p) models.

In-sample forecasts are the in-sample predicted values from the estimated
time-series model. Out-of-sample forecasts are the forecasts made from the
estimated time-series model for a time period different from the one for
which the model was estimated. Out-of-sample forecasts are usually more
valuable in evaluating the forecasting performance of a time-series model
than are in-sample forecasts. The root mean squared error (RMSE), defined
as the square root of the average squared forecast error, is a criterion for
comparing the forecast accuracy of different time-series models; a smaller
RMSE implies greater forecast accuracy.

Just as in regression models, the coefficients in time-series models are often
unstable across different sample periods. In selecting a sample period for
estimating a time-series model, we should seek to assure ourselves that the
time series was stationary in the sample period.
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= A random walk is a time series in which the value of the series in one period
is the value of the series in the previous period plus an unpredictable ran-
dom error. If the time series is a random walk, it is not covariance station-
ary. A random walk with drift is a random walk with a nonzero intercept
term. All random walks have unit roots. If a time series has a unit root, then
it will not be covariance stationary.

= If a time series has a unit root, we can sometimes transform the time
series into one that is covariance stationary by first-differencing the time
series; we may then be able to estimate an autoregressive model for the
first-differenced series.

= An n-period moving average of the current and past (n — 1) values of a time
series, x,, is calculated as [x, + x,_1 + ... + x;_(,_1)]/7.

= A moving-average model of order ¢, denoted MA(q), uses ¢q lags of a ran-
dom error term to predict its current value.

= The order g of a moving-average model can be determined using the fact
that if a time series is a moving-average time series of order g, its first g
autocorrelations are nonzero while autocorrelations beyond the first g are
zero.

= The autocorrelations of most autoregressive time series start large and
decline gradually, whereas the autocorrelations of an MA(g) time series sud-
denly drop to O after the first g autocorrelations. This helps in distinguishing
between autoregressive and moving-average time series.

= If the error term of a time-series model shows significant serial correlation
at seasonal lags, the time series has significant seasonality. This season-
ality can often be modeled by including a seasonal lag in the model, such
as adding a term lagged four quarters to an AR(1) model on quarterly
observations.

= The forecast made in time ¢ for time ¢ + 1 using a quarterly AR(1) model
with a seasonal lag would be x,,; = bo +b 1%+ b2xt 3

=  ARMA models have several limitations: The parameters in ARMA models
can be very unstable; determining the AR and MA order of the model can
be difficult; and even with their additional complexity, ARMA models may
not forecast well.

= The variance of the error in a time-series model sometimes depends on
the variance of previous errors, representing autoregressive conditional
heteroskedasticity (ARCH). Analysts can test for first-order ARCH in a
time-series model by regressing the squared residual on the squared residual
from the previous period. If the coefficient on the squared residual is statis-
tically significant, the time-series model has ARCH(1) errors.

= If a time-series model has ARCH(1) errors, then the variance of the
errors in period ¢ + 1 can be predicted in period ¢ using the for-
mula 67, = g+ a7

= Iflinear regression is used to model the relationship between two time
series, a test should be performed to determine whether either time series
has a unit root:

¢ If neither of the time series has a unit root, then we can safely use linear
regression.

e If one of the two time series has a unit root, then we should not use
linear regression.
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If both time series have a unit root and the time series are cointegrated,
we may safely use linear regression; however, if they are not cointegrated,
we should not use linear regression. The (Engle—Granger) Dickey—Fuller
test can be used to determine whether time series are cointegrated.
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PRACTICE PROBLEMS

The following information relates to questions

1

-7

Angela Martinez, an energy sector analyst at an investment bank, is concerned
about the future level of oil prices and how it might affect portfolio values. She is
considering whether to recommend a hedge for the bank portfolio’s exposure to
changes in oil prices. Martinez examines West Texas Intermediate (WTI) month-
ly crude oil price data, expressed in US dollars per barrel, for the 181-month
period from August 2000 through August 2015. The end-of-month WTT oil price
was $51.16 in July 2015 and $42.86 in August 2015 (Month 181).

After reviewing the time-series data, Martinez determines that the mean and
variance of the time series of oil prices are not constant over time. She then runs
the following four regressions using the WTI time-series data.

= Linear trend model: Oil price; = by + byt + e;.

= Log-linear trend model: In Oil price; = by + byt + e,

= AR(1) model: Oil price, = by + b;Oil price,_; + e,.

= AR(2) model: Oil price,= by + b,Oil price,_; + byOil price;,_, + ;.

Exhibit 1 presents selected data from all four regressions, and Exhibit 2 presents
selected autocorrelation data from the AR(1) models.

Exhibit 1: Crude Oil Price per Barrel, August 2000-August 2015

Regression Statistics
(t-statistics for coefficients are reported in parentheses)

Linear Log-Linear AR(1) AR(2)
R? 0.5703 0.6255 0.9583 0.9656
Standard error 18.6327 0.3034 5.7977 5.2799
Observations 181 181 180 179
Durbin—Watson 0.10 0.08 1.16 2.08
RMSE 2.0787 2.0530
Coefficients:
Intercept 28.3278 3.3929 1.5948 2.0017
(10.1846) (74.9091) (1.4610) (1.9957)
t (Trend) 0.4086 0.0075
(15.4148) (17.2898)
Oil price,_; 0.9767 1.3946
(63.9535) (20.2999)
Oil price,_, -0.4249

(-6.2064)
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In Exhibit 1, at the 5% significance level, the lower critical value for the Durbin—
Watson test statistic is 1.75 for both the linear and log-linear regressions.

Exhibit 2: Autocorrelations of the Residual from AR(1)

Model
Lag Autocorrelation t-Statistic
1 0.4157 5.5768
2 0.2388 3.2045
3 0.0336 0.4512
4 -0.0426 -0.5712

Note: At the 5% significance level, the critical value for a ¢-statistic is 1.97.

After reviewing the data and regression results, Martinez draws the following
conclusions.

Conclusion 1  The time series for WTI oil prices is covariance stationary.

Conclusion 2 Out-of-sample forecasting using the AR(1) model appears to
be more accurate than that of the AR(2) model.

1. Based on Exhibit 1, the predicted WTI oil price for October 2015 using the linear
trend model is closest to:

A. $29.15.
B. $74.77.
C. $103.10.

2. Based on Exhibit 1, the predicted WTT oil price for September 2015 using the
log-linear trend model is closest to:

A. $29.75.
B. $29.98.
C $116.50.

3. Based on the regression output in Exhibit 1, there is evidence of positive serial
correlation in the errors in:

A. the linear trend model but not the log-linear trend model.

B. both the linear trend model and the log-linear trend model.

C. neither the linear trend model nor the log-linear trend model.
4. Martinez’s Conclusion 1 is:

A. correct.

B. incorrect because the mean and variance of WTI oil prices are not constant
over time.
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C. incorrect because the Durbin—Watson statistic of the AR(2) model is greater
than 1.75.

5. Based on Exhibit 1, the forecasted oil price in September 2015 based on the
AR(2) model is closest to:

A. $38.03.
B. $40.04.
¢ $61.77.

6. Based on the data for the AR(1) model in Exhibits 1 and 2, Martinez can con-
clude that the:

A. residuals are not serially correlated.
B. autocorrelations do not differ significantly from zero.

C. standard error for each of the autocorrelations is 0.0745.

7. Based on the mean-reverting level implied by the AR(1) model regression output
in Exhibit 1, the forecasted oil price for September 2015 is most likely to be:

A. less than $42.86.
B. equal to $42.86.

C. greater than $42.86.

8. You have been assigned to analyze automobile manufacturers, and as a first step
in your analysis, you decide to model monthly sales of lightweight vehicles to
determine sales growth in that part of the industry. Exhibit 3 gives lightweight
vehicle monthly sales (annualized) from January 1992 to December 2000.

Exhibit 1: Lightweight Vehicle Sales

Millions of Units (Annualized)
20
19
18
17
16
15
14
13
12
11 T T T T T T T T
1992 1993 1994 1995 1996 1997 1998 1999 2000

Year

Monthly sales in the lightweight vehicle sector, Sales;, have been increasing over
time, but you suspect that the growth rate of monthly sales is relatively con-
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stant. Write the simplest time-series model for Sales;, that is consistent with your
perception.

The following information relates to questions
9-10

The civilian unemployment rate (UER) is an important component of many eco-
nomic models. Exhibit 1 gives regression statistics from estimating a linear trend
model of the unemployment rate: UER, = by + byt + €;.

Exhibit 1: Estimating a Linear Trend in the Civilian Unemployment Rate:

Monthly Observations, January 2013-August 2019

Regression Statistics

R? 0.9316
Standard error 0.3227
Observations 80
Durbin—Watson 0.1878

Coefficient Standard Error t-Statistic
Intercept 7.2237 0.0728 99.1704
Trend -0.0510 0.0016 -32.6136

9. Using the regression output in the previous table, what is the model’s prediction
of the unemployment rate for July 2013?

10. How should we interpret the Durbin—Watson (DW) statistic for this regression?
What does the value of the DW statistic say about the validity of a ¢-test on the
coefficient estimates?

11. Exhibit 1 compares the predicted civilian unemployment rate (PRED) with the
actual civilian unemployment rate (UER) from January 2013 to August 2019. The
predicted results come from estimating the linear time trend model UER, = b, +
bit + ;.

What can we conclude about the appropriateness of this model?
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Exhibit 1: Predicted and Actual Civilian Unemployment Rates

=N W s O o

0 1 1 1 1 1 1
Jan/13 Jan/14 Jan/15 Jan/16 Jan/17 Jan/18 Jan/19

12. Exhibit 1 shows a plot of first differences in the log of monthly lightweight vehicle
sales over the same period as in Problem 11. Has differencing the data made the
resulting series, Aln(Sales;) = In(Sales,) — In(Sales,_;), covariance stationary?

Exhibit 1: Change in Natural Log of Lightweight Vehicle Sales

A In (Millions of Units)
(Annualized)

0.15
0.10

N A A\ .I\A/\L A MAVA,I\VN |
wos VN PVVRFEIE )

—0.15
-0.20

1992 1993 1994 1995 1996 1997 1998 1999 2000

Year

The following information relates to questions
13-14

Exhibit 1 shows a plot of the first differences in the civilian unemployment rate
(UER) between January 2013 and August 2019, AUER, = UER, - UER,_;.



© CFA Institute. For candidate use only. Not for distribution.
Practice Problems

Exhibit 1: Change in Civilian Unemployment Rate
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13. Has differencing the data made the new series, AUER,, covariance stationary?
Explain your answer.

14. Given the graph of the change in the unemployment rate shown in the figure,
describe the steps we should take to determine the appropriate autoregressive
time-series model specification for the series AUER,.

15. Exhibit 1 gives the regression output of an AR(1) model on first differences in
the unemployment rate. Describe how to interpret the DW statistic for this
regression.

Exhibit 1: Estimating an AR(1) Model of Changes in the Civilian

Unemployment Rate: Monthly Observations, February 2013-August 2019

Regression Statistics

R? 0.0546
Standard error 0.1309
Observations 79
Durbin—Watson 2.0756
Coefficient Standard Error t-Statistic
Intercept -0.0668 0.0158 -4.2278

AUER;_; -0.2320 0.1100 -2.191
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The following information relates to questions
16-17

Using monthly data from January 1992 to December 2000, we estimate the
following equation for lightweight vehicle sales: Aln(Sales;) = 2.7108 + 0.3987Al-
n(Sales;_1) + €, Exhibit 1 gives sample autocorrelations of the errors from this
model.

Exhibit 1: Different Order Autocorrelations of Differences in the Logs of

Vehicle Sales

Lag Autocorrelation Standard Error t-Statistic
1 0.9358 0.0962 9.7247
2 0.8565 0.0962 8.9005
3 0.8083 0.0962 8.4001
4 0.7723 0.0962 8.0257
5 0.7476 0.0962 7.7696
6 0.7326 0.0962 7.6137
7 0.6941 0.0962 7.2138
8 0.6353 0.0962 6.6025
9 0.5867 0.0962 6.0968
10 0.5378 0.0962 5.5892
11 0.4745 0.0962 4.9315
12 0.4217 0.0962 4.3827

16. Use the information in the table to assess the appropriateness of the specification
given by the equation.

17. If the residuals from the AR(1) model above violate a regression assumption, how
would you modify the AR(1) specification?

18. Assume that changes in the civilian unemployment rate are covariance stationary
and that an AR(1) model is a good description for the time series of changes in
the unemployment rate. Specifically, we have AUER, = -0.0668 — 0.2320AUER;_;
(using the coefficient estimates given in the previous problem). Given this equa-
tion, what is the mean-reverting level to which changes in the unemployment
rate converge?

The following information relates to questions
19-21

Suppose the following model describes changes in the civilian unemployment
rate: AUER, = —0.0668 - 0.2320AUER;_;. The current change (first difference)
in the unemployment rate is 0.0300. Assume that the mean-reverting level for
changes in the unemployment rate is —-0.0542.
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Practice Problems

19. What is the best prediction of the next change?
20. What is the prediction of the change following the next change?

21. Explain your answer to Part B in terms of equilibrium.

22. Exhibit 1 gives the actual sales, log of sales, and changes in the log of sales of
Cisco Systems for the period 1Q 2019 to 4Q 2019.

Actual Sales Changes in Log of Sales

Date ($ Millions) Log of Sales AIn(Sales,)

1Q 2019 13,072 9.4782 0.0176

2Q 2019 12,446 9.4292 -0.0491

3Q 2019 12,958 9.4695 0.0403

4Q 2019 13,428 9.5051 0.0356

1Q 2020

2Q 2020

Forecast the first- and second-quarter sales of Cisco Systems for 2020 using the
regression Aln(Sales,) = 0.0068 + 0.2633AlIn(Sales,_;).

The following information relates to questions
23-24
Exhibit 1 gives the actual change in the log of sales of Cisco Systems from 1Q
2019 to 4Q 2019, along with the forecasts from the regression model Aln(Sales,)

=0.0068 + 0.2633Aln(Sales;_;) estimated using data from 1Q 2001 to 4Q 2018.
(Note that the observations after the fourth quarter of 2018 are out of sample.)

Actual Value of Changes in the Log Forecast Value of Changes in the

Date of Sales Aln(Sales,) Log of Sales Aln(Sales,)
1Q 2019 0.0176 0.0147
2Q 2019 -0.0491 0.0107
3Q 2019 0.0403 0.0096
4Q 2019 0.0356 0.0093

23. Calculate the RMSE for the out-of-sample forecast errors.

24. Compare the forecasting performance of the model given with that of another
model having an out-of-sample RMSE of 2%.
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The following information relates to questions
25-26

25. The AR(1) model for the civilian unemployment rate, AUER, = —0.0405 -
0.4674AUER;_;, was developed with five years of data. What would be the draw-
back to using the AR(1) model to predict changes in the civilian unemployment
rate 12 months or more ahead, as compared with 1 month ahead?

26. For purposes of estimating a predictive equation, what would be the drawback to
using 30 years of civilian unemployment data rather than only 5 years?

The following information relates to questions
27-35
Max Busse is an analyst in the research department of a large hedge fund. He was
recently asked to develop a model to predict the future exchange rate between
two currencies. Busse gathers monthly exchange rate data from the most re-

cent 10-year period and runs a regression based on the following AR(1) model
specification:

Regression 1: x; = by + byx,_; + €, where x, is the exchange rate at time ¢.

Based on his analysis of the time series and the regression results, Busse reaches
the following conclusions:

Conclusion 1 The variance of x; increases over time.
Conclusion 2 The mean-reverting level is undefined.

Conclusion 3 by does not appear to be significantly different from 0.

Busse decides to do additional analysis by first-differencing the data and running
a new regression.

Regression 2:y, = by + byy;_; + &, where y, = x, - x;_;.

Exhibit 1 shows the regression results.

Exhibit 1: First-Differenced Exchange Rate AR(1) Model: Month-End

Observations, Last 10 Years

Regression Statistics

R? 0.0017
Standard error 7.3336
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Practice Problems

Regression Statistics

Observations 118
Durbin—Watson 1.9937

Coefficient Standard Error t-Statistic
Intercept -0.8803 0.6792 -1.2960
X, 1 - %o 0.0412 0.0915 0.4504

Autocorrelations of the Residual

Lag Autocorrelation Standard Error t-Statistic
1 0.0028 0.0921 0.0300
2 0.0205 0.0921 0.2223
3 0.0707 0.0921 0.7684
4 0.0485 0.0921 0.5271

Note: The critical ¢-statistic at the 5% significance level is 1.98.

Busse decides that he will need to test the data for nonstationarity using a
Dickey—Fuller test. To do so, he knows he must model a transformed version of

Regression 1.

Busse’s next assignment is to develop a model to predict future quarterly sales for
PoweredUP, Inc., a major electronics retailer. He begins by running the following

regression:

Regression 3: In Sales; — In Sales,_; = by + b;(In Sales;_; — In Sales;_,) + ¢,.

Exhibit 2 presents the results of this regression.

Exhibit 2: Log Differenced Sales AR(1) Model: PoweredUP, Inc., Last 10 Years

of Quarterly Sales

Regression Statistics

R? 0.2011
Standard error 0.0651
Observations 38
Durbin—Watson 1.9677

Coefficient Standard Error t-Statistic
Intercept 0.0408 0.0112 3.6406
In Sales,_; — In Sales;_, -0.4311 0.1432 -3.0099

Autocorrelations of the Residual

Lag Autocorrelation Standard Error t-Statistic
1 0.0146 0.1622 0.0903
2 -0.1317 0.1622 -0.8119
3 -0.1123 0.1622 -0.6922
4 0.6994 0.1622 4.3111
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Note: The critical ¢-statistic at the 5% significance level is 2.02.

Because the regression output from Exhibit 2 raises some concerns, Busse runs a
different regression. These regression results, along with quarterly sales data for
the past five quarters, are presented in Exhibits 3 and 4, respectively.

Exhibit 3: Log Differenced Sales AR(1) Model with Seasonal Lag:

PoweredUP, Inc., Last 10 Years of Quarterly Sales

Regression Statistics

R? 0.6788

Standard error 0.0424

Observations 35

Durbin—Watson 1.8799

Coefficient Standard Error t-Statistic

Intercept 0.0092 0.0087 1.0582
In Sales,_; — In Sales;_, -0.1279 0.1137 -1.1252
In Sales,_4 — In Sales;_g 0.7239 0.1093 6.6209

Autocorrelations of the Residual

Lag Autocorrelation Standard Error t-Statistic
1 0.0574 0.1690 0.3396
2 0.0440 0.1690 0.2604
3 0.1923 0.1690 1.1379
4 -0.1054 0.1690 -0.6237

Note: The critical ¢-statistic at the 5% significance level is 2.03.

Exhibit 4: Most Recent Quarterly Sales Data (in billions)

Dec 2015 (Sales;_;) $3.868
Sep 2015 (Sales,_,) $3.780
June 2015 (Sales;_3) $3.692
Mar 2015 (Sales;_,) $3.836
Dec 2014 (Sales;_s) $3.418

After completing his work on PoweredUD, Busse is asked to analyze the rela-
tionship of oil prices and the stock prices of three transportation companies. His
firm wants to know whether the stock prices can be predicted by the price of oil.
Exhibit 5 shows selected information from the results of his analysis.
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Exhibit 5: Analysis Summary of Stock Prices for Three Transportation Stocks and the Price of Oil

Linear or Serial Correlation of
Unit Exponential Residuals in Trend
Root? Trend? Model? ARCH(1)? Comments
Company 1 Yes Exponential Yes Yes Not cointegrated with oil price
Company 2 Yes Linear Yes No Cointegrated with oil price
Company 3 No Exponential Yes No Not cointegrated with oil price

Qil Price Yes

To assess the relationship between oil prices and stock prices, Busse runs three
regressions using the time series of each company’s stock prices as the dependent
variable and the time series of oil prices as the independent variable.

27. Which of Busse’s conclusions regarding the exchange rate time series is con-
sistent with both the properties of a covariance-stationary time series and the
properties of a random walk?

A. Conclusion 1
B. Conclusion 2

C. Conclusion 3

28. Based on the regression output in Exhibit 1, the first-differenced series used to
run Regression 2 is consistent with:

A. arandom walk.
B. covariance stationarity.

C. arandom walk with drift.

29. Based on the regression results in Exhibit 1, the original time series of exchange
rates:

A. has a unit root.
B. exhibits stationarity.

(. can be modeled using linear regression.

30. In order to perform the nonstationarity test, Busse should transform the Regres-
sion 1 equation by:

A. adding the second lag to the equation.
B. changing the regression’s independent variable.

(. subtracting the independent variable from both sides of the equation.

31. Based on the regression output in Exhibit 2, what should lead Busse to conclude
that the Regression 3 equation is not correctly specified?

A. The Durbin—Watson statistic

B. The t-statistic for the slope coefficient
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C. The ¢-statistics for the autocorrelations of the residual

32. Based on the regression output in Exhibit 3 and sales data in Exhibit 4, the fore-
casted value of quarterly sales for March 2016 for PoweredUP is closest to:

A. $4.193 billion.
B. $4.205 billion.

C. $4.231 billion.

33. Based on Exhibit 5, Busse should conclude that the variance of the error terms
for Company 1:

A. is constant.
B. can be predicted.

C. is homoskedastic.

34. Based on Exhibit 5, for which company would the regression of stock prices on
oil prices be expected to yield valid coefficients that could be used to estimate the
long-term relationship between stock price and oil price?

A. Company 1
B. Company 2

(. Company 3

35. Based on Exhibit 5, which single time-series model would most likely be appro-
priate for Busse to use in predicting the future stock price of Company 3?

A. Log-linear trend model
B. First-differenced AR(2) model

C. First-differenced log AR(1) model

The following information relates to questions
36-37

Exhibit 1 shows monthly observations on the natural log of lightweight vehicle
sales, In(Sales,), for January 1992 to December 2000.
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Exhibit 1: Lightweight Vehicle Sales
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36. Using the figure, comment on whether the specification In(Sales,) = by + b;[In(-
Sales,_;)] + ¢, is appropriate.

37. State an appropriate transformation of the time series.

38. Suppose we want to predict the annualized return of the five-year T-bill using the
annualized return of the three-month T-bill with monthly observations from Jan-
uary 1993 to December 2002. Our analysis produces the data shown in Exhibit 1.

Exhibit 1: Regression with Three-Month T-Bill as the Independent Variable

and the Five-Year T-Bill as the Dependent Variable: Monthly Observations,
January 1993-December 2002

Regression Statistics

R? 0.5829
Standard error 0.6598
Observations 120
Durbin—Watson 0.1130

Coefficient Standard Error t-Statistic
Intercept 3.0530 0.2060 14.8181
Three-month 0.5722 0.0446 12.8408

Can we rely on the regression model in Exhibit 1 to produce meaningful predic-
tions? Specify what problem might be a concern with this regression.

39. Exhibit 1 shows the quarterly sales of Avon Products from 1Q 1992 to 2Q 2002.
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Describe the salient features of the data shown.

Exhibit 1: Quarterly Sales at Avon

Millions of Dollars
1900

1700

1500

1300

1100 7

900

700 T T T T T T T T T
1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002

Year

The following information relates to questions
40-41

Exhibit 1 shows the autocorrelations of the residuals from an AR(1) model fit to
the changes in the gross profit margin (GPM) of the Home Depot, Inc.

Exhibit 1: Autocorrelations of the Residuals from

Estimating the Regression AGPM, = 0.0006 —
0.3330AGPM;_, + &, 1Q 1992-4Q 2001 (40 Observations)

Lag Autocorrelation

-0.1106
-0.5981
-0.1525

0.8496
-0.1099

g WD -

Exhibit 2 shows the output from a regression on changes in the GPM for Home
Depot, where we have changed the specification of the AR regression.

Exhibit 2: Change in Gross Profit Margin for Home Depot, 1Q 1992-4Q 2001

Regression Statistics

R? 0.9155
Standard error 0.0057
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Practice Problems

Regression Statistics

Observations 40
Durbin—Watson 2.6464

Coefficient Standard Error t-Statistic
Intercept -0.0001 0.0009 -0.0610
AGPM;_; -0.0608 0.0687 -0.8850
AGPM;_4 0.8720 0.0678 12.8683

40. Identify the change that was made to the regression model.

41. Discuss the rationale for changing the regression specification.

The following information relates to questions
42-43

Suppose we decide to use an autoregressive model with a seasonal lag because of
the seasonal autocorrelation in the previous problem. We are modeling quarterly
data, so we estimate Equation 15: (In Sales; — In Sales,_;) = by + b;(In Sales;_; — In
Sales,_) + by(In Sales,_, — In Sales,_5) + €,. Exhibit 1 shows the regression statis-
tics from this equation.

Exhibit 1: Log Differenced Sales: AR(1) Model with Seasonal Lag Johnson &

Johnson Quarterly Observations, January 1985-December 2001

Regression Statistics

R? 0.4220
Standard error 0.0318
Observations 68
Durbin—Watson 1.8784

Coefficient Standard Error t-Statistic
Intercept 0.0121 0.0053 2.3055
Lag1 -0.0839 0.0958 -0.8757
Lag 4 0.6292 0.0958 6.5693

Autocorrelations of the Residual

Lag Autocorrelation Standard Error t-Statistic
1 0.0572 0.1213 0.4720
2 -0.0700 0.1213 -0.5771
3 0.0065 0.1213 -0.0532
4 -0.0368 0.1213 -0.3033

42. Using the information in Exhibit 1, determine whether the model is correctly
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specified.

43. If sales grew by 1% last quarter and by 2% four quarters ago, use the model to
predict the sales growth for this quarter.

44. Describe how to test for autoregressive conditional heteroskedasticity (ARCH) in
the residuals from the AR(1) regression on first differences in the civilian unem-
ployment rate, AUER, = by + b;AUER;_; + &,

The following information relates to questions
45-47

Exhibit 1 shows the quarterly sales of Cisco Systems from 3Q 2001 to 2Q 2019.

Exhibit 1: Quarterly Sales at Cisco

Millions of Dollars
7000

6000
5000
4000
3000
2000
1000

0 T T T T T T T T T

1991 1992 1993 1994 1995 1996 1997 1998 1999 2000

Year

Exhibit 2 gives the regression statistics from estimating the model Aln(Sales;) =
by + byAln(Sales,_;) + ;.

Exhibit 2: Change in the Natural Log of Sales for Cisco Quarterly

Observations, 3Q 1991-4Q 2000

Regression Statistics

R? 0.2899
Standard error 0.0408
Observations 38
Durbin—Watson 1.5707
Coefficient Standard Error t-Statistic
Intercept 0.0661 0.0175 3.7840

Aln(Sales;_;) 0.4698 0.1225 3.8339
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Practice Problems

45. Describe the salient features of the quarterly sales series.

46. Describe the procedures we should use to determine whether the AR(1) specifi-
cation is correct.

47. Assuming the model is correctly specified, what is the long-run change in the log
of sales toward which the series will tend to converge?
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SOLUTIONS

1. Cis correct. The predicted value for period ¢ from a linear trend is calculated
asy, = 50+51(t).
October 2015 is the second month out of sample, or ¢ = 183. So, the predicted
value for October 2015 is calculated as

$,=28.3278 + 0.4086(183) = $103.10.

Therefore, the predicted WTI oil price for October 2015 based on the linear
trend model is $103.10.

2. Cis correct. The predicted value for period ¢ from a log-linear trend is calculated
aslny, = b+ b1 ().
September 2015 is the first month out of sample, or ¢ = 182. So, the predicted
value for September 2015 is calculated as follows:

In $,=3.3929 + 0.0075(182).
In $,=4.7579.
$,=e*7579 = §116.50.

Therefore, the predicted WTT oil price for September 2015, based on the
log-linear trend model, is $116.50.

3. Bis correct. The Durbin—Watson statistic for the linear trend model is 0.10 and
for the log-linear trend model is 0.08. Both of these values are below the critical
value of 1.75. Therefore, we can reject the hypothesis of no positive serial cor-
relation in the regression errors in both the linear trend model and the log-linear
trend model.

4. Bis correct. There are three requirements for a time series to be covariance sta-
tionary. First, the expected value of the time series must be constant and finite in
all periods. Second, the variance of the time series must be constant and finite in
all periods. Third, the covariance of the time series with itself for a fixed number
of periods in the past or future must be constant and finite in all periods. Marti-
nez concludes that the mean and variance of the time series of WT1I oil prices are
not constant over time. Therefore, the time series is not covariance stationary.

5. Bis correct. The last two observations in the WTI time series are July and August
2015, when the WT1I oil price was $51.16 and $42.86, respectively. Therefore,
September 2015 represents a one-period-ahead forecast. The one-period-ahead
forecast from an AR(2) model is calculated as

f1 = bo+byx+box .
So, the one-period-ahead (September 2015) forecast is calculated as
X1 =2.0017 + 1.3946(842.86) — 0.4249($51.16) = $40.04.
Therefore, the September 2015 forecast based on the AR(2) model is $40.04.
6. Cis correct. The standard error of the autocorrelations is calculated as —=, where

T represents the number of observations used in the regression. Therefore, the
standard error for each of the autocorrelations is \/% = 0.0745. Martinez can

conclude that the residuals are serially correlated and are significantly different
from zero because two of the four autocorrelations in Exhibit 2 have a ¢-statistic
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Solutions

10.

11.

12.

13.

14.

in absolute value that is greater than the critical value of 1.97.

Choices A and B are incorrect because two of the four autocorrelations have a
t-statistic in absolute value that is greater than the critical value of the ¢-statistic
of 1.97.

C is correct. The mean-reverting level from the AR(1) model is calculated as

o _ b0 15948
X = 1=p T T-009767 ~ 36845

Therefore, the mean-reverting WTI oil price from the AR(1) model is $68.45. The
forecasted oil price in September 2015 will likely be greater than $42.86 because
the model predicts that the price will rise in the next period from the August
2015 price of $42.86.

A log-linear model captures growth at a constant rate. The log-linear model
In(Sales,) = by + byt + £, would be the simplest model consistent with a constant
growth rate for monthly sales. Note that we would need to confirm that the re-
gression assumptions are satisfied before accepting the model as valid.

The estimated forecasting equation is UER; = 5.5098 — 0.0294(¢). The data begin
in January 2013, and July 2013 is Period 7. Thus the linear trend model predicts
the unemployment rate to be UER, = 7.2237 - 0.0510(7) = 6.8667, or approxi-
mately 6.9%.

The DW statistic is designed to detect positive serial correlation of the errors of

a regression equation. Under the null hypothesis of no positive serial correlation,
the DW statistic is 2.0. Positive serial correlation will lead to a DW statistic that is
less than 2.0. From the table in Problem 1, we see that the DW statistic is 0.1878.
To see whether this result is significantly less than 2.0, refer to the Durbin—
Watson table in Appendix E at the end of this volume, in the column marked k =
1 (one independent variable) and the row corresponding to 80 observations. We
see that d; = 1.61. Because our DW statistic is clearly less than dj, we reject the
null hypothesis of no serial correlation at the 0.05 significance level.

The presence of serial correlation in the error term violates one of the regression
assumptions. The standard errors of the estimated coefficients will be biased
downward, so we cannot conduct hypothesis testing on the coefficients.

The difference between UER and its forecast value, PRED, is the forecast error. In
an appropriately specified regression model, the forecast errors are randomly dis-
tributed around the regression line and have a constant variance. We can see that
the errors from this model specification are persistent. The errors tend first to be
above the regression line, and then, starting in 2014, they tend to be below the
regression line until 2017, when they again are persistently above the regression
line. This persistence suggests that the errors are positively serially correlated.
Therefore, we conclude that the model is not appropriate for making estimates.

The plot of the series Aln(Sales,) appears to fluctuate around a constant mean; its
volatility seems constant throughout the period. Differencing the data appears to
have made the time series covariance stationary.

The plot of the series AUER, seems to fluctuate around a constant mean; its vol-
atility appears to be constant throughout the period. Our initial judgment is that
the differenced series is covariance stationary.

The change in the unemployment rate seems covariance stationary, so we should
first estimate an AR(1) model and test to see whether the residuals from this
model have significant serial correlation. If the residuals do not display signifi-

191




192

© CFA Institute. For candidate use only. Not for distribution.

Learning Module 5

15.

16.

17.

18.

19.

20.

21.

22.

Time-Series Analysis

cant serial correlation, we should use the AR(1) model. If the residuals do display
significant serial correlation, we should try an AR(2) model and test for serial cor-
relation of the residuals of the AR(2) model. We should continue this procedure
until the errors from the final AR(p) model are serially uncorrelated.

The DW statistic cannot be appropriately used for a regression that has a lagged
value of the dependent variable as one of the explanatory variables. To test for
serial correlation, we need to examine the autocorrelations.

In a correctly specified regression, the residuals must be serially uncorrelated. We
have 108 observations, so the standard error of the autocorrelation is 1/VT, or

in this case 1/V108 = 0.0962. The ¢-statistic for each lag is significant at the 0.01
level. We would have to modify the model specification before continuing with
the analysis.

Because the residuals from the AR(1) specification display significant serial cor-
relation, we should estimate an AR(2) model and test for serial correlation of the
residuals of the AR(2) model. If the residuals from the AR(2) model are serially
uncorrelated, we should then test for seasonality and ARCH behavior. If any
serial correlation remains in the residuals, we should estimate an AR(3) process
and test the residuals from that specification for serial correlation. We should
continue this procedure until the errors from the final AR(p) model are serially
uncorrelated. When serial correlation is eliminated, we should test for seasonality
and ARCH behavior.

When a covariance-stationary series is at its mean-reverting level, the series will
tend not to change until it receives a shock (g,). So, if the series AUER; is at the
mean-reverting level, AUER, = AUER,_;. This implies that AUER, = —0.0668 —
0.2320AUER,;, so that (1 + 0.2320)AUER, = -0.0668 and AUER, = -0.0668/(1 +
0.2320) = -0.0542. The mean-reverting level is —0.0542. In an AR(1) model, the
general expression for the mean-reverting level is by/(1 — b;).

The predicted change in the unemployment rate for next period is -7.38%, found
by substituting 0.0300 into the forecasting model: —0.0668 — 0.2320(0.03) =
-0.0738.

If we substitute our one-period-ahead forecast of —0.0738 into the model (using
the chain rule of forecasting), we get a two-period-ahead forecast of —0.0497, or
-4.97%.

The answer to Part B is quite close to the mean-reverting level of —0.0542. A
stationary time series may need many periods to return to its equilibrium,
mean-reverting level.

The forecast of sales is $13,647 million for the first quarter of 2020 and $13,800
million for the second quarter of 2002, as the following table shows.

Date

Actual Value of Changes Forecast Value of Changes
Sales in the Log of Sales in the Log of Sales
($ Millions)  Log of Sales AIn(Sales,) AIn(Sales,)

1Q 2019
2Q 2019
3Q 2019
4Q 2019

13,072 9.4782 0.0176
12,446 9.4292 -0.0491
12,958 9.4695 0.0403
13,428 9.5051 0.0356
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Solutions 193
Actual Value of Changes Forecast Value of Changes
Sales in the Log of Sales in the Log of Sales
Date ($ Millions) Log of Sales AIn(Sales,) AIn(Sales,)
1Q 2020 13,647 9.5213 0.0162
2Q 2020 13,800 9.5324 0.0111

23.

We find the forecasted change in the log of sales for the first quarter of 2020 by
inputting the value for the change in the log of sales from the previous quarter
into the equation Aln(Sales,) = 0.0068 + 0.2633Aln(Sales;_;). Specifically, Aln(Sal-
es;) = 0.0068 + 0.2633(0.0356) = 0.0162, which means that we forecast the log of
sales in the first quarter of 2020 to be 9.5051 + 0.0162 = 9.5213.

Next, we forecast the change in the log of sales for the second quarter of 2020

as Aln(Sales,) = 0.0068 + 0.2633(0.0162) = 0.0111. Note that we have to use our
first-quarter 2020 estimated value of the change in the log of sales as our input
for Aln(Sales;_;) because we are forecasting past the period for which we have
actual data.

With a forecasted change of 0.0111, we forecast the log of sales in the second
quarter of 2020 to be 9.5213 + 0.0111 = 9.5324.

We have forecasted the log of sales in the first and second quarters of 2020 to be
9.5213 and 9.5324, respectively. Finally, we take the antilog of our estimates of the
log of sales in the first and second quarters of 2020 to get our estimates of the lev-
el of sales: 72213 = 13,647 and €°->32% = 13,800, respectively, for sales of $13,647
million and $13,800 million.

The RMSE of the out-of-sample forecast errors is approximately 3.6%.
Out-of-sample error refers to the difference between the realized value and the
forecasted value of Aln(Sales;) for dates beyond the estimation period. In this
case, the out-of-sample period is 1Q 2019 to 4Q 2019. These are the four quarters
for which we have data that we did not use to obtain the estimated model Aln(-
Sales,) = 0.0068 + 0.2633AlIn(Sales;_;).

The steps to calculate RMSE are as follows:

i.  Take the difference between the actual and the forecast values. This is the
error.

ii. Square the error.

iii. Sum the squared errors.

iv. Divide by the number of forecasts.

v.  Take the square root of the average.

We show the calculations for RMSE in the following table.

Actual Values of

Forecast Values of

Changes in the Log of Changes in the Log Error
Sales of Sales (Column 1 Squared Error
Aln(Sales;) AIn(Sales,) — Column 2) (Column 3 Squared)
0.0176 0.0147 0.0029 0.0000
-0.0491 0.0107 -0.0598 0.0036
0.0403 0.0096 0.0307 0.0009
0.0356 0.0093 0.0263 0.0007
Sum 0.0052
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Actual Values of Forecast Values of
Changes in the Log of Changes in the Log Error
Sales of Sales (Column 1 Squared Error
Aln(Sales,) AIn(Sales,) — Column 2) (Column 3 Squared)
Mean 0.0013
RMSE 0.036

24. The lower the RMSE, the more accurate the forecasts of a model in forecasting.
Therefore, the model with the RMSE of 2% has greater accuracy in forecasting
than the model in Part A, which has an RMSE of 3.6%.

25. Predictions too far ahead can be nonsensical. For example, the AR(1) model we
have been examining, AUER; = -0.0405 - 0.4674AUER,_;, taken at face value,
predicts declining civilian unemployment into the indefinite future. Because the
civilian unemployment rate will probably not go below 3% frictional unemploy-
ment and cannot go below 0% unemployment, this model’s long-range forecasts
are implausible. The model is designed for short-term forecasting, as are many
time-series models.

26. Using more years of data for estimation may lead to nonstationarity even in the
series of first differences in the civilian unemployment rate. As we go further
back in time, we increase the risk that the underlying civilian unemployment rate
series has more than one regime (or true model). If the series has more than one
regime, fitting one model to the entire period would not be correct. Note that
when we have good reason to believe that a time series is stationary, a longer
series of data is generally desirable.

27. Cis correct. A random walk can be described by the equation x; = by + byx;_1 +
g, where by = 0 and b; = 1. So by = 0 is a characteristic of a random walk time se-
ries. A covariance-stationary series must satisfy the following three requirements:

1. The expected value of the time series must be constant and finite in all
periods.

2. The variance of the time series must be constant and finite in all periods.

3. The covariance of the time series with itself for a fixed number of periods in
the past or future must be constant and finite in all periods.

by = 0 does not violate any of these three requirements and is thus consistent
with the properties of a covariance-stationary time series.

28. B is correct. The critical ¢-statistic at a 5% confidence level is 1.98. As a result,
neither the intercept nor the coefficient on the first lag of the first-differenced
exchange rate in Regression 2 differs significantly from zero. Also, the residual
autocorrelations do not differ significantly from zero. As a result, Regression 2
can be reduced to y, = ¢, with a mean-reverting level of by/(1 — b;) = 0/1 =0.
Therefore, the variance of y, in each period is var(g;) = 02. The fact that the resid-
uals are not autocorrelated is consistent with the covariance of the times series
with itself being constant and finite at different lags. Because the variance and the
mean of y,are constant and finite in each period, we can also conclude that y,is
covariance stationary.

29. A is correct. If the exchange rate series is a random walk, then the
first-differenced series will yield by = 0 and b; = 0 and the error terms will not
be serially correlated. The data in Exhibit 1 show that this is the case: Neither
the intercept nor the coefficient on the first lag of the first-differenced exchange
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30.

31.

32.

33.

34.

35.

rate in Regression 2 differs significantly from zero because the ¢-statistics of both
coefficients are less than the critical ¢-statistic of 1.98. Also, the residual auto-
correlations do not differ significantly from zero because the ¢-statistics of all
autocorrelations are less than the critical ¢-statistic of 1.98. Therefore, because all
random walks have unit roots, the exchange rate time series used to run Regres-
sion 1 has a unit root.

Cis correct. To conduct the Dickey—Fuller test, one must subtract the inde-
pendent variable, x,_;,from both sides of the original AR(1) model. This results
in a change of the dependent variable (from x; to %, — x,_;) and a change in the
regression’s slope coefficient (from b, to b; — 1) but not a change in the indepen-
dent variable.

Cis correct. The regression output in Exhibit 2 suggests there is serial correlation
in the residual errors. The fourth autocorrelation of the residual has a value of
0.6994 and a ¢-statistic of 4.3111, which is greater than the ¢-statistic critical value
of 2.02. Therefore, the null hypothesis that the fourth autocorrelation is equal to
zero can be rejected. This indicates strong and significant seasonal autocorrela-
tion, which means the Regression 3 equation is misspecified.

C is correct. The quarterly sales for March 2016 are calculated as follows:

In Sales, — In Sales,_; = by + b;(In Sales,_; — In Sales,_,) + b,(In Sales,_4 — In
Sales;_s).

In Sales, — In 3.868 = 0.0092 — 0.1279(In 3.868 — In 3.780) + 0.7239(In 3.836 —
In 3.418).

In Sales; — 1.35274 = 0.0092 — 0.1279(1.35274 — 1.32972) + 0.7239(1.34443
— 1.22906).

In Sales, = 1.35274 + 0.0092 — 0.1279(0.02301) + 0.7239(0.11538).
In Sales, = 1.44251.

Sales, = ! 44251 = 4231,

B is correct. Exhibit 3 shows that the time series of the stock prices of Compa-
ny 1 exhibits heteroskedasticity, as evidenced by the fact that the time series is
ARCH(1). If a time series is ARCH(1), then the variance of the error in one peri-
od depends on the variance of the error in previous periods. Therefore, the vari-
ance of the errors in period ¢ + 1 can be predicted in period ¢ using the formula

A2 A A A2
Or1 = gt aé;.

B is correct. When two time series have a unit root but are cointegrated, the error
term in the linear regression of one time series on the other will be covariance
stationary. Exhibit 5 shows that the series of stock prices of Company 2 and the
oil prices both contain a unit root and the two time series are cointegrated. As

a result, the regression coefficients and standard errors are consistent and can

be used for hypothesis tests. Although the cointegrated regression estimates the
long-term relation between the two series, it may not be the best model of the
short-term relationship.

C is correct. As a result of the exponential trend in the time series of stock prices
for Company 3, Busse would want to take the natural log of the series and then
first-difference it. Because the time series also has serial correlation in the resid-
uals from the trend model, Busse should use a more complex model, such as an
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41.

42.

43.

44.
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autoregressive (AR) model.

The graph of In(Sales,) appears to trend upward over time. A series that trends
upward or downward over time often has a unit root and is thus not covariance
stationary. Therefore, using an AR(1) regression on the undifferenced series is
probably not correct. In practice, we need to examine regression statistics to
confirm such visual impressions.

The most common way to transform a time series with a unit root into a
covariance-stationary time series is to difference the data—that is, to create a
new series: Aln(Sales,) = In(Sales,) — In(Sales;_;).

To determine whether we can use linear regression to model more than one time
series, we should first determine whether any of the time series has a unit root. If
none of the time series has a unit root, then we can safely use linear regression to
test the relations between the two time series. Note that if one of the two vari-
ables has a unit root, then our analysis would not provide valid results; if both

of the variables have unit roots, then we would need to evaluate whether the
variables are cointegrated.

The quarterly sales of Avon show an upward trend and a clear seasonal pattern,
as indicated by the repeated regular cycle.

A second explanatory variable, the change in the gross profit margin lagged four
quarters, AGPM,_,4, was added.

The model was augmented to account for seasonality in the time series (with
quarterly data, significant autocorrelation at the fourth lag indicates seasonali-
ty). The standard error of the autocorrelation coefficient equals 1 divided by the
square root of the number of observations: 1/ V40, or 0.1581. The autocorrelation
at the fourth lag (0.8496) is significant: ¢ = 0.8496/0.1581 = 5.37. This indicates
seasonality, and accordingly we added AGPM,_,4. Note that in the augment-

ed regression, the coefficient on AGPM,_, is highly significant. (Although the
autocorrelation at second lag is also significant, the fourth lag is more important
because of the rationale of seasonality. Once the fourth lag is introduced as an
independent variable, we might expect that the second lag in the residuals would
not be significant.)

In order to determine whether this model is correctly specified, we need to test
for serial correlation among the residuals. We want to test whether we can reject
the null hypothesis that the value of each autocorrelation is 0 against the alterna-
tive hypothesis that each is not equal to 0. At the 0.05 significance level, with 68
observations and three parameters, this model has 65 degrees of freedom. The
critical value of the ¢-statistic needed to reject the null hypothesis is thus about
2.0. The absolute value of the ¢-statistic for each autocorrelation is below 0.60
(less than 2.0), so we cannot reject the null hypothesis that each autocorrelation
is not significantly different from 0. We have determined that the model is cor-
rectly specified.

If sales grew by 1% last quarter and by 2% four quarters ago, then the mod-
el predicts that sales growth this quarter will be 0.0121 - 0.0839[In(1.01)] +
0.6292[In(1.02)] = 902372 _ 1 = 2.40%.

We should estimate the regression AUER, = by + b;AUER;_; + ¢, and save the re-
siduals from the regression. Then we should create a new variable, £7, by squaring
the residuals. Finally, we should estimate 2 = a, + a,£7 | + u, and test to see
whether 4, is statistically different from 0.
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45. The series has a steady upward trend of growth, suggesting an exponential
growth rate. This finding suggests transforming the series by taking the natural
log and differencing the data.

46. First, we should determine whether the residuals from the AR(1) specification
are serially uncorrelated. If the residuals are serially correlated, then we should
try an AR(2) specification and then test the residuals from the AR(2) model for
serial correlation. We should continue in this fashion until the residuals are se-
rially uncorrelated and then look for seasonality in the residuals. If seasonality is
present, we should add a seasonal lag. If no seasonality is present, we should test
for ARCH. If ARCH is not present, we can conclude that the model is correctly
specified.

47. 1f the model Aln(Sales;) = by + b1[Aln(Sales,_;)] + €, is correctly specified,
then the series Aln(Sales,) is covariance stationary. So, this series tends to its
mean-reverting level, which is by/(1 - b;), or 0.0661/(1 — 0.4698) = 0.1247.
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Machine Learning

by Kathleen DeRose, CFA, Matthew Dixon, PhD, FRM, and Christophe Le
Lannou.

Kathleen DeRose, CFA, is at New York University, Stern School of Business (USA). Matthew
Dixon, PhD, FRM, is at Illinois Institute of Technology, Stuart School of Business (USA).
Christophe Le Lannou is at dataLearning (United Kingdom).

LEARNING OUTCOMES

Mastery | The candidate should be able to:

] describe supervised machine learning, unsupervised machine
learning, and deep learning

] describe overfitting and identify methods of addressing it

] describe supervised machine learning algorithms—including

penalized regression, support vector machine, k-nearest neighbor,
classification and regression tree, ensemble learning, and random
forest—and determine the problems for which they are best suited

] describe unsupervised machine learning algorithms—including
principal components analysis, k-means clustering, and hierarchical
clustering—and determine the problems for which they are best
suited

] describe neural networks, deep learning nets, and reinforcement
learning

INTRODUCTION

] describe supervised machine learning, unsupervised machine
learning, and deep learning

Investment firms are increasingly using technology at every step of the investment
management value chain—from improving their understanding of clients to uncov-
ering new sources of alpha and executing trades more efficiently. Machine learning
techniques, a central part of that technology, are the subject of this reading. These
techniques first appeared in finance in the 1990s and have since flourished with the
explosion of data and cheap computing power.
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This reading provides a high-level view of machine learning (ML). It covers a
selection of key ML algorithms and their investment applications. Investment prac-
titioners should be equipped with a basic understanding of the types of investment
problems that machine learning can address, an idea of how the algorithms work,
and the vocabulary to interact with machine learning and data science experts. While
investment practitioners need not master the details and mathematics of machine
learning, as domain experts in investments they can play an important role in the
implementation of these techniques by being able to source appropriate model inputs,
interpret model outputs, and translate outputs into appropriate investment actions.

Section 2 gives an overview of machine learning in investment management.
Section 3 defines machine learning and the types of problems that can be addressed
by supervised and unsupervised learning. Section 4 describes evaluating machine
learning algorithm performance. Key supervised machine learning algorithms are
covered in Section 5, and Section 6 describes key unsupervised machine learning algo-
rithms. Neural networks, deep learning nets, and reinforcement learning are covered
in Section 7. Section 8 provides a decision flowchart for selecting the appropriate ML
algorithm. The reading concludes with a summary.

Machine Learning and Investment Management

The growing volume and exploding diversity of data, as well as the perceived increasing
economic value of insights extracted from these data, have inspired rapid growth in
data science. This newly emerging field combines mathematics, computer science, and
business analytics. It also strikes out in a new direction that relies on learning—from
basic learning functions that map relationships between variables to advanced neural
networks that mimic physical processes that absorb, order, and adapt to information.

Machine learning has theoretical and practical implications for investment man-
agement. For example, machine learning could potentially reshape accepted wisdom
about asset risk premiums and reconfigure investment management business processes.
Large datasets and learning models are already affecting investment management
practices—from client profiling to asset allocation, stock selection, portfolio con-
struction and risk management, and trading.

Machine learning applications are at each step of the asset and wealth management
value chain. Chatbots answer basic retirement savings questions, learning from their
interactions with investors. Machine learning methods can be used to generate alpha
signals used in security selection by creating a non-linear forecast for a single time
series, by deriving a forecast from a suite of predefined factors, or even by choosing
input signals from existing or newly found data. For example, researchers using tex-
tual analysis have found that year-over-year changes in annual (10-K) and quarterly
(10-Q) filings, particularly negative changes in the management discussion and risk
sections, can strongly predict equity returns.

Machine learning methods can help calculate target portfolio weights that incor-
porate client restrictions and then dynamically weight them to maximize a Sharpe
ratio. Another use of machine learning methods is better estimation of the variance—
covariance matrix via principal components analysis, which reduces the number of
variables needed to explain the variation in the data. Research suggests that machine
learning solutions outperform mean—variance optimization in portfolio construction.
Machine learning techniques are already creating better order flow management tools
with non-linear trading algorithms that reduce the costs of implementing portfolio
decisions. These developments have caused an evolution in the automation of tools,
processes, and businesses (such as robo-advising).
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WHAT IS MACHINE LEARNING 2

] describe supervised machine learning, unsupervised machine
learning, and deep learning

We now discuss some fundamental concepts of machine learning, including a defi-
nition and an overview of key types of machine learning, such as supervised and
unsupervised ML.

Defining Machine Learning

Statistical approaches and machine learning techniques both analyze observations
to reveal some underlying process; however, they diverge in their assumptions, ter-
minology, and techniques. Statistical approaches rely on foundational assumptions
and explicit models of structure, such as observed samples that are assumed to be
drawn from a specified underlying probability distribution. These a priori restrictive
assumptions can fail in reality.

In contrast, machine learning seeks to extract knowledge from large amounts of data
with fewer such restrictions. The goal of machine learning algorithms is to automate
decision-making processes by generalizing (i.e., “learning”) from known examples to
determine an underlying structure in the data. The emphasis is on the ability of the
algorithm to generate structure or predictions from data without any human help. An
elementary way to think of ML algorithms is to “find the pattern, apply the pattern”

Machine learning techniques are better able than statistical approaches (such as
linear regression) to handle problems with many variables (high dimensionality) or
with a high degree of non-linearity. ML algorithms are particularly good at detecting
change, even in highly non-linear systems, because they can detect the preconditions
of a model’s break or anticipate the probability of a regime switch.

Machine learning is broadly divided into three distinct classes of techniques:
supervised learning, unsupervised learning, and deep learning/reinforcement learning.

Supervised Learning

Supervised learning involves ML algorithms that infer patterns between a set of
inputs (the X’s) and the desired output (Y). The inferred pattern is then used to map
a given input set into a predicted output. Supervised learning requires a labeled
dataset, one that contains matched sets of observed inputs and the associated output.
Applying the ML algorithm to this dataset to infer the pattern between the inputs
and output is called “training” the algorithm. Once the algorithm has been trained,
the inferred pattern can be used to predict output values based on new inputs (i.e.,
ones not in the training dataset).

Multiple regression is an example of supervised learning. A regression model
takes matched data (Xs, Y) and uses it to estimate parameters that characterize the
relationship between Y and the X’s. The estimated parameters can then be used to
predict Y on a new, different set of X’s. The difference between the predicted and
actual Y is used to evaluate how well the regression model predicts out-of-sample
(i.e., using new data).

The terminology used with ML algorithms differs from that used in regression.
Exhibit 1 provides a visual of the supervised learning model training process and a
translation between regression and ML terminologies.
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Exhibit 1: Overview of Supervised Learning

Test dataset:

; Inputs only.
Beqression ression kL Test Data
Y = Output = Dependent variable = Target

>
Xi= Inputs = Independent variables = Features X kl]' N}
Use ML
Labeled Data Train Supervised ML Algorithm 1Y, X, k>1, N}
A RZL,
Y. X k2L N} [T Algorithm for Test Data
Prediction l

. v
Training dataset:
Target outcomes Prediction Actual
paired with {yPredict} v}

feature inputs.

Evaluation of Fit

In supervised machine learning, the dependent variable (Y) is the target and the
independent variables (X’s) are known as features. The labeled data (training dataset)
is used to train the supervised ML algorithm to infer a pattern-based prediction rule.
The fit of the ML model is evaluated using labeled test data in which the predicted
targets (Y7” edict) are compared to the actual targets (YActualy

An example of supervised learning is the case in which ML algorithms are used
to predict whether credit card transactions are fraudulent or legitimate. In the credit
card example, the target is a binary variable with a value of 1 for “fraudulent” or 0
for “non-fraudulent” The features are the transaction characteristics. The chosen ML
algorithm uses these data elements to train a model to predict the likelihood of fraud
more accurately in new transactions. The ML program “learns from experience” if the
percentage of correctly predicted credit card transactions increases as the amount of
input from a growing credit card database increases. One possible ML algorithm to
use would be to fit a logistic regression model to the data to provide an estimate of
the probability a transaction is fraudulent.

Supervised learning can be divided into two categories of problems—regression
and classification—with the distinction between them being determined by the nature
of the target (Y) variable. If the target variable is continuous, then the task is one of
regression (even if the ML technique used is not “regression”; note this nuance of ML
terminology). If the target variable is categorical or ordinal (i.e., a ranked category), then
it is a classification problem. Regression and classification use different ML techniques.

Regression focuses on making predictions of continuous target variables. Most
readers are already familiar with multiple linear regression (e.g., ordinary least squares)
models, but other supervised learning techniques exist, including non-linear models.
These non-linear models are useful for problems involving large datasets with large
numbers of features, many of which may be correlated. Some examples of problems
belonging to the regression category are using historical stock market returns to fore-
cast stock price performance or using historical corporate financial ratios to forecast
the probability of bond default.

Classification focuses on sorting observations into distinct categories. In (super-
vised) machine learning, when the dependent variable (target) is categorical, the model
relating the outcome to the independent variables (features) is called a “classifier”
You should already be familiar with logistic regression as a type of classifier. Many
classification models are binary classifiers, as in the case of fraud detection for credit
card transactions. Multi-category classification is not uncommon, as in the case of
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classifying firms into multiple credit rating categories. In assigning ratings, the outcome
variable is ordinal, meaning the categories have a distinct order or ranking (e.g., from
low to high creditworthiness). Ordinal variables are intermediate between categorical
variables and continuous variables on a scale of measurement.

Unsupervised Learning

Unsupervised learning is machine learning that does not make use of labeled data.
More formally, in unsupervised learning, we have inputs (X’s) that are used for anal-
ysis without any target (Y) being supplied. In unsupervised learning, because the ML
algorithm is not given labeled training data, the algorithm seeks to discover structure
within the data themselves. As such, unsupervised learning is useful for exploring
new datasets because it can provide human experts with insights into a dataset too
big or too complex to visualize.

Two important types of problems that are well suited to unsupervised machine
learning are reducing the dimension of data and sorting data into clusters, known as
dimension reduction and clustering, respectively.

Dimension reduction focuses on reducing the number of features while retaining
variation across observations to preserve the information contained in that variation.
Dimension reduction may have several purposes. It may be applied to data with a
large number of features to produce a lower dimensional representation (i.e., with
fewer features) that can fit, for example, on a computer screen. Dimension reduction
is also used in many quantitative investment and risk management applications where
it is critical to identify the most predictive factors underlying asset price movements.

Clustering focuses on sorting observations into groups (clusters) such that obser-
vations in the same cluster are more similar to each other than they are to observations
in other clusters. Groups are formed based on a set of criteria that may or may not be
prespecified (such as the number of groups). Clustering has been used by asset man-
agers to sort companies into groupings driven by data (e.g., based on their financial
statement data or corporate characteristics) rather than conventional groupings (e.g.,
based on sectors or countries).

Deep Learning and Reinforcement Learning

More broadly in the field of artificial intelligence, additional categories of machine
learning algorithms are distinguished. In deep learning, sophisticated algorithms
address complex tasks, such as image classification, face recognition, speech recog-
nition, and natural language processing. Deep learning is based on neural networks
(NNs), also called artificial neural networks (ANNs)—highly flexible ML algorithms
that have been successfully applied to a variety of supervised and unsupervised tasks
characterized by large datasets, non-linearities, and interactions among features. In
reinforcement learning, a computer learns from interacting with itself or data gener-
ated by the same algorithm. Deep learning and reinforcement learning principles have
been combined to create efficient algorithms for solving a range of highly complex
problems in robotics, health care, and finance.

Summary of ML Algorithms and How to Choose among Them

Exhibit 2 is a guide to the various machine learning algorithms organized by algorithm
type (supervised or unsupervised) and by type of variables (continuous, categorical,
or both). We will not cover linear or logistic regression since they are covered else-
where in readings on quantitative methods. The extensions of linear regression, such
as penalized regression and least absolute shrinkage and selection operator (LASSO),
as well as the other ML algorithms shown in Exhibit 2, will be covered in this reading.
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Exhibit 2: Guide to ML Algorithms

ML Algorithm Type

Variables Supervised (Target Variable) Unsupervised (No Target Variable)
Continuous Regression Dimension Reduction

« Linear; Penalized Regression/LASSO « Principal Components Analysis (PCA)

« Logistic Clustering

« Classification and Regression Tree (CART) + K-Means

« Random Forest « Hierarchical
Categorical Classification Dimension Reduction

« Logistic « Principal Components Analysis (PCA)

Continuous or
Categorical

« Support Vector Machine (SVM)

« K-Nearest Neighbor (KNN)

« Classification and Regression Tree (CART)
Neural Networks

Deep Learning

Reinforcement Learning

Clustering

+ K-Means

« Hierarchical
Neural Networks
Deep Learning

Reinforcement Learning

EXAMPLE 1

Machine Learning Overview

1. Which of the following best describes machine learning? Machine learning:

A. is a type of computer algorithm used just for linear regression.

B. is a set of algorithmic approaches aimed at generating structure or
predictions from data without human intervention by finding a pattern
and then applying the pattern.

C. is a set of computer-driven approaches adapted to extracting informa-
tion from linear, labeled datasets.

Solution:

B is correct. A is incorrect because machine learning algorithms are typical-
ly not used for linear regression. C is incorrect because machine learning is
not limited to extracting information from linear, labeled datasets.

2. Which of the following statements is most accurate? When attempting to
discover groupings of data without any target (Y) variable:

A. an unsupervised ML algorithm is used.

B. an ML algorithm that is given labeled training data is used.

(. asupervised ML algorithm is used.

Solution:

A is correct. B is incorrect because the term “labeled training data” means
the target (Y) is provided. C is incorrect because a supervised ML algorithm
is meant to predict a target (Y) variable.
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3. Which of the following statements concerning supervised learning best
distinguishes it from unsupervised learning? Supervised learning involves:
A. training on labeled data to infer a pattern-based prediction rule.
B. training on unlabeled data to infer a pattern-based prediction rule.

C. learning from unlabeled data by discovering underlying structure in
the data themselves.

Solution:

A is correct. B is incorrect because supervised learning uses labeled training
data. C is incorrect because it describes unsupervised learning.

4. Which of the following best describes dimension reduction? Dimension
reduction:

A. focuses on classifying observations in a dataset into known groups
using labeled training data.

B. focuses on clustering observations in a dataset into unknown groups
using unlabeled data.

C. focuses on reducing the number of features in a dataset while retain-
ing variation across observations to preserve the information in that
variation.

Solution:

C is correct. A is incorrect because it describes classification, not dimen-
sion reduction. B is incorrect because it describes clustering, not dimension
reduction.

EVALUATING ML ALGORITHM PERFORMANCE

] describe overfitting and identify methods of addressing it

Machine learning algorithms promise several advantages relative to a structured
statistical approach in exploring and analyzing the structure of very large datasets.
ML algorithms have the ability to uncover complex interactions between feature vari-
ables and the target variable, and they can process massive amounts of data quickly.
Moreover, many ML algorithms can easily capture non-linear relationships and may
be able to recognize and predict structural changes between features and the target.
These advantages mainly derive from the non-parametric and non-linear models that
allow more flexibility when inferring relationships.

The flexibility of ML algorithms comes with a price, however. ML algorithms can
produce overly complex models with results that are difficult to interpret, may be
sensitive to noise or particulars of the data, and may fit the training data too well. An
ML algorithm that fits the training data too well will typically not predict well using
new data. This problem is known as overfitting, and it means that the fitted algorithm
does not generalize well to new data. A model that generalizes well is a model that
retains its explanatory power when predicting using out-of-sample (i.e., new) data. An
overfit model has incorporated the noise or random fluctuations in the training data
into its learned relationship. The problem is that these aspects often do not apply to
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new data the algorithm receives and so will negatively impact the model’s ability to
generalize, therefore reducing its overall predictive value. The evaluation of any ML
algorithm thus focuses on its prediction error on new data rather than on its goodness
of fit on the data with which the algorithm was fitted (i.e., trained).

Generalization is an objective in model building, so the problem of overfitting
is a challenge to attaining that objective. These two concepts are the focus of the
discussion below.

Generalization and Overfitting

To properly describe generalization and overfitting of an ML model, it is important
to note the partitioning of the dataset to which the model will be applied. The dataset
is typically divided into three non-overlapping samples: (1) training sample used to
train the model, (2) validation sample for validating and tuning the model, and (3)
test sample for testing the model’s ability to predict well on new data. The training
and validation samples are often referred to as being “in-sample,” and the test sample
is commonly referred to as being “out-of-sample” We will return shortly to the topic
of partitioning the dataset.

To be valid and useful, any supervised machine learning model must generalize
well beyond the training data. The model should retain its explanatory power when
tested out-of-sample. As mentioned, one common reason for failure to generalize is
overfitting. Think of overfitting as tailoring a custom suit that fits only one person.
Continuing the analogy, underfitting is similar to making a baggy suit that fits no one,
whereas robust fitting, the desired result, is similar to fashioning a universal suit that
fits all people of similar dimensions.

The concepts of underfitting, overfitting, and good (or robust) fitting are illustrated
in Exhibit 3. Underfitting means the model does not capture the relationships in the
data. The left graph shows four errors in this underfit model (three misclassified circles
and one misclassified triangle). Overfitting means training a model to such a degree of
specificity to the training data that the model begins to incorporate noise coming from
quirks or spurious correlations; it mistakes randomness for patterns and relationships.
The algorithm may have memorized the data, rather than learned from it, so it has
perfect hindsight but no foresight. The main contributors to overfitting are thus high
noise levels in the data and too much complexity in the model. The middle graph shows
no errors in this overfit model. Complexity refers to the number of features, terms,
or branches in the model and to whether the model is linear or non-linear (non-linear
is more complex). As models become more complex, overfitting risk increases. A
good fit/robust model fits the training (in-sample) data well and generalizes well to
out-of-sample data, both within acceptable degrees of error. The right graph shows
that the good fitting model has only one error, the misclassified circle.
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Exhibit 3: Underfitting, Overfitting, and Good Fitting

Underfit X Overfit X Good Fit X

Errors and Overfitting

To capture these effects and calibrate degree of fit, data scientists compare error
rates in- and out-of-sample as a function of both the data and the algorithm. Total
in-sample errors (E;,) are generated by the predictions of the fitted relationship relative
to actual target outcomes on the training sample. Total out-of-sample errors (E,,,;)
are from either the validation or test samples. Low or no in-sample error but large
out-of-sample error are indicative of poor generalization. Data scientists decompose
the total out-of-sample error into three sources:

1. Bias error, or the degree to which a model fits the training data. Algorithms
with erroneous assumptions produce high bias with poor approximation,
causing underfitting and high in-sample error.

2. Variance error, or how much the model’s results change in response to new
data from validation and test samples. Unstable models pick up noise and
produce high variance, causing overfitting and high out-of-sample error.

3. Base error due to randomness in the data.

A learning curve plots the accuracy rate (= 1 — error rate) in the validation or test
samples (i.e., out-of-sample) against the amount of data in the training sample, so it is
useful for describing under- and overfitting as a function of bias and variance errors.
If the model is robust, out-of-sample accuracy increases as the training sample size
increases. This implies that error rates experienced in the validation or test samples
(E,,;) and in the training sample (E;,) converge toward each other and toward a desired
error rate (or, alternatively, the base error). In an underfitted model with high bias
error, shown in the left panel of Exhibit 4, high error rates cause convergence below
the desired accuracy rate. Adding more training samples will not improve the model to
the desired performance level. In an overfitted model with high variance error, shown
in the middle panel of Exhibit 4, the validation sample and training sample error rates
fail to converge. In building models, data scientists try to simultaneously minimize
both bias and variance errors while selecting an algorithm with good predictive or
classifying power, as seen in the right panel of Exhibit 4.
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Exhibit 4: Learning Curves: Accuracy in Validation and Training Samples

C. Good Tradeoff of Bias
and Variance Error

Accuracy Rate (%)
100 100 100

A. High Bias Error
Accuracy Rate (%)

B. High Variance Error
Accuracy Rate (%)

0 0 0
Number of Training Samples Number of Training Samples

Number of Training Samples
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————— Validation Accuracy Rate

Out-of-sample error rates are also a function of model complexity. As complexity
increases in the training set, error rates (E;,) fall and bias error shrinks. As complex-
ity increases in the test set, however, error rates (E,,;) rise and variance error rises.
Typically, linear functions are more susceptible to bias error and underfitting, while
non-linear functions are more prone to variance error and overfitting. Therefore, an
optimal point of model complexity exists where the bias and variance error curves
intersect and in- and out-of-sample error rates are minimized. A fitting curve, which
shows in- and out-of-sample error rates (E;, and E,,,) on the y-axis plotted against
model complexity on the x-axis, is presented in Exhibit 5 and illustrates this trade-off.

Exhibit 5: Fitting Curve Shows Trade-Off between Bias and Variance Errors

and Model Complexity
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Finding the optimal point (managing overfitting risk)—the point just before the
total error rate starts to rise (due to increasing variance error)—is a core part of the
machine learning process and the key to successful generalization. Data scientists
express the trade-off between overfitting and generalization as a trade-off between
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cost (the difference between in- and out-of-sample error rates) and complexity. They
use the trade-off between cost and complexity to calibrate and visualize under- and
overfitting and to optimize their models.

Preventing Overfitting in Supervised Machine Learning

We have seen that overfitting impairs generalization, but overfitting potential is
endemic to the supervised machine learning process due to the presence of noise. So,
how do data scientists combat this risk? Two common methods are used to reduce
overfitting: (1) preventing the algorithm from getting too complex during selection
and training, which requires estimating an overfitting penalty, and (2) proper data
sampling achieved by using cross-validation, a technique for estimating out-of-sample
error directly by determining the error in validation samples.

The first strategy comes from Occam’s razor, the problem-solving principle that
the simplest solution tends to be the correct one. In supervised machine learning,
it means limiting the number of features and penalizing algorithms that are too
complex or too flexible by constraining them to include only parameters that reduce
out-of-sample error.

The second strategy comes from the principle of avoiding sampling bias. But
sampling bias can creep into machine learning in many ways. The challenge is having
a large enough dataset to make both training and testing possible on representative
samples. An unrepresentative sample or reducing the training sample size too much
could obscure its true patterns, thereby increasing bias. In supervised machine learn-
ing, the technique for reducing sampling bias is through careful partitioning of the
dataset into three groups: (1) training sample, the set of labeled training data where
the target variable (Y) is known;(2) validation sample, the set of data used for making
structural choices on the degree of model complexity, comparing various solutions,
and tuning the selected model, thereby validating the model; and (3) test sample, the
set of data held aside for testing to confirm the model’s predictive or classifying power.
The goal, of course, is to deploy the tested model on fresh data from the same domain.

To mitigate the problem of such holdout samples (i.e., data samples not used
to train the model) reducing the training set size too much, modelers use special
cross-validation techniques. One such technique is k-fold cross-validation, in which
the data (excluding test sample and fresh data) are shuffled randomly and then are
divided into k equal sub-samples, with k — 1 samples used as training samples and
one sample, the kth, used as a validation sample. Note that k is typically set at 5 or 10.
This process is then repeated k times, which helps minimize both bias and variance
by insuring that each data point is used in the training set k — 1 times and in the val-
idation set once. The average of the k validation errors (mean E, ) is then taken as a
reasonable estimate of the model’s out-of-sample error (E, ;). A limitation of k-fold
cross-validation is that it cannot be used with time-series data, where only the most
recent data can reasonably be used for model validation.

In sum, mitigating overfitting risk by avoiding excessive out-of-sample error is
critical to creating a supervised machine learning model that generalizes well to fresh
datasets drawn from the same distribution. The main techniques used to mitigate
overfitting risk in model construction are complexity reduction (or regularization)
and cross-validation.
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EXAMPLE 2

Evaluating ML Algorithm Performance

Shreya Anand is a portfolio manager based in the Mumbai headquarters office
of an investment firm, where she runs a high-dividend-yield fund for wealthy
clients. Anand has some knowledge of data science from her university studies.
She is interested in classifying companies in the NIFTY 200 Index—an index
of large- and mid-cap companies listed on the National Stock Exchange of
India—into two categories: dividend increase and no dividend increase. She
assembles data for training, validating, and testing an ML-based model that
consists of 1,000 observations of NIFTY 200 companies, each consisting of 25
features (fundamental and technical) and the labeled target (dividend increase
or no dividend increase).

After training her model, Anand discovers that while it is good at correctly
classifying using the training sample, it does not perform well on new data. In
consulting her colleagues about this issue, Anand hears conflicting explanations
about what constitutes good generalization in an ML model:

Statement 1 'The model retains its explanatory power when predicting using
new data (i.e., out-of-sample).

Statement 2 'The model shows low explanatory power after training using
in-sample data (i.e., training data).

Statement 3 The model loses its explanatory power when predicting using
new data (i.e., out-of-sample).

1. Which statement made to Anand is most accurate?

A. Statement 1
B. Statement 2
C. Statement 3

Solution:

A, Statement 1, is correct. B, Statement 2, is incorrect because it describes
a poorly fitting model with high bias. C, Statement 3, is incorrect because it
describes an overfitted model with poor generalization.

2. Anand’s model is most likely being impaired by which of the following?

A. Underfitting and bias error
B. Overfitting and variance error

(. Opverfitting and bias error
Solution:

B is correct. Anand’s model is good at correctly classifying using the training
sample, but it does not perform well using new data. The model is overfitted,
so it has high variance error.

3. By implementing which one of the following actions can Anand address the
problem?

A. Estimate and incorporate into the model a penalty that decreases in
size with the number of included features.
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B. Use the k-fold cross-validation technique to estimate the model’s out-
of-sample error, and then adjust the model accordingly.

(. Use an unsupervised learning model.

Solution:

B is correct. A is incorrect because the penalty should increase in size with
the number of included features. C is incorrect because Anand is using
labeled data for classification, and unsupervised learning models do not use
labeled data.

SUPERVISED ML ALGORITHMS: PENALIZED
REGRESSION

] describe supervised machine learning algorithms—including
penalized regression, support vector machine, k-nearest neighbor,
classification and regression tree, ensemble learning, and random
forest—and determine the problems for which they are best suited

Supervised machine learning models are trained using labeled data, and depending
on the nature of the target (Y) variable, they can be divided into two types: regres-
sion for a continuous target variable and classification for a categorical or ordinal
target variable. As shown in Exhibit 2 under regression, we will now cover penalized
regression and LASSO. Then, as shown under classification, we will introduce support
vector machine (SVM), k-nearest neighbor (KNN), and classification and regression
tree (CART) algorithms. Note that CART, as its name implies, can be used for both
classification and regression problems.

In the following discussion, assume we have a number of observations of a target
variable, Y, and # real valued features, Xj, . . ., X,,, that we may use to establish a
relationship (regression or classification) between X (a vector of the X;) and Y for
each observation in our dataset.

Penalized Regression

Penalized regression is a computationally efficient technique used in prediction prob-
lems. In practice, penalized regression has been useful for reducing a large number
of features to a manageable set and for making good predictions in a variety of large
datasets, especially where features are correlated (i.e., when classical linear regression
breaks down).

In a large dataset context, we may have many features that potentially could be used
to explain Y. When a model is fit to training data, the model may so closely reflect the
characteristics of the specific training data that the model does not perform well on
new data. Features may be included that reflect noise or randomness in the training
dataset that will not be present in new or future data used for making predictions. That
is the problem of overfitting, and penalized regression can be described as a technique
to avoid overfitting. In prediction, out-of-sample performance is key, so relatively
parsimonious models (that is, models in which each variable plays an essential role)
tend to work well because they are less subject to overfitting.
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Let us suppose that we standardize our data so the features have a mean of 0 and
a variance of 1. Standardization of features will allow us to compare the magnitudes
of regression coefficients for the feature variables. In ordinary linear regression (i.e.,
ordinary least squares, or OLS), the regression coefficients 50, 1/7\1, R 51( are chosen

to minimize the sum of the squared residuals (i.e., the sum of the squared difference
between the actual values, Y, and the predicted values, Y;), or

i (Y- ?i)z'
Penalized regression includes a constraint such that the regression coefficients are
chosen to minimize the sum of squared residuals plus a penalty term that increases
in size with the number of included features. So, in a penalized regression, a feature
must make a sufficient contribution to model fit to offset the penalty from including
it. Therefore, only the more important features for explaining Y will remain in the
penalized regression model.

In one popular type of penalized regression, LASSO, or least absolute shrinkage
and selection operator, the penalty term has the following form, with A > 0:

K~
Penalty term = 1) ‘b k"
=

In addition to minimizing the sum of the squared residuals, LASSO involves mini-
mizing the sum of the absolute values of the regression coefficients (see the following
expression). The greater the number of included features (i.e., variables with non-zero
coefficients), the larger the penalty term. Therefore, penalized regression ensures that
a feature is included only if the sum of squared residuals declines by more than the
penalty term increases. All types of penalized regression involve a trade-off of this
type. Also, since LASSO eliminates the least important features from the model, it
automatically performs a type of feature selection.

~N\2 A~
(A BREY) Y SIS

Lambda () is a hyperparameter—a parameter whose value must be set by the
researcher before learning begins—of the regression model and will determine the
balance between fitting the model versus keeping the model parsimonious. In practice,
a hyperparameter is set by reviewing model performance repeatedly at different set-
tings on the validation set, and hence the test set is also essential to avoid overfitting
of hyperparameters to the validation data.

Note that in the case where A = 0, the LASSO penalized regression is equivalent
to an OLS regression. When using LASSO or other penalized regression techniques,
the penalty term is added only during the model building process (i.e., when fitting
the model to the training data). Once the model has been built, the penalty term is no
longer needed, and the model is then evaluated by the sum of the squared residuals
generated using the test dataset.

With today’s availability of fast computation algorithms, investment analysts are
increasingly using LASSO and other regularization techniques to remove less per-
tinent features and build parsimonious models. Regularization describes methods
that reduce statistical variability in high-dimensional data estimation problems—in
this case, reducing regression coefficient estimates toward zero and thereby avoiding
complex models and the risk of overfitting. LASSO has been used, for example, for
forecasting default probabilities in industrial sectors where scores of potential features,
many collinear, have been reduced to fewer than 10 variables, which is important given
the relatively small number (about 100) of observations of default.

Regularization methods can also be applied to non-linear models. A long-term
challenge of the asset management industry in applying mean—variance optimiza-
tion has been the estimation of stable covariance matrixes and asset weights for
large portfolios. Asset returns typically exhibit strong multi-collinearity, making
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the estimation of the covariance matrix highly sensitive to noise and outliers, so the
resulting optimized asset weights are highly unstable. Regularization methods have
been used to address this problem. The relatively parsimonious models produced by
applying penalized regression methods, such as LASSO, tend to work well because
they are less subject to overfitting.

SUPPORT VECTOR MACHINE

] describe supervised machine learning algorithms—including
penalized regression, support vector machine, k-nearest neighbor,
classification and regression tree, ensemble learning, and random
forest—and determine the problems for which they are best suited

Support vector machine (SVM) is one of the most popular algorithms in machine
learning. It is a powerful supervised algorithm used for classification, regression, and
outlier detection. Despite its complicated-sounding name, the notion is relatively
straightforward and best explained with a few pictures. The left panel in Exhibit 6
presents a simple dataset with two features (x and y coordinates) labeled in two groups
(triangles and diamonds). These binary labeled data are noticeably separated into two
distinct regions, which could represent stocks with positive and negative returns in a
given year. These two regions can be easily separated by an infinite number of straight
lines; three of them are shown in the right panel of Exhibit 6. The data are thus linearly
separable, and any of the straight lines shown would be called a linear classifier—a
binary classifier that makes its classification decision based on a linear combination
of the features of each data point.

Exhibit 6: Scatterplots and Linear Separation of Labeled Data

A. Data Labelled in Two Groups B. Data Is Linearly Separable

With two dimensions or features (x and y), linear classifiers can be represented as
straight lines. Observations with # features can be represented in an n-dimension
space, and the dataset would be linearly separable if the observations can be sepa-
rated into two distinct regions by a linear space boundary. The general term for such
a space boundary is an n-dimensional hyperplane, which with # = 1 is called a line
and with # = 2 is called a plane.
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Support vector machine is a linear classifier that determines the hyperplane that
optimally separates the observations into two sets of data points. The intuitive idea
behind the SVM algorithm is maximizing the probability of making a correct prediction
(here, that an observation is a triangle or a diamond) by determining the boundary
that is the furthest away from all the observations. In Exhibit 7, SVM separates the
data by the maximum margin, where the margin is the shaded strip that divides the
observations into two groups. The straight line in the middle of the shaded strip is the
discriminant boundary, or boundary, for short. We can see that the SVM algorithm
produces the widest shaded strip (i.e., the one with the maximum margin on either
side of the boundary). The margin is determined by the observations closest to the
boundary (the circled points) in each set, and these observations are called support
vectors. Adding more training data away from the support vectors will not affect the
boundary. In our training datasets, however, adding data points which are close to the
hyperplane may move the margin by changing the set of support vectors.

Exhibit 7: Linear Support Vector Machine Classifier

In Exhibit 7, SVM is classifying all observations perfectly. Most real-world datasets,
however, are not linearly separable. Some observations may fall on the wrong side of
the boundary and be misclassified by the SVM algorithm. The SVM algorithm handles
this problem by an adaptation called soft margin classification, which adds a penalty
to the objective function for observations in the training set that are misclassified. In
essence, the SVM algorithm will choose a discriminant boundary that optimizes the
trade-off between a wider margin and a lower total error penalty.

As an alternative to soft margin classification, a non-linear SVM algorithm can
be run by introducing more advanced, non-linear separation boundaries. These algo-
rithms may reduce the number of misclassified instances in the training datasets but
are more complex and, so, are prone to overfitting.

SVM has many applications in investment management. It is particularly suited
for small to medium-size but complex high-dimensional datasets, such as corporate
financial statements or bankruptcy databases. Investors seek to predict company failures
for identifying stocks to avoid or to short sell, and SVM can generate a binary classi-
fication (e.g., bankruptcy likely versus bankruptcy unlikely) using many fundamental
and technical feature variables. SVM can effectively capture the characteristics of
such data with many features while being resilient to outliers and correlated features.
SVM can also be used to classify text from documents (e.g., news articles, company
announcements, and company annual reports) into useful categories for investors
(e.g., positive sentiment and negative sentiment).
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K-NEAREST NEIGHBOR

] describe supervised machine learning algorithms—including
penalized regression, support vector machine, k-nearest neighbor,
classification and regression tree, ensemble learning, and random
forest—and determine the problems for which they are best suited

K-nearest neighbor (KNN) is a supervised learning technique used most often for
classification and sometimes for regression. The idea is to classify a new observation
by finding similarities (“nearness”) between this new observation and the existing data.
Going back to the scatterplot in Exhibit 6, let us assume we have a new observation:
The diamond in Exhibit 8 needs to be classified as belonging to either the diamond
or the triangle category. If k = 1, the diamond will be classified into the same category
as its nearest neighbor (i.e., the triangle in the left panel). The right panel in Exhibit 8
presents the case where k = 5, so the algorithm will look at the diamond’s five nearest
neighbors, which are three triangles and two diamonds. The decision rule is to choose
the classification with the largest number of nearest neighbors out of the five being
considered. So, the diamond is again classified as belonging to the triangle category.

Exhibit 8: K-Nearest Neighbor Algorithm

A. KNN With New Observation, K=1 B. KNN With New Observation, K=5
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Let us suppose we have a database of corporate bonds classified by credit rating that
also contains detailed information on the characteristics of these bonds. Such fea-
tures would include those of the issuing company (e.g., asset size, industry, leverage
ratios, cash flow ratios) and of the bond issue itself (e.g., tenor, fixed/floating coupon,
embedded options). Now, assume a new bond is about to be issued with no credit
rating. By nature, corporate bonds with similar issuer and issue characteristics should
be given a similar credit rating. So, by using KNN, we can predict the implied credit
rating of the new bond based on the similarities of its characteristics to those of the
bonds in our database.

KNN is a straightforward, intuitive model that is still very powerful because it is
non-parametric; the model makes no assumptions about the distribution of the data.
Moreover, it can be used directly for multi-class classification. A critical challenge of
KNN, however, is defining what it means to be “similar” (or near). Besides the selec-
tion of features, an important decision relates to the distance metric used to model
similarity because an inappropriate measure will generate poorly performing models.
The choice of a correct distance measure may be even more subjective for ordinal
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or categorical data. For example, if an analyst is looking at the similarities in market
performance of various equities, he or she may consider using the correlation between
the stocks’ historical returns as an appropriate measure of similarity.

Knowledge of the data and understanding of the business objectives of the analysis
are critical aspects in the process of defining similarity. KNN results can be sensitive to
inclusion of irrelevant or correlated features, so it may be necessary to select features
manually. By doing so, the analyst removes less valuable information to keep the most
relevant and pertinent information. If done correctly, this process should generate a
more representative distance measure. KNN algorithms tend to work better with a
small number of features.

Finally, the number &, the hyperparameter of the model, must be chosen with the
understanding that different values of k can lead to different conclusions. For predicting
the credit rating of an unrated bond, for example, should & be the 3, 15, or 50 bonds
most similar to the unrated bond? If k is an even number, there may be ties and no
clear classification. Choosing a value for k that is too small would result in a high error
rate and sensitivity to local outliers, but choosing a value for k that is too large would
dilute the concept of nearest neighbors by averaging too many outcomes. In practice,
several different techniques can be used to determine an optimal value for k, taking
into account the number of categories and their partitioning of the feature space.

The KNN algorithm has many applications in the investment industry, including
bankruptcy prediction, stock price prediction, corporate bond credit rating assign-
ment, and customized equity and bond index creation. For example, KNN is useful
for determining bonds that are similar and those that are dissimilar, which is critical
information for creating a custom, diversified bond index.

CLASSIFICATION AND REGRESSION TREE

] describe supervised machine learning algorithms—including
penalized regression, support vector machine, k-nearest neighbor,
classification and regression tree, ensemble learning, and random
forest—and determine the problems for which they are best suited

Classification and regression tree (CART) is another common supervised machine
learning technique that can be applied to predict either a categorical target variable,
producing a classification tree, or a continuous target variable, producing a regression
tree. CART is commonly applied to binary classification or regression.

CART will be discussed in the context of a simplified model for classifying com-
panies by whether they are likely to increase their dividends to shareholders. Such a
classification requires a binary tree: a combination of an initial root node, decision
nodes, and terminal nodes. The root node and each decision node represent a single
feature (f) and a cutoff value (c) for that feature. As shown in Panel A of Exhibit 9,
we start at the initial root node for a new data point. In this case, the initial root
node represents the feature investment opportunities growth (I0OG), designated as
X1, with a cutoff value of 10%. From the initial root node, the data are partitioned at
decision nodes into smaller and smaller subgroups until terminal nodes that contain
the predicted labels are formed. In this case, the predicted labels are either dividend
increase (the cross) or no dividend increase (the dash).

Also shown in Panel A of Exhibit 9, if the value of feature IOG (X1) is greater than
10% (Yes), then we proceed to the decision node for free cash flow growth (FCFQG),
designated as X2, which has a cutoff value of 20%. Now, if the value of FCFG is not
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greater than 20% (No), then CART will predict that that data point belongs to the
no dividend increase (dash) category, which represents a terminal node. Conversely,
if the value of X2 is greater than 20% (Yes), then CART will predict that that data
point belongs to the dividend increase (cross) category, which represents another
terminal node.

It is important to note that the same feature can appear several times in a tree
in combination with other features. Moreover, some features may be relevant only
if other conditions have been met. For example, going back to the initial root node,
if IOG is not greater than 10% (X1 < 10%) and FCFG is greater than 10%, then IOG
appears again as another decision node, but this time it is lower down in the tree and
has a cutoff value of 5%.
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Exhibit 9: Classification and Regression Tree—Decision Tree and

Partitioning of the Feature Space

A. Decision Tree
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We now turn to how the CART algorithm selects features and cutoff values for them.
Initially, the classification model is trained from the labeled data, which in this hypo-
thetical case are 10 instances of companies having a dividend increase (the crosses)
and 10 instances of companies with no dividend increase (the dashes). As shown in
Panel B of Exhibit 9, at the initial root node and at each decision node, the feature
space (i.e., the plane defined by X1 and X2) is split into two rectangles for values
above and below the cutoff value for the particular feature represented at that node.
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This can be seen by noting the distinct patterns of the lines that emanate from the
decision nodes in Panel A. These same distinct patterns are used for partitioning the
feature space in Panel B.

The CART algorithm chooses the feature and the cutoff value at each node that
generates the widest separation of the labeled data to minimize classification error
(e.g., by a criterion, such as mean-squared error). After each decision node, the
partition of the feature space becomes smaller and smaller, so observations in each
group have lower within-group error than before. At any level of the tree, when the
classification error does not diminish much more from another split (bifurcation),
the process stops, the node is a terminal node, and the category that is in the major-
ity at that node is assigned to it. If the objective of the model is classification, then
the prediction of the algorithm at each terminal node will be the category with the
majority of data points. For example, in Panel B of Exhibit 9, the top right rectangle of
the feature space, representing IOG (X1) > 10% and FCFG (X2 )> 20%, contains five
crosses, the most data points of any of the partitions. So, CART would predict that a
new data point (i.e., a company) with such features belongs to the dividend increase
(cross) category. However, if instead the new data point had IOG (X1) > 10% and
FCEG (X2) < 20%, then it would be predicted to belong to the no dividend increase
(dash) category—represented by the lower right rectangle, with two crosses but with
three dashes. Finally, if the goal is regression, then the prediction at each terminal
node is the mean of the labeled values.

CART makes no assumptions about the characteristics of the training data, so if
left unconstrained, it potentially can perfectly learn the training data. To avoid such
overfitting, regularization parameters can be added, such as the maximum depth of
the tree, the minimum population at a node, or the maximum number of decision
nodes. The iterative process of building the tree is stopped once the regularization
criterion has been reached. For example, in Panel B of Exhibit 9, the upper left rectan-
gle of the feature space (determined by X1 < 10%, X2 > 10%, and X1 < 5% with three
crosses) might represent a terminal node resulting from a regularization criterion
with minimum population equal to 3. Alternatively, regularization can occur via a
pruning technique that can be used afterward to reduce the size of the tree. Sections
of the tree that provide little classifying power are pruned (i.e., cut back or removed).

By its iterative structure, CART can uncover complex dependencies between fea-
tures that other models cannot reveal. As demonstrated in Exhibit 9, the same feature
can appear several times in combination with other features and some features may
be relevant only if other conditions have been met.

As shown in Exhibit 10, high profitability is a critical feature for predicting whether
a stock is an attractive investment or a value trap (i.e., an investment that, although
apparently priced cheaply, is likely to be unprofitable). This feature is relevant only
if the stock is cheap: For example, in this hypothetical case, if P/E is less than 15,
leverage is high (debt to total capital > 50%) and sales are expanding (sales growth >
15%). Said another way, high profitability is irrelevant in this context if the stock is
not cheap and if leverage is not high and if sales are not expanding. Multiple linear
regression typically fails in such situations where the relationship between the features
and the outcome is non-linear.
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Exhibit 10: Stylized Decision Tree—Attractive Investment or Value Trap?

Is Stock Cheap?
(P/E <15x)

Yes / No
.

Is Leverage High?
(Debt/Tot. Cap > 50%)

Yes / No
.

Are Sales Growing?
(Sales Growth > 15%)

Yes / No
N

Is Profitability High?
(Net Profit Margin > 20%)

Yes / No
N

Attractive Equity
Investment

Value Trap

CART models are popular supervised machine learning models because the tree
provides a visual explanation for the prediction. This contrasts favorably with other
algorithms that are often considered to be “black boxes” because it may be difficult
to understand the reasoning behind their outcomes and thus to place trust in them.
CART is a powerful tool to build expert systems for decision-making processes. It
can induce robust rules despite noisy data and complex relationships between high
numbers of features. Typical applications of CART in investment management include,
among others, enhancing detection of fraud in financial statements, generating
consistent decision processes in equity and fixed-income selection, and simplifying
communication of investment strategies to clients.

ENSEMBLE LEARNING AND RANDOM FOREST

] describe supervised machine learning algorithms—including
penalized regression, support vector machine, k-nearest neighbor,
classification and regression tree, ensemble learning, and random
forest—and determine the problems for which they are best suited

Instead of basing predictions on the results of a single model as in the previous dis-
cussion, why not use the predictions of a group—or an ensemble—of models? Each
single model will have a certain error rate and will make noisy predictions. But by
taking the average result of many predictions from many models, we can expect to
achieve a reduction in noise as the average result converges toward a more accurate
prediction. This technique of combining the predictions from a collection of models



© CFA Institute. For candidate use only. Not for distribution.

Ensemble Learning and Random Forest

is called ensemble learning, and the combination of multiple learning algorithms is
known as the ensemble method. Ensemble learning typically produces more accurate
and more stable predictions than the best single model. In fact, in many prestigious
machine learning competitions, an ensemble method is often the winning solution.

Ensemble learning can be divided into two main categories: (1) aggregation of
heterogeneous learners (i.e., different types of algorithms combined with a voting
classifier) or (2) aggregation of homogeneous learners (i.e., a combination of the same
algorithm using different training data that are based, for example, on a bootstrap
aggregating, or bagging, technique, as discussed later).

Voting Classifiers

Suppose you have been working on a machine learning project for some time and
have trained and compared the results of several algorithms, such as SVM, KNN, and
CART. A majority-vote classifier will assign to a new data point the predicted label
with the most votes. For example, if the SVM and KNN models are both predicting
the category “stock outperformance” and the CART model is predicting the category
“stock underperformance,” then the majority-vote classifier will choose stock outper-
formance” The more individual models you have trained, the higher the accuracy of
the aggregated prediction up to a point. There is an optimal number of models beyond
which performance would be expected to deteriorate from overfitting. The trick is to
look for diversity in the choice of algorithms, modeling techniques, and hypotheses.
The (extreme) assumption here is that if the predictions of the individual models are
independent, then we can use the law of large numbers to achieve a more accurate
prediction.

Bootstrap Aggregating (Bagging)

Alternatively, one can use the same machine learning algorithm but with different
training data. Bootstrap aggregating (or bagging) is a technique whereby the
original training dataset is used to generate # new training datasets or bags of data.
Each new bag of data is generated by random sampling with replacement from the
initial training set. The algorithm can now be trained on # independent datasets that
will generate # new models. Then, for each new observation, we can aggregate the
n predictions using a majority-vote classifier for a classification or an average for a
regression. Bagging is a very useful technique because it helps to improve the stability
of predictions and protects against overfitting the model.

Random Forest

A random forest classifier is a collection of a large number of decision trees trained
via a bagging method. For example, a CART algorithm would be trained using each
of the # independent datasets (from the bagging process) to generate the multitude
of different decision trees that make up the random forest classifier.

To derive even more individual predictions, added diversity can be generated in
the trees by randomly reducing the number of features available during training. So,
if each observation has # features, one can randomly select a subset of m features
(where m < n) that will then be considered by the CART algorithm for splitting the
dataset at each of the decision nodes. The number of subset features (), the number
of trees to use, the minimum size (population) of each node (or leaf), and the maxi-
mum depth of each tree are all hyperparameters that can be tuned to improve overall
model prediction accuracy. For any new observation, we let all the classifier trees (the
“random forest”) undertake classification by majority vote—implementing a machine
learning version of the “wisdom of crowds” The process involved in random forest

221



222

Learning Module 6

© CFA Institute. For candidate use only. Not for distribution.
Machine Learning

construction tends to reduce variance and protect against overfitting on the training
data. It also reduces the ratio of noise to signal because errors cancel out across the
collection of slightly different classification trees. However, an important drawback
of random forest is that it lacks the ease of interpretability of individual trees; as a
result, it is considered a relatively black box type of algorithm.

Exhibit 11 presents three scatterplots of actual and predicted defaults by small and
medium-sized businesses with respect to two features, X and Y—for example, firm
profitability and leverage, respectively. The left plot shows the actual cases of default
in light shade and no default in dark shade, while the middle and right plots present
the predicted defaults and no defaults (also in light and dark shades, respectively). It is
clear from the middle plot, which is based on a traditional linear regression model, that
the model fails to predict the complex non-linear relationship between the features.
Conversely, the right plot, which presents the prediction results of a random forest
model, shows that this model performs very well in matching the actual distribution
of the data.

Exhibit 11: Credit Defaults of Small- and Medium-Sized Borrowers

Actual Data Linear Model Prediction Random Forest Prediction

-2 0 2 -2 0 2 -2 0 2

Source:Bacham and Zhao (2017).

ENSEMBLE LEARNING WITH RANDOM FOREST

In making use of voting across classifier trees, random forest is an example of
ensemble learning: Incorporating the output of a collection of models produces
classifications that have better signal-to-noise ratios than the individual classifiers.
A good example is a credit card fraud detection problem that comes from an
open source dataset on Kaggle.! Here, the data contained several anonymized
features that might be used to explain which transactions were fraudulent. The
difficulty in the analysis arises from the fact that the rate of fraudulent transac-
tions is very low; in a sample of 284,807 transactions, only 492 were fraudulent
(0.17%). This is akin to finding a needle in a haystack. Applying a random for-
est classification algorithm with an oversampling technique—which involves
increasing the proportional representation of fraudulent data in the training
set—does extremely well. Despite the lopsided sample, it delivers precision (the

1 See www.kaggle.com/mlg-ulb/creditcardfraud (accessed 1 October 2018).
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ratio of correctly predicted fraudulent cases to all predicted fraudulent cases)
of 89% and recall (the ratio of correctly predicted fraudulent cases to all actual
fraudulent cases) of 82%.

Despite its relative simplicity, random forest is a powerful algorithm with many
investment applications. These include, for example, use in factor-based investment
strategies for asset allocation and investment selection or use in predicting whether an
IPO will be successful (e.g., percent oversubscribed, first trading day close/IPO price)
given the attributes of the IPO offering and the corporate issuer. Later, in a mini-case
study, Deep Neural Network—Based Equity Factor Model, we present further details
of how supervised machine learning is used for fundamental factor modeling.

EXAMPLE 3

Support Vector Machine and K-Nearest Neighbor

Rachel Lee is a fixed-income portfolio manager with Zeta Investment Management
Company. Zeta manages an investment-grade bond portfolio for small, conser-
vative institutions and a non-investment-grade (i.e., high-yield) bond portfolio
for yield-seeking, high-net-worth individuals. Both portfolios can hold unrated
bonds if the characteristics of the unrated bonds closely match those of the
respective portfolio’s average holding.

Lee is discussing an upcoming straight, 10-year fixed-coupon bond issue
with senior credit analyst Marc Watson. Watson comments that although the
bond’s issuer, Biotron Corporation, has not had this issue rated, his analysis of
the company’s profitability, cash flow, leverage, and coverage ratios places the
issue near the borderline between low investment-grade (Baa3/BBB-) and high
non-investment-grade (Bal/BB+) bonds.

Lee decides to use machine learning methods to confirm the implied credit
rating of Biotron Corporation.

Lee decides to apply the two identified ML algorithms. Both algorithms clearly
support a high non-investment-grade rating. Watson states that because both
ML algorithms agree on the rating, he has confidence in relying on the rating.

1. State the type of problem being addressed by Lee.

Solution:

Lee is addressing a supervised learning classification problem because she
must determine whether Biotron’s upcoming bond issue would be classified
as investment grade or non-investment grade.

2. State two ML algorithms that Lee could use to explore the implied credit
rating of Biotron Corporation, and then describe how each algorithm could
be applied.

Solution:

One suitable ML algorithm is SVM. The SVM algorithm is a linear classifier
that aims to find the optimal hyperplane—the one that separates observa-
tions into two distinct sets by the maximum margin. So, SVM is well suited
to binary classification problems, such as the one facing Lee (investment
grade versus non-investment grade). In this case, Lee could train the SVM
algorithm on data—characteristics (features) and rating (target)—of low
investment-grade (Baa3/BBB-) and high non-investment-grade (Bal/BB+)
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bonds. Lee would then note on which side of the margin the new data point
(Biotron’s new bonds) lies.

The KNN algorithm is also well suited for classification problems because

it classifies a new observation by finding similarities (or nearness) between
the new observation and the existing data. Training the algorithm with data
as for SVM, the decision rule for classifying Biotron’s new bonds is which
classification is in the majority among its k-nearest neighbors. Note that k (a
hyperparameter) must be pre-specified by Lee.

3. State one argument in support of Watson’s viewpoint.

Solution:

If the ML algorithms disagreed on the classification, the classification would
be more likely to be sensitive to the algorithm’s approach to classifying data.
Because the classification of Biotron’s new issue appears robust to the choice
of ML algorithm (i.e., both algorithms agree on the rating), the resulting
classification will more likely be correct.

EXAMPLE 4

CART and Ensemble Learning

Laurie Kim is a portfolio manager at Hilux LLC, a high-yield bond investment
firm. The economy has been in recession for several months, and high-yield bond
prices have declined precipitously as credit spreads have widened in response
to the weak macroeconomic environment. Kim, however, believes this is a good
time to buy because she expects to profit as credit spreads narrow and high-yield
bond prices rise in anticipation of economic recovery.

Based on her analysis, Kim believes that corporate high-yield bonds in the
credit quality range of B/B2 to CCC/Caa2 are the most attractive. However, she
must carefully select which bonds to buy and which bonds to avoid because of
the elevated default risk caused by the currently weak economy.

To help with her bond selection, Kim turns to Hilux’s data analytics team.
Kim has supplied them with historical data consisting of 19 fundamental and 5
technical factors for several thousand high-yield bond issuers and issues labeled
to indicate default or no default. Kim requests that the team develop an ML-based
model using all the factors provided that will make accurate classifications in
two categories: default and no default. Exploratory data analysis suggests con-
siderable non-linearities among the feature set.

1. State the type of problem being addressed by Kim.

Solution:

Kim is addressing a classification problem because she must determine
whether bonds that she is considering purchasing in the credit quality range
of B/B2 to CCC/Caa2 will default or not default.
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2. Describe the dimensionality of the model that Kim requests her analytics
team to develop.
Solution:

With 19 fundamental and 5 technical factors (i.e., the features), the dimen-
sionality of the model is 24.

3. Evaluate whether a CART model is appropriate for addressing her problem.

Solution:

The CART model is an algorithm for addressing classification problems. Its
ability to handle complex, non-linear relationships makes it a good choice to
address the modeling problem at hand. An important advantage of CART

is that its results are relatively straightforward to visualize and interpret,
which should help Kim explain her recommendations based on the model to
Hilux’s investment committee and the firm’s clients.

4. Describe how a CART model operates at each node of the tree.

Solution:

At each node in the decision tree, the algorithm will choose the feature and
the cutoff value for the selected feature that generates the widest separation
of the labeled data to minimize classification error.

5. Describe how the team might avoid overfitting and improve the predictive
power of a CART model.

Solution:

The team can avoid overfitting and improve the predictive power of the
CART model by adding regularization parameters. For example, the team
could specify the maximum depth of the tree, the minimum population at a
node, or the maximum number of decision nodes. The iterative process of
building nodes will be stopped once the regularization criterion has been
reached. Alternatively, a pruning technique can be used afterward to remove
parts of the CART model that provide little power to correctly classify in-
stances into default or no default categories.

6. Describe how ensemble learning might be used by the team to develop even
better predictions for Kim’s selection of corporate high-yield bonds.

Solution:

The analytics team might use ensemble learning to combine the predictions
from a collection of models, where the average result of many predictions
leads to a reduction in noise and thus more accurate predictions. Ensemble
learning can be achieved by an aggregation of either heterogeneous learn-
ers—different types of algorithms combined with a voting classifier—or
homogeneous learners—a combination of the same algorithm but using
different training data based on the bootstrap aggregating (i.e., bagging)
technique. The team may also consider developing a random forest classifier
(i-e., a collection of many decision trees) trained via a bagging method.
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CASE STUDY: CLASSIFICATION OF WINNING AND
LOSING FUNDS

] describe unsupervised machine learning algorithms—including
principal components analysis, k-means clustering, and hierarchical
clustering—and determine the problems for which they are best
suited

The following case study was developed and written by Matthew Dixon, PhD, FRM.

A research analyst for a fund of funds has been tasked with identifying a set of
attractive exchange-traded funds (ETFs) and mutual funds (MFs) in which to invest.
She decides to use machine learning to identify the best (i.e., winners) and worst
(i.e., losers) performing funds and the features which are most important in such an
identification. Her aim is to train a model to correctly classify the winners and losers
and then to use it to predict future outperformers. She is unsure of which type of
machine learning classification model (i.e., classifier) would work best, so she reports
and cross-compares her findings using several different well-known machine learning
algorithms.

The goal of this case is to demonstrate the application of machine learning clas-
sification to fund selection. Therefore, the analyst will use the following classifiers to
identify the best and worst performing funds:

= classification and regression tree (CART),
= support vector machine (SVM),
= k-nearest neighbors (KNN), and

= random forests.

Data Description

In the following experiments, the performance of each fund is learned by the machine
learning algorithms based on fund type and size, asset class composition, funda-
mentals (i.e., valuation multiples), and sector composition characteristics. To form a
cross-sectional classifier, the sector composition and fund size reported on 15 February
2019 are assumed to be representative of the latest month over which the fund return
is reported. Exhibit 12 presents a description of the dataset.

Exhibit 12: Dataset Description
Dataset: MF and ETF Data

There are two separate datasets, one for MFs and one for ETFs, consisting of fund
type, size, asset class composition, fundamental financial ratios, sector weights,
and monthly total return labeled to indicate the fund as being a winner, a loser,
or neither. Number of observations: 6,085 MFs and 1,594 ETFs.

Features: Up to 21, as shown below:

General (six features):

1. cat investment®: Fund type, either “blend,” “growth,” or “value”

2. net assets: Total net assets in US dollars
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3. cat size: Investment category size, either “small” “medium,” or “large”
market capitalization stocks

4. portfolio cash**: The ratio of cash to total assets in the fund
5. portfolio stocks: The ratio of stocks to total assets in the fund

6. portfolio bonds: The ratio of bonds to total assets in the fund

Fundamentals (four features):

price earnings: The ratio of price per share to earnings per share

price book: The ratio of price per share to book value per share

W N =
. . .

price sales: The ratio of price per share to sales per share

4. price cashflow: The ratio of price per share to cash flow per share

Sector weights (for 11 sectors) provided as percentages:

basic materials
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financial services
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real estate
consumer defensive
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communication services
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Labels

Winning and losing ETFs or MFs are determined based on whether their
returns are one standard deviation or more above or below the distribution of
one-month fund returns across all ETFs or across all MFs, respectively. More
precisely, the labels are:

1, if fund_return_1 month > mean(fund_return_1 month) + one std.dev(-
fund_return_1 month), indicating a winning fund;

-1, if fund_return_1 month < mean(fund_return_1 month) — one std.
dev(fund_return_1 month), indicating a losing fund; and

0, otherwise.

*Feature appears in the ETF dataset only.

**Feature appears in the MF dataset only.
Data sources: Kaggle, Yahoo Finance on 15 February 2019.

Methodology

The classification model is trained to determine whether a fund’s performance is one
standard deviation or more above the mean return (Label 1), within one standard
deviation of the mean return (Label 0), or one standard deviation or more below the
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mean return (Label -1), where the mean return and standard deviation are either for
all ETFs or all MFs, depending on the particular fund’s type (ETF or MF). Performance
is based on the one-month return of each fund as of 15 February 2019.

This procedure results in most of the funds being labeled as “0” (or average). After
removing missing values in the dataset, there are 1,594 and 6,085 observations in the
ETF and MF datasets, respectively. The data table is a 7,679 x 22 matrix, with 7,679
rows for each fund observation (1,594 for ETFs and 6,085 for MFs) and 22 columns for
the 21 features plus the return label, and all data are recorded as of 15 February 2019.

The aim of the experiment is to identify not only winning and losing funds but also
the features which are useful for distinguishing winners from losers. An important
caveat, however, is that no claim is made that such features are causal.

A separate multi-classifier, with three classes, is run for each dataset. Four types of
machine learning algorithms are used to build each classifier: (i) CART, (ii) SVM, (iii)
KNN, and (iv) random forest. Random forest is an example of an ensemble method
(based on bagging), whereas the other three algorithms do not use bagging.

A typical experimental design would involve using 70% of the data for training
and holding 15% for tuning model hyperparameters and the remaining 15% of the
data for testing. For simplicity, we shall not tune the hyperparameters but simply use
the default settings without attempting to fine tune each one for best performance.
So, in this case, we do not withhold 15% of the data for validation but instead train
the classifier on a random split of 70% of the dataset, with the remaining 30% of the
dataset used for testing. Crucially, for fairness of evaluation, each algorithm is trained
and tested on identical data: The same 70% of observations are used for training
each algorithm, and the same 30% are used for testing each one. The most important
hyperparameters and settings for the algorithms are shown in Exhibit 13.

Exhibit 13: Parameter Settings for the Four Machine Learning Classifiers

1. CART: maximum tree depth: 5 levels
2. SVM: cost parameter: 1.0

3. KNN: number of nearest neighbors: 4
4

Random forest: number of trees: 100; maximum tree depth: 20 levels

The choices of hyperparameter values for the four machine learning classifiers
are supported by theory, academic research, practice, and experimentation to yield
a satisfactory bias—variance trade-off. For SVM, the cost parameter is a penalty on
the margin of the decision boundary. A large cost parameter forces the SVM to use
a thin margin, whereas a smaller cost parameter widens the margin. For random
forests, recall that this is an ensemble method which uses multiple decision trees to
classify, typically by majority vote. Importantly, no claim is made that these choices
of hyperparameters are universally optimal for any dataset.

Results

The results of each classifier are evaluated separately on the test portion of the ETF
and MF datasets. The evaluation metrics used are based on Type I and Type II classifi-
cation errors, where a Type I error is a false positive (FP) and a Type II error is a false
negative (FN). Correct classifications are true positive (TP) and true negative (TN).

= The first evaluation metric is accuracy, the percentage of correctly pre-
dicted classes out of total predictions. So, high accuracy implies low Type I
and Type II errors.
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= F1 score, the second evaluation metric, is the weighted average of precision
and recall. Precision is the ratio of correctly predicted positive classes to all
predicted positive classes, and recall is the ratio of correctly predicted posi-
tive classes to all actual positive classes.

F1 score is a more appropriate evaluation metric to use than accuracy when there
is unequal class distribution (“class imbalance”) in the dataset, as is the case here.
As mentioned, most of the funds in the ETF and MF datasets are designated as “0;
indicating average performers.

Exhibit 14 shows the comparative performance results for each algorithm applied
to the ETF dataset. These results show the random forest model is the most accurate
(0.812), but once class imbalance is accounted for using F1 score (0.770), random forest
is about as good as CART. Generally, ensemble methods, such as random forest, are
expected to be at least as good as their single-model counterparts because ensemble
forecasts generalize better out-of-sample. Importantly, while the relative accuracies
and F1 scores across the different methods provide a basis for comparison, they do
not speak to the absolute performance. In this regard, values approaching 1 suggest
an excellent model, whereas values of approximately 1/3 would indicate the model
is useless: 1/3 is premised on three (+1, 0, -1) equally distributed labels. However,
because the distribution of classes is often not balanced, this ratio typically requires
some adjustment.

Exhibit 14: Comparison of Accuracy and F1 Score for Each Classifier Applied

to the ETF Dataset

CART SVM KNN Random Forest
Accuracy 0.770 0.774 0.724 0.812
F1 score 0.769 0.693 0.683 0.770

Exhibit 15 shows that the random forest model outperforms all the other classifiers
under both metrics when applied to the MF dataset. Overall, the accuracy and F1 score
for the SVM and KNN methods are similar for each dataset, and these algorithms
are dominated by CART and random forest, especially in the larger MF dataset. The
difference in performance between the two datasets for all the algorithms is to be
expected, since the MF dataset is approximately four times larger than the ETF dataset
and a larger sample set generally leads to better model performance. Moreover, the
precise explanation of why random forest and CART outperform SVM and KNN is
beyond the scope of this case. Suffice it to say that random forests are well known to
be more robust to noise than most other classifiers.

Exhibit 15: Comparison of Accuracy and F1 Score for Each Classifier Applied

to the Mutual Fund Dataset

CART SVM KNN Random Forest
Accuracy 0.959 0.859 0.856 0.969
F1 score 0.959 0.847 0.855 0.969

Exhibit 16 presents results on the relative importance of the features in the random
forest model for both the ETF (Panel A) and MF (Panel B) datasets. Relative importance
is determined by information gain, which quantifies the amount of information that
the feature holds about the response. Information gain can be regarded as a form of
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non-linear correlation between Y and X. Note the horizontal scale of Panel B (MF
dataset) is more than twice as large as that of Panel A (ETF dataset), and the bar colors
represent the feature rankings, not the features themselves.

Exhibit 16: Relative Importance of Features in the Random Forest Model

A. ETF Dataset
Ranked Features
Portfolio Bonds  jmem
Cat Investment |——————

Utilities

Real Estate

Energy

Cat Size

Consumer Cyclical
Technology
Consumer Defensive
Financial Services
Basic Materials
Communication Services
Healthcare
Industrials

Portfolio Stocks
Price Book

Net Assets

Price Earnings

Price Cashflow

Price Sales

o

0.01 0.02 0.03 0.04 005 0.06 007 0.08
Relative Importance Based on Information Gain

B. Mutual Fund Dataset
Ranked Features

Net Assets

Basic Materials
Utilities

Portfolio Cash
Consumer Cyclical
Industrials

Price Cashflow
Communication Services
Financial Services
Technology
Healthcare

Price Book

Portfolio Stocks
Energy

Price Earnings
Portfolio Bonds
Consumer Defensive
Real Estate

Price Sales

Cat Size

0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200
Relative Importance Based on Information Gain

o

The prices-to-sales (price_sales) and prices-to-earnings (price_earnings) ratios are
observed to be important indicators of performance, at about 0.08—0.09 and 0.06—-0.07,
respectively, in the random forest models for each dataset. The ratio of stocks to total
assets (portfolio_stocks), at 0.06, is another key feature. Moreover, the industrials, health
care, and communication services sector weightings are relatively important in the ETF
dataset, while the real estate, consumer defensive, and energy sector weightings are
key features in the MF dataset for differentiating between winning and losing funds.

Another important observation is that the category of the fund size (cat_size) is
by far the most important feature in the model’s performance for the MF dataset (=
0.20), whereas it is of much less importance for model performance using the ETF
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dataset (= 0.04). Conversely, net assets is a relatively important feature for model
performance using the ETF dataset (0.065), while it is the least important feature
when the random forest model is applied to the MF dataset (0.01).

Conclusion

The research analyst has trained and tested machine learning—based models that
she can use to identify potential winning and losing ETFs and MFs. Her classifica-
tion models use input features based on fund type and size, asset class composition,
fundamentals, and sector composition characteristics. She is more confident in her
assessment of MFs than of ETFs, owing to the substantially larger sample size of the
former. She is also confident that any imbalance in class has not led to misinterpre-
tation of her models’ results, since she uses F1 score as her primary model evaluation
metric. Moreover, she determines that the best performing model using both datasets
is an ensemble-type random forest model. Finally, she concludes that while funda-
mental ratios, asset class ratios, and sector composition are important features for
both models, net assets and category size also figure prominently in discriminating
between winning and losing ETFs and MFs.

EXAMPLE 5

Classification of Funds

The research analyst from the previous case uses CART to generate the decision
tree shown in Exhibit 17, which she will use to predict whether and explain why
a new ETF is likely to be a winner (+1), an average performer (0), or a loser
(-1). This ETF’s fundamental valuation ratios are as follows: Price-to-sales =
2.29, price-to-earnings = 7.20, price-to-book = 1.41, and price-to-cash flow =
2.65. Note that the sample size is 1,067 ETFs and the CART model uses just
valuation ratios, because these are deemed the most important features for ETF
performance classification.

Exhibit 17: CART-Based Decision Tree for EFT Performance
Classification

Price Sales <1.32
gini = 0.457

samples = 245
value = [42, 173, 30]

/

Price Book <1.275
gini = 0.603
samples = 47
value = [20, 21, 6]

gini = 0.511 gini = 0.494 gini = 0.544 gini = 0.563 gini=05
samples = 38 samples = 26 samples = 21 samples = 86 samples = 4
value=[(3,24,11]  value=1[7,12,2] QEIEEIUNRAD) value = [27,48,10] | value =[2,0,2]

Legend:
Darkest shade, 5th (last) level: Winner (Class = +1)

Light to medium shade: Average Performer (Class = 0); note that the medium
shade indicates more confidence in the classification.

Darkest shade, 2nd level: Loser (Class = -1)
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White: Inconclusive, either because there is a tie with multiple categories
or there are too few samples

Value: The number of sample cases in each of the three classes: Winner,
Average Performer, or Loser

Path: Left path is True and right path is False.

1. Explain the CART model’s prediction for performance of the new ETF: win-
ner, loser, or average performer.

Solution:

Based on its valuation ratios (P/S = 2.29; P/E = 7.20; P/B = 1.41), the new
ETF is predicted to be a winner because the decision path leads to the dark
shaded, 5th level (“winner”) terminal node. The split criteria and decisions
are as follows:

Initial node: P/S < 7.93 and EFT P/S = 2.29, so True.

2nd-level node: P/E < 12.08 and EFT P/E = 7.20, so True.

3rd-level node: P/S < 1.32 and EFT P/S = 2.29, so False.

4th-level node: P/B < 1.275 and EFT P/B = 1.41, so False.

5th-level (terminal) node: darkest shaded terminal node indicates “winner”

2. Calculate the probability that the fund will be in the class predicted by the
CART model.

Solution:

The output from the CART model in the darkest shaded, 5th level (winner)
terminal node is [13, 4, 4], which indicates it includes 13 funds of Class +1
(winners), 4 funds of Class 0 (average performers), and 4 funds of Class -1
(losers). Thus, the probability predicted by the CART model that this ETF
will be in the “winner” class is 13/21, or 62%. There are also equal probabili-
ties of it being an average performer (19%) or a loser (19%).

3. Explain why the analyst should be cautious in basing the ETF’s predicted
performance solely on the CART-generated decision tree.

Solution:

There are several reasons why the analyst should be cautious in basing the
ETF’s predicted performance solely on the CART-generated decision tree.
First, this CART model had a maximum depth of just five levels. Truncating
at five levels facilitates visualization, but a more realistic decision path is
likely to be nuanced and so would require greater depth. Second, only some
of the important variables (from Exhibit 16) were used in generating this
tree, again for simplicity of visualization. A CART model using additional
features, including fund asset class ratios, sector composition, and, especial-
ly, net assets would be expected to generate a more accurate (using F1 score)
model. Finally, the number of funds reaching the darkest shaded, 5th level
(“winner”) terminal node (21) is small compared to the total sample size
(1,067), so there may be too few clear winners (13) under this decision path
from which to draw a statistically significant conclusion. Besides increas-
ing the maximum tree depth and adding more features, another approach
the analyst might take in this case for achieving a more accurate model is
random forest; being an ensemble classifier, a random forest model would
generalize out-of-sample better than any single CART model.
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ESG DATA AS ALTERNATIVE DATA AND ML/AI FOR INTEGRATING ESG DATA
INTO INVESTMENT DECISIONS

As an investment professional, how might you set about measuring the potential
impact of climate change on a company’s future prospects? Negative climate
outcomes in coming years may include higher temperatures, more intense storms,
melting glaciers, rising sea levels, shifting agricultural patterns, pressure on food
and water, and new threats to human health. Assessing the likely severity of these
future events and then quantifying the impact on companies is no easy task. Big
Data techniques could be pivotal in generating usable information that could
help investment professionals unlock long-term shareholder value.

Some fund managers, influenced by evolving investor preferences and
increasing disclosure by companies on non-financial issues, have already incor-
porated ESG analysis into their investment processes. Governance (“G”) data are
generally objective: Investors are able to observe and measure corporate board
actions, making governance comparable across companies and regions. Data on
Environmental (“E”) and Social (“S”) impacts on listed companies, on the other
hand, are more subjective, less reliable, and less comparable.

ESG data resemble alternative data in the sense that they have generally
been poorly defined, are complex and unstructured, and need considerable due
diligence before being used in investment decision making. Applying Machine
Learning (ML) and Artificial Intelligence (AI) techniques can transform ESG
data into meaningful information that is more useful for investment analysis.

Corporate sustainability reports often suffer from haphazard data collection
and missing values. Equally, when data vendors acquire and combine raw ESG
data into aggregate ESG scores, potential signals may be lost. ESG data and scor-
ing across companies and data vendors can lack consistency and comparability;
as a result, using simple summary scores in investment analysis is potentially
flawed. Data analysts can apply data-science methods, such as data cleansing
and data wrangling, to raw ESG data to create a structured dataset. Then, ML/AI
techniques, such as natural language processing (NLP), can be applied to text-
based, video, or audio ESG data. The foundation of NLP consists of supervised
machine learning algorithms that typically include logistic regression, SVM,
CART, random forests, or neural networks.

NLP can, for instance, search for key ESG words in corporate earnings calls.
An increase in the number of mentions of, say, “human capital,” employee “health
and safety,” or “flexible working” arrangements may indicate an increased focus
on the “S” pillar of ESG. This would potentially raise the overall ESG score of
a particular company. The results of such an application of NLP to corporate
earnings calls are illustrated in the following exhibit:

2500

2000

1500

Num. of companies

Source “GS SUSTAIN ESG Nelther Gone Nor Forgotten” by Evan Tylenda,
Sharmini Chetwode, and Derek R. Bingham, Goldman Sachs Global Investment
Research (2 April 2020).
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ML/AI can help fund managers apply only those ESG factors that are rel-
evant to a company and its sector. For example, “E” factors are important for
mining and utility companies but less so for clothing manufacturers. Likewise,
“S” factors are important for the global clothing manufacturing sector but less
so for mining and utility companies.

ML/AI techniques are not used in isolation. ESG scoring systems tend to
rely on cross-functional teams, with data scientists operating in tandem with
economists, fundamental analysts, and portfolio managers to identify strengths
and weaknesses of companies and sectors. Fundamental analysts, for instance,
typically do not need to know the details of ML algorithms to make valuable
contributions to the ESG investment workflow. The industry-specific knowl-
edge of fundamental analysts can provide nuanced viewpoints that help to: 1)
identify relevant raw data; 2) enable data scientists to incorporate ESG data into
appropriate investment models; and 3) interpret model outputs and investment
implications.

UNSUPERVISED ML ALGORITHMS AND PRINCIPAL
COMPONENT ANALYSIS

] describe unsupervised machine learning algorithms—including
principal components analysis, k-means clustering, and hierarchical
clustering—and determine the problems for which they are best
suited

Unsupervised learning is machine learning that does not use labeled data (i.e., no
target variable); thus, the algorithms are tasked with finding patterns within the data
themselves. The two main types of unsupervised ML algorithms shown in Exhibit 2
are dimension reduction, using principal components analysis, and clustering, which
includes k-means and hierarchical clustering. These will now be described in turn.

Principal Components Analysis

Dimension reduction is an important type of unsupervised learning that is used
widely in practice. When many features are in a dataset, representing the data visu-
ally or fitting models to the data may become extremely complex and “noisy” in the
sense of reflecting random influences specific to a dataset. In such cases, dimension
reduction may be necessary. Dimension reduction aims to represent a dataset with
many typically correlated features by a smaller set of features that still does well in
describing the data.

A long-established statistical method for dimension reduction is principal com-
ponents analysis (PCA). PCA is used to summarize or transform highly correlated
features of data into a few main, uncorrelated composite variables. A composite
variable is a variable that combines two or more variables that are statistically strongly
related to each other. Informally, PCA involves transforming the covariance matrix
of the features and involves two key concepts: eigenvectors and eigenvalues. In the
context of PCA, eigenvectors define new, mutually uncorrelated composite variables
that are linear combinations of the original features. As a vector, an eigenvector also
represents a direction. Associated with each eigenvector is an eigenvalue. An eigen-
value gives the proportion of total variance in the initial data that is explained by


Exhibit 2

© CFA Institute. For candidate use only. Not for distribution.

Unsupervised ML Algorithms and Principal Component Analysis

each eigenvector. The PCA algorithm orders the eigenvectors from highest to lowest
according to their eigenvalues—that is, in terms of their usefulness in explaining the
total variance in the initial data (this will be shown shortly using a scree plot). PCA
selects as the first principal component the eigenvector that explains the largest pro-
portion of variation in the dataset (the eigenvector with the largest eigenvalue). The
second principal component explains the next-largest proportion of variation remain-
ing after the first principal component; this process continues for the third, fourth,
and subsequent principal components. Because the principal components are linear
combinations of the initial feature set, only a few principal components are typically
required to explain most of the total variance in the initial feature covariance matrix.

Exhibit 18 shows a hypothetical dataset with three features, so it is plotted in three
dimensions along the x-, y-, and z-axes. Each data point has a measurement (x, y, z),
and the data should be standardized so that the mean of each series (x’s, ’s, and z’s)
is 0 and the standard deviation is 1. Assume PCA has been applied, revealing the first
two principal components, PC1 and PC2. With respect to PC1, a perpendicular line
dropped from each data point to PC1 shows the vertical distance between the data
point and PC1, representing projection error. Moreover, the distance between each
data point in the direction that is parallel to PC1 represents the spread or variation
of the data along PC1. The PCA algorithm operates in such a way that it finds PC1
by selecting the line for which the sum of the projection errors for all data points is
minimized and for which the sum of the spread between all the data is maximized.
As a consequence of these selection criteria, PC1 is the unique vector that accounts
for the largest proportion of the variance in the initial data. The next-largest portion
of the remaining variance is best explained by PC2, which is at right angles to PC1
and thus is uncorrelated with PC1. The data points can now be represented by the
first two principal components. This example demonstrates the effectiveness of the
PCA algorithm in summarizing the variability of the data and the resulting dimension
reduction.

Exhibit 18: First and Second Principal Components of a Hypothetical Three-

Dimensional Dataset
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It is important to know how many principal components to retain because there is a
trade-off between a lower-dimensional, more manageable view of a complex dataset
when a few are selected and some loss of information. Scree plots, which show the
proportion of total variance in the data explained by each principal component, can
be helpful in this regard (see the accompanying sidebar). In practice, the smallest
number of principal components that should be retained is that which the scree plot
shows as explaining a desired proportion of total variance in the initial dataset (often
85% to 95%).

SCREE PLOTS FOR THE PRINCIPAL COMPONENTS OF RETURNS TO THE
HYPOTHETICAL DLC 500 AND VLC 30 EQUITY INDEXES

In this illustration, researchers use scree plots and decide that three princi-
pal components are sufficient for explaining the returns to the hypothetical
Diversified Large Cap (DLC) 500 and Very Large Cap (VLC) 30 equity indexes
over the last 10-year period. The DLC 500 can be thought of as a diversified
index of large-cap companies covering all economic sectors, while the VLC 30
is a more concentrated index of the 30 largest publicly traded companies. The
dataset consists of index prices and more than 2,000 fundamental and technical
features. Multi-collinearity among the features is a typical problem because that
many features or combinations of features tend to have overlaps. To mitigate the
problem, PCA can be used to capture the information and variance in the data.
The following scree plots show that of the 20 principal components generated,
the first 3 together explain about 90% and 86% of the variance in the value of
the DLC 500 and VLC 30 indexes, respectively. The scree plots indicate that for
each of these indexes, the incremental contribution to explaining the variance
structure of the data is quite small after about the fifth principal component.
Therefore, these less useful principal components can be ignored without much
loss of information.
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Scree Plots of Percent of Total Variance Explained by Each Principal

Component for Hypothetical DLC 500 and VLC 30 Equity Indexes

A. Diversified Large Cap 500 Index (DLC 500)
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The main drawback of PCA is that since the principal components are combina-
tions of the dataset’s initial features, they typically cannot be easily labeled or directly
interpreted by the analyst. Compared to modeling data with variables that represent
well-defined concepts, the end user of PCA may perceive PCA as something of a
“black box”

Reducing the number of features to the most relevant predictors is very useful,
even when working with datasets having as few as 10 or so features. Notably, dimen-
sion reduction facilitates visually representing the data in two or three dimensions.
It is typically performed as part of exploratory data analysis, before training another
supervised or unsupervised learning model. Machine learning models are quicker
to train, tend to reduce overfitting (by avoiding the curse of dimensionality), and are
easier to interpret if provided with lower-dimensional datasets.

CLUSTERING

] describe unsupervised machine learning algorithms—including
principal components analysis, k-means clustering, and hierarchical
clustering—and determine the problems for which they are best
suited

237



238

Learning Module 6

© CFA Institute. For candidate use only. Not for distribution.
Machine Learning

Clustering is another type of unsupervised machine learning, which is used to organize
data points into similar groups called clusters. A cluster contains a subset of obser-
vations from the dataset such that all the observations within the same cluster are
deemed “similar” The aim is to find a good clustering of the data—meaning that the
observations inside each cluster are similar or close to each other (a property known
as cohesion) and the observations in two different clusters are as far away from one
another or are as dissimilar as possible (a property known as separation). Exhibit 19
depicts this intra-cluster cohesion and inter-cluster separation.

Exhibit 19: Evaluating Clustering—Intra-Cluster Cohesion and Inter-Cluster

Separation

Bad Clustering Good Clustering (Maybe) Better Clustering

Clustering algorithms are particularly useful in the many investment problems and
applications in which the concept of similarity is important. Applied to grouping
companies, for example, clustering may uncover important similarities and differences
among companies that are not captured by standard classifications of companies by
industry and sector. In portfolio management, clustering methods have been used for
improving portfolio diversification.

In practice, expert human judgment has a role in using clustering algorithms. In
the first place, one must establish what it means to be “similar” Each company can be
considered an observation with multiple features, including such financial statement
items as total revenue and profit to shareholders, a wide array of financial ratios, or
any other potential model inputs. Based on these features, a measure of similarity
or “distance” between two observations (i.e., companies) can be defined. The smaller
the distance, the more similar the observations; the larger the distance, the more
dissimilar the observations.

A commonly used definition of distance is the Euclidian distance, the straight-line
distance between two points. A closely related distance useful in portfolio diversifica-
tion is correlation, which is the average Euclidian distance between a set of standard-
ized points. Roughly a dozen different distance measures are used regularly in ML.
In practice, the choice of the distance measures depends on the nature of the data
(numerical or not) and the business problem being investigated. Once the relevant
distance measure is defined, similar observations can be grouped together. We now
introduce two of the more popular clustering approaches: k-means and hierarchical
clustering.
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K-MEANS CLUSTERING 1 2

] describe unsupervised machine learning algorithms—including
principal components analysis, k-means clustering, and hierarchical
clustering—and determine the problems for which they are best
suited

K-means is an algorithm that repeatedly partitions observations into a fixed number, &,
of non-overlapping clusters. The number of clusters, k, is a model hyperparameter. Each
cluster is characterized by its centroid (i.e., center), and each observation is assigned
by the algorithm to the cluster with the centroid to which that observation is closest.
Notably, once the clusters are formed, there is no defined relationship between them.

The k-means algorithm follows an iterative process. It is illustrated in Exhibit 20
for k = 3 and a set of observations on a variable that can be described by two features.
In Exhibit 20, the horizontal and vertical axes represent, respectively, the first and
second features. For example, an investment analyst may want to group a set of firms
into three groups according to two numerical measures of management quality. The
algorithm groups the observations in the following steps:

1. K-means starts by determining the position of the k (here, 3) initial random
centroids.

2. The algorithm then analyzes the features for each observation. Based on
the distance measure that is used, k-means assigns each observation to its
closest centroid, which defines a cluster.

3. Using the observations within each cluster, k-means then calculates the new
(k) centroids for each cluster, where the centroid is the average value of their
assigned observations.

4. K-means then reassigns the observations to the new centroids, redefining
the clusters in terms of included and excluded observations.

5. The process of recalculating the new (k) centroids for each cluster is
reiterated.

6. K-means then reassigns the observations to the revised centroids, again
redefining the clusters in terms of observations that are included and
excluded.

The k-means algorithm will continue to iterate until no observation is reassigned
to a new cluster (i.e., no need to recalculate new centroids). The algorithm has then
converged and reveals the final k clusters with their member observations. The k-means
algorithm has minimized intra-cluster distance (thereby maximizing cohesion) and
has maximized inter-cluster distance (thereby maximizing separation) under the
constraint that k = 3.
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Exhibit 20: Example of 3-Means Algorithm
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The k-means algorithm is fast and works well on very large datasets, those with hun-
dreds of millions of observations. However, the final assignment of observations to
clusters can depend on the initial location of the centroids. To address this problem,
the algorithm can be run several times using different sets of initial centroids, and
then one can choose the clustering that is most useful given the business purpose.

One limitation of this technique is that the hyperparameter, k, the number of
clusters in which to partition the data, must be decided before k-means can be run.
So, one needs to have a sense of how many clusters are reasonable for the problem
under investigation and the dataset being analyzed. Alternatively, one can run the
algorithm using a range of values for & to find the optimal number of clusters—the k
that minimizes intra-cluster distance and thereby maximizes intra-cluster similarity
(i.e., cohesion) and that maximizes inter-cluster distance (i.e., separation). However,
note that the final results can be subjective and dependent on the context of the prob-
lem and the particular training set. In practice, it is common to make the final choice
of k based on face validity, such that the clusters feel sensible and are interpretable.
This decision is greatly assisted by using summary information about the centroids
and ranges of values and naming example items in each cluster.

For example, consider the Russell 3000 Index, which tracks the 3,000 highest market
capitalization stocks in the United States. These 3,000 stocks can be grouped in 10,
50, or even more clusters based on their financial characteristics (e.g., total assets,
total revenue, profitability, leverage) and operating characteristics (e.g., employee
headcount, R&D intensity). Because companies in the same standard industry classi-
fication can have very different financial and operating characteristics, using k-means
to derive different clusters can provide insights and understanding into the nature of
“peer” groups. As mentioned, the exact choice of the k, the number of clusters, will
depend on the level of precision or segmentation desired. In a similar vein, clustering
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can be used to classify collective investment vehicles or hedge funds as an alternative
to standard classifications. Clustering analysis can also help visualize the data and
facilitate detecting trends or outliers.

In sum, the k-means algorithm is among the most used algorithms in investment
practice, particularly in data exploration for discovering patterns in high-dimensional
data or as a method for deriving alternatives to existing static industry classifications.

HIERARCHICAL CLUSTERING

] describe neural networks, deep learning nets, and reinforcement
learning

Hierarchical clustering is an iterative procedure used to build a hierarchy of clus-
ters. In k-means clustering, the algorithm segments the data into a predetermined
number of clusters; there is no defined relationship among the resulting clusters. In
hierarchical clustering, however, the algorithms create intermediate rounds of clus-
ters of increasing (in “agglomerative”) or decreasing (in “divisive”) size until a final
clustering is reached. The process creates relationships among the rounds of clusters,
as the word “hierarchical” suggests. Although more computationally intensive than
k-means clustering, hierarchical clustering has the advantage of allowing the invest-
ment analyst to examine alternative segmentations of data of different granularity
before deciding which one to use.

Agglomerative clustering (or bottom-up hierarchical clustering) begins with
each observation being treated as its own cluster. Then, the algorithm finds the two
closest clusters, defined by some measure of distance (similarity), and combines them
into one new larger cluster. This process is repeated iteratively until all observations
are clumped into a single cluster. A hypothetical example of how agglomerative clus-
tering develops a hierarchical clustering scheme is depicted in the top part of Exhibit
21, where observations are lettered (A to K) and circles around observations denote
clusters. The process begins with 11 individual clusters and then generates a sequence
of groupings. The first sequence includes five clusters with two observations each and
one cluster with a single observation, G, for a total of six clusters. It then generates
two clusters—one cluster with six observations and the other with five observations.
The final result is one large cluster containing all 11 observations. It is easily seen
that this final large cluster includes the two main sub-clusters, with each containing
three smaller sub-clusters.
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Exhibit 21: Agglomerative and Divisive Hierarchical Clustering

A. Hierarchical Clustering: Agglomerative Type

11 Data Points = 6 Clusters =) 2 BiggerClusters => 1Big Cluster
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B. Hierarichical Clustering: Divisive Type
1 Big Cluster E=>» 2 Smaller Clusters =» 6 Clusters => 11 Data Points

By contrast, divisive clustering (or top-down hierarchical clustering) starts with
all the observations belonging to a single cluster. The observations are then divided
into two clusters based on some measure of distance (similarity). The algorithm then
progressively partitions the intermediate clusters into smaller clusters until each
cluster contains only one observation. Divisive clustering is depicted in the bottom
part of Exhibit 21, which begins with all 11 observations in one large cluster. Next,
the algorithm generates two smaller clusters, one with six observations and the other
with five observations, and then six clusters, with two observations each except for
observation G, which is its own cluster. Finally, 11 clusters are generated, with each
cluster containing only one observation.

Although this is not a typical outcome (because the two methods generally use
different algorithms), in this hypothetical illustration, the agglomerative and divisive
clustering methods produced the same result: two main sub-clusters each having three
smaller sub-clusters. The analyst could decide between using a six- or a two-cluster
representation of the data. The agglomerative method is the approach typically used
with large datasets because of the algorithm’s fast computing speed. The agglomerative
clustering algorithm makes clustering decisions based on local patterns without initially
accounting for the global structure of the data. As such, the agglomerative method
is well suited for identifying small clusters. However, because the divisive method
starts with a holistic representation of the data, the divisive clustering algorithm is
designed to account for the global structure of the data and thus is better suited for
identifying large clusters.

To decide on the closest clusters for combining in the agglomerative process or
for dividing in the divisive process, an explicit definition for the distance between two
clusters is required. Some commonly used definitions for the distance between two
clusters involve finding the minimum, the maximum, or the average of the straight-line
distances between all the pairs of observations in each cluster.
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Dendrograms

A type of tree diagram for visualizing a hierarchical cluster analysis is known as a
dendrogram, which highlights the hierarchical relationships among the clusters.
Exhibit 22 shows a dendrogram representation for the clustering shown in Exhibit
21. First, a few technical points on dendrograms bear mentioning—although they
may not all be apparent in Exhibit 22. The x-axis shows the clusters, and the y-axis
indicates some distance measure. Clusters are represented by a horizontal line, the
arch, which connects two vertical lines, called dendrites, where the height of each arch
represents the distance between the two clusters being considered. Shorter dendrites
represent a shorter distance (and greater similarity) between clusters. The horizontal
dashed lines cutting across the dendrites show the number of clusters into which the
data are split at each stage.

The agglomerative algorithm starts at the bottom of the dendrite, where each
observation is its own cluster (A to K). Agglomerative clustering then generates the six
larger clusters (1 to 6). For example, Clusters A and B combine to form Cluster 1, and
Observation G remains its own cluster, now Cluster 4. Moving up the dendrogram,
two larger clusters are formed, where, for example, Cluster 7 includes Clusters 1 to 3.
Finally, at the top of the dendrogram is the single large cluster (9). The dendrogram
readily shows how this largest cluster is composed of the two main sub-clusters (7
and 8), each having three smaller sub-clusters (1 to 3 and 4 to 6, respectively). The
dendrogram also facilitates visualization of divisive clustering by starting at the top
of the largest cluster and then working downward until the bottom is reached, where
all 11 single-observation clusters are shown.

Exhibit 22: Dendrogram of Agglomerative Hierarchical Clustering
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Clustering has many applications in investment management. For example, portfolio
diversification can be approached as a clustering problem with the aim of optimally
diversifying risks by investing in assets from multiple different clusters. Because the
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clusters have maximum inter-cluster separation, diversifying among them helps ensure
that the portfolio reflects a wide diversity of characteristics with well-diversified risk.
In contrast, information that investments are concentrated in a cluster indicates a
high probability of concentrated risk. Finally, it is important to note that while the
results of clustering algorithms are often difficult to evaluate (because the resulting
clusters themselves are not explicitly defined), they are still very useful in practice for
uncovering important underlying structure (namely, similarities among observations)

in complex datasets.

EXAMPLE 6

Investment Uses of Clustering Algorithms

Istvan Perényi is a portfolio manager of the Europe Diversified Equity Fund (“the
Fund”) within the Diversified Investment Management Company (DIMCO) fund
family. The Fund is benchmarked to the STOXX Europe 600 Index, which spans
17 countries, 19 industry sectors, and three market capitalization groupings
(large-, mid-, and small-cap).

Examining the Fund’s most recent performance, Perényi is concerned that
the Fund’s holdings, although approximately aligned with the STOXX Europe
600 Index’s country weights, may have unrecognized risk biases and concen-
trations. Perényi asks Elsa Lund, DIMCO’s chief risk officer, to investigate the
Fund’s diversification. Lund asks her analysts for ideas on how Perényi’s request
can be addressed and receives three suggestions:

Suggestion 1 Estimate the country, industry, and market cap exposures of
each Fund holding, aggregate them, and compare the aggregate
exposures to the benchmark’s exposures. Then, examine mis-
matches for evidence of unexpected biases or concentrations.

Suggestion 2 Identify inherent groupings among fund holdings based on a
broad set of eight numerical (operating and financial) mea-
sures related to the holdings’ characteristics. Then, examine the
groupings for evidence of unexpected biases or concentrations.

Suggestion 3 Regress the return of the Fund on a set of country equity
market indexes and sector indexes based on the Fund’s bench-
mark. Then, examine the regression coefficients for evidence of
unexpected biases or concentrations.

Lund has several questions for analyst Greg Kane about using one or more

clustering machine learning algorithms in relation to addressing Perényi’s request.

Lund asks whether any information needs to be specified for the ML cluster-

ing algorithms no matter which one is used. Kane replies that only the distance
measure that the algorithm will use and the hyperparameter, k, for k-means
clustering need to be specified.

Lund further asks whether there would be an advantage to using k-means

clustering as opposed to hierarchical clustering. Kane replies that in his opinion,
hierarchical clustering is the more appropriate algorithm.

1. Which analyst suggestion is most likely to be implemented using machine

learning?

A. Suggestion 1
B. Suggestion 2
C. Suggestion 3
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Solution:

B is correct. A machine learning clustering algorithm could be used to
implement Suggestion 2. A and C are incorrect because Suggestions 1 and 3,
respectively, can be addressed easily using traditional regression analysis.

2. Kane’s reply to Lund’s first question about specification of ML clustering
models is:

A. correct.
B. not correct, because other hyperparameters must also be specified.
C. not correct, because the feature set for describing the measure used to
group holdings must also be specified.
Solution:

C is correct. Beyond specifying a distance measure and the k for k-means,
whichever clustering algorithm is selected, the feature set used to group
holdings by similarities must also be specified. Operating and financial char-
acteristics of the companies represented in the Fund’s portfolio are examples
of such features.

3. The best justification for Kane’s preference for hierarchical clustering in his
reply to Lund’s second question is that Kane is most likely giving consider-
ation to:

A. the speed of the algorithms.
B. the dimensionality of the dataset.
C. the need to specify the hyperparameter, &, in using a k-means
algorithm.
Solution:

C is correct. The value of the hyperparameter, k, the number of distinct
groups into which the STOXX Europe 600 Index can be segmented, is not
known and needs to be specified in advance by the analyst. Using a hierar-
chical algorithm, the sorting of observations into clusters will occur without
any prior input on the analyst’s part.

CASE STUDY: CLUSTERING STOCKS BASED ON
CO-MOVEMENT SIMILARITY

] describe neural networks, deep learning nets, and reinforcement
learning

The following case study was developed and written by Matthew Dixon, PhD, FRM.
An endowment fund’s Investment Committee is seeking three “buy” recommenda-
tions for the fund’s large-cap equity portfolio. An analyst working for the Investment
Committee is given a subset of eight stocks from the S&P 500 Index and asked to
determine the co-movement similarity (i.e., correlation) of their returns. Specifically,
for diversification purposes, the Investment Committee wants the correlation of returns
between the recommended stocks to be low, so the analyst decides to use clustering to
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identify the most similar stocks and then choose one stock from each cluster. Although
this case study focuses mainly on hierarchical agglomerative clustering, the analyst’s
results using other clustering algorithms (i.e., divisive clustering and k-means) are also
briefly discussed. Exhibit 23 provides a description of the data used by the analyst.

Exhibit 23: Dataset of Eight Stocks from the S&P 500 Index

Description: Daily adjusted closing prices of eight S&P 500 member
stocks

Trading Dates: 30 May 2017 to 24 May 2019
Number of Observations: 501

Stocks (Ticker Symbols): AAPL, F, FB, GM, GS, GOOG, JPM, and UBS

The following steps are taken by the analyst to perform the hierarchical agglom-
erative cluster analysis:

1.

Collect panel data on adjusted closing prices for the stocks under
investigation.

Calculate the daily log returns for each stock, where each time series of
stock returns is an n-vector (n = 500).

Run the agglomerative hierarchical clustering algorithm.

a. The algorithm calculates the pairwise distance (i.e., Euclidean distance)
between vectors of any two stocks’ returns. Each pairwise distance is
an element of a distance matrix (i.e., dissimilarity matrix) with zero
diagonals.

b. The algorithm starts with each stock as its own cluster, finds the pair of
clusters which are closest to each other, and then redefines them as a
new cluster.

¢. 'The algorithm finds the distances from this new cluster to the remain-
ing return clusters. Using a process called average (centroid) linkage,
it determines the distances from the center of the new cluster to the
centers of the remaining clusters. Note that there are several other link-
age methods, but whichever method is selected, the algorithm proceeds
in the same fashion: It combines the pair of clusters which are closest,
redefines them as a new cluster, and recalculates the distances to the
remaining clusters.

Repeat Step 3c until the data are aggregated into a single large cluster.

Plot the resulting dendrogram to visualize the hierarchical clusters and
draw the highest horizontal line intersecting three (i.e., the desired number
of clusters, since the Investment Committee wants three “buy” recommen-
dations) vertical lines (or dendrites) to determine the appropriate cluster
configuration.

Exhibit 24 shows for illustrative purposes a subset of the panel data on daily returns,
calculated from the adjusted closing prices of the eight stocks collected in Step 1. The
clustering is performed on the daily returns.
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Exhibit 24: Subset of Stock Returns, Calculated from Adjusted Closing Prices, for Clustering

Date JPM UBS GS FB AAPL GOOG GM F

2017-05-31 -0.021 -0.007 -0.033 -0.006 -0.006 -0.011 0.012 0.004
2017-06-01 0.011 0.013 0.018 0.000 0.003 0.002 0.015 0.026
2017-06-02 -0.005 -0.002 -0.008 0.014 0.015 0.009 0.001 -0.005
2017-06-05 0.002 -0.007 0.003 0.000 -0.010 0.008 0.000 -0.009
2017-06-06 0.002 0.002 0.003 -0.005 0.003 -0.007 -0.001 -0.012

The results of the remaining steps are described using the distance matrix shown in
Exhibit 25.

Exhibit 25: Distance Matrix for Hierarchical Agglomerative Clustering

JPM UBS GS FB AAPL GOOG GM F
JPM 0.000 0.243 0.215 0.456 0.364 0.332 0.358 0.348
UBS 0.243 0.000 0.281 0.460 0.380 0.338 0.384 0.385
GS 0.215 0.281 0.000 0.471 0.375 0.345 0.383 0.393
FB 0.456 0.460 0471 0.000 0.437 0.357 0.491 0.480

AAPL 0.364 0.380 0.375 0.437 0.000 0.307 0.445 0.456
GOOG 0.332 0.338 0.345 0.357 0.307 0.000 0.405 0.422
GM 0.358 0.384 0.383 0.491 0.445 0.405 0.000 0.334
F 0.348 0.385 0.393 0.480 0.456 0.422 0.334 0.000

The distance matrix reveals the closest pair of stocks is JPM and GS, with a distance
of 0.215. Therefore, this pair becomes the first combined cluster as shown in the den-
drogram in Exhibit 26. Note that the vertical distance connecting the various clusters
represents the Euclidean distance between clusters, so the arch between this pair has
a height of 0.215. Now that JPM and GS are paired in a cluster (i.e., GS_JPM), we treat
the mean of their two return vectors as a new point.

Exhibit 26: Dendrogram for Hierarchical Agglomerative Clustering

Dissimilarity
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From the distance matrix, the average distance of UBS to the new cluster (i.e., GS_JPM)
is the sum of the distance between UBS and JPM, 0.243, and the distance between
UBS and GS, 0.281, divided by two, which is 0.262 (= (0.243 + 0.281)/2). Since this
distance is smaller than the distance between any of the other unpaired stock clusters,
UBS is merged with this cluster to create a new cluster (i.e., GS_JPM_UBS). The height
of the arch in the dendrogram for this new cluster is 0.262, which is now observed
to contain three banking sector stocks. Although not shown in the dendrogram, the
cluster is identified by the return vector averaged over the three stocks.

The next closest pair of points, whether stock to stock or stock to cluster, is AAPL
and GOOG, with a distance of 0.307, so the algorithm merges these two points into a
second cluster (i.e., AAPL_GOOG), with an arch height of 0.307. Next, GM and F are
paired into a third cluster (i.e., F_GM), with an arch height of 0.334. Finally, the first
two clusters are merged to form a five-stock cluster (i.e., GS_JPM_UBS_AAPL_GOOG),
with an arch height of 0.356. Note that this value is determined by taking the average
distance between the three banks and AAPL and GOOG: 0.356 = (0.364 + 0.380 +
0.375 + 0.332 + 0.338 + 0.345)/6. The result is three separate clusters: the five-stock
cluster, F_GM, and FB by itself. Also, note the horizontal dashed line that cuts the
dendrogram into three distinct clusters, with FB as its own cluster.

This agglomerative hierarchical clustering analysis reveals some interesting prelim-
inary results—largely grouping the stocks by their sectors but also uncovering some
anomalies. In particular, FB is found to behave quite differently, in terms of return
co-movement similarity, from the other technology stocks (AAPL and GOOG). Also,
AAPL and GOOG are found to behave more like the bank stocks and less like the
auto stocks (F and GM), which appear in their own cluster.

In contrast to agglomerative clustering, the divisive clustering algorithm starts with
all stocks assigned to one large cluster and then splits the cluster into sub-clusters
recursively, until each stock occupies its own cluster. Determining how to split the
first cluster requires searching over all combinations of possible splits, so it is too
numerically intensive to cover the details here. However, results of the first two splits
for divisive clustering, into three clusters, are shown in Exhibit 27. Results for k-means,
with k = 3, and agglomerative clustering are also presented.

Exhibit 27: Comparison of Results of Different Clustering Algorithms

Agglomerative K-means Divisive
AAPL 3 2 2
F 2 1 1
FB 1 2 3
GM 2 1 1
GOOG 3 2 2
GS 3 3 1
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Agglomerative K-means Divisive
JPM 3 3 1
UBS 3 3 1
Agglomerative K-Means Divisive
#2
AAPL, FB, #1 #2
GOOG F.GM, AAPL,
GS, JPM, UBS GO0G

#3

#3
AAPL, GOOG, GS, IPM,
GS, JPM, UBS UBS

Whereas the assignment of the cluster number (1, 2, 3), shown in the upper panel,
can be taken as arbitrary across each algorithm, the useful information is in the
grouping of like stocks. As seen in the stylized clusters in the lower panel, all three
clustering algorithms agree that bank stocks belong in the same cluster. Both hier-
archical agglomerative and k-means algorithms also agree that auto stocks belong in
their own separate cluster. K-means clusters the stocks precisely by industry sector,
whereas hierarchical agglomerative and divisive clustering identify FB as an outlier
and place it in its own cluster. In general, the most agreement is expected between the
two hierarchical clustering algorithms, although their results are not guaranteed to
match, even when using the same linkage process. K-means starts with three clusters
(k = 3) and iteratively swaps points in and out of these clusters using a partitioning
mechanism different from that of hierarchical clustering. Thus, k-means results are
typically not expected to match those of hierarchical clustering.

In conclusion, based on the analyses of the co-movement similarity of returns
among the eight stocks using the agglomerative clustering algorithm and the Investment
Committee’s requirement that the correlation of returns between the recommended
stocks should be low, the analyst’s recommendation should be as follows:

= buy FB,
= buy the most attractive of the two auto stocks (F or GM), and

= buy the most attractive of the three bank stocks (GS, JPM, or UBS).

EXAMPLE 7

Hierarchical Agglomerative Clustering

Assume the analyst is given the same set of stocks as previously excluding F and
GM (i.e., no auto stocks)—so now, six stocks. Using the information from this
mini-case study, answer the following questions:

1. Describe how the inputs to the hierarchical agglomerative clustering algo-
rithm would differ from those in the mini-case study.

Solution:

The panel data on closing prices and daily log returns would include the
same stocks as before but without F and GM—so, AAPL, FB, GOOG, GS,
JPM, and UBS. The distance matrix would also appear the same except
without F, GM, or any of the pairwise distances between them and the
remaining stocks.
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2. Describe the three clusters that would now result from running the hierar-
chical agglomerative clustering algorithm.

Solution:

The three clusters that would now result from running the agglomera-
tive clustering algorithm are GS_JPM_UBS (i.e., one cluster of three bank
stocks), AAPL_GOOG (i.e., one cluster of two technology stocks), and FB
by itself.

3. Explain why these results differ from the previous case, with eight stocks
(including the two auto stocks).

Solution:

The agglomerative clustering algorithm now combines GS and JPM and
then UBS, as before, to form a bank cluster. Next, and as previously, the
algorithm combines AAPL and GOOG into a cluster. However, without

the auto stocks, there is no need to combine AAPL_GOOG with the bank
cluster. There are now three distinct clusters, since (as before) the algorithm
treats FB as its own cluster, given the high degree of return co-movement
dissimilarity between FB and the other clusters (i.e., AAPL_GOOG, and
GS_JPM_UBS).

4. Describe the analyst’s new recommendation to the Investment Committee.

Solution:

The analyst’s new recommendation to the Investment Committee would be
to buy FB, buy the cheapest of AAPL or GOOG, and buy the most attractive
of the three bank stocks (GS, JPM, or UBS).

NEURAL NETWORKS, DEEP LEARNING NETS, AND
REINFORCEMENT LEARNING

describe neural networks, deep learning nets, and reinforcement
learning

[

The artificial intelligence revolution has been driven in large part by advances in neural
networks, deep learning algorithms, and reinforcement learning. These sophisticated
algorithms can address highly complex machine learning tasks, such as image classi-
fication, face recognition, speech recognition, and natural language processing. These
complicated tasks are characterized by non-linearities and interactions between large
numbers of feature inputs. We now provide an overview of these algorithms and their
investment applications.

Neural Networks

Neural networks (also called artificial neural networks, or ANNSs) are a highly flexible
type of ML algorithm that have been successfully applied to a variety of tasks charac-
terized by non-linearities and complex interactions among features. Neural networks
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are commonly used for classification and regression in supervised learning but are
also important in reinforcement learning, which does not require human-labeled
training data.

Exhibit 28 shows the connection between multiple regression and neural networks.
Panel A represents a hypothetical regression for data using four inputs, the features
%1 to x4, and one output—the predicted value of the target variable y. Panel B shows a
schematic representation of a basic neural network, which consists of nodes (circles)
connected by links (arrows connecting nodes). Neural networks have three types of
layers: an input layer (here with a node for each of the four features); hidden layers,
where learning occurs in training and inputs are processed on trained nets; and an
output layer (here consisting of a single node for the target variable y), which passes
information outside the network.

Besides the network structure, another important difference between multiple
regression and neural networks is that the nodes in the neural network’s hidden layer
transform the inputs in a non-linear fashion into new values that are then combined
into the target value. For example, consider the popular rectified linear unit (ReLU)
function, f(x) = max(0, x), which takes on a value of zero if there is a negative input and
takes on the value of the input if it is positive. In this case, y will be equal to ; times
z1, where z; is the maximum of (x; + x5 + x3) or 0, plus B, times z,, the maximum of
(%9 + x4) or O, plus B3 times z3, the maximum of (x, + x3 + x,4) or 0, plus an error term.

Exhibit 28: Regression and Neural Networks (Regression with Transformed

Features)

A. Conceptual Illustration B. Conceptual Illustration of
of Regression Hypothetical Neural Network
Input Ouput Input Layer ~ Hidden Layer ~Ouput Layer

y =PI max(0, x; +x, +x3) + B2 max(0, x, +xy) +

B3 max(0, x, + x3 +x4) + € = Blzy + P2z, +
V= BiX g+ BoXo + PaXg + PaXa + € B3z; + & where z is rectified linear unit function
f(x) = max(0,x)

Note that for neural networks, the feature inputs would be scaled (i.e., standardized)
to account for differences in the units of the data. For example, if the inputs were
positive numbers, each could be scaled by its maximum value so that their values lie
between 0 and 1.

Exhibit 29 shows a more complex neural network, with an input layer consisting
of four nodes (i.e., four features), one hidden layer consisting of five hidden nodes,
and an output node. These three numbers—4, 5, and 1—for the neural network are
hyperparameters that determine the structure of the neural network.
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Exhibit 29: A More Complex Neural Network with One Hidden Layer

Input Hidden Ouput
Layer Layer Layer

Input1 —
Input2 —
—> Ouput

Input3 —

Input4 —>

Now consider any of the nodes to the right of the input layer. These nodes are sometimes
called “neurons” because they process information received. Take the topmost hidden
node. Four links connect to that node from the inputs, so the node gets four values
transmitted by the links. Each link has a weight meant to represent its importance
(initially these weights may be assigned randomly). Each node has, conceptually, two
functional parts: a summation operator and an activation function. Once the node
receives the four input values, the summation operator multiplies each value by its
respective weight and then sums the weighted values to form the total net input. The
total net input is then passed to the activation function, which transforms this input
into the final output of the node. Informally, the activation function operates like a light
dimmer switch that decreases or increases the strength of the input. The activation
function, which is chosen by the modeler (i.e., a hyperparameter), is characteristically
non-linear, such as an S-shaped (sigmoidal) function (with output range of O to 1) or
the rectified linear unit function shown in Panel B of Exhibit 28. Non-linearity implies
that the rate of change of output differs at different levels of input.

This activation function is shown in Exhibit 30, where in the left graph a negative
total net input is transformed via the S-shaped function into an output close to 0.
This low output implies the node does not trigger, so there is nothing to pass to the
next node. Conversely, in the right graph a positive total net input is transformed into
an output close to 1, so the node does trigger. The output of the activation function
is then transmitted to the next set of nodes if there is a second hidden layer or, as in
this case, to the output layer node as the predicted value. The process of transmis-
sion just described (think of forward pointing arrows in Exhibit 29) is referred to as
forward propagation.
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Exhibit 30: Activation Function as “Light Dimmer Switch” at Each Node in a

Neural Network

Activation Function Output Activation Function Output

1 1 =

Sigmoid Sigmoid
Function Function

A

A A
_ Summation Operator N . Summation Operator i
Total Net Input Total Net Input
Dimmer Dimmer
< Switch > = Switch

Starting with an initialized set of random network weights (i.e., the weights assigned
to each of the links), training a neural network in a supervised learning context is an
iterative process in which predictions are compared to actual values of labeled data
and evaluated by a specified performance measure (e.g., mean squared error). Then,
the network weights are adjusted to reduce total error of the network. (If the process
of adjustment works backward through the layers of the network, this process is called
backward propagation). Learning takes place through this process of adjustment
to the network weights with the aim of reducing total error. Without proliferating
notation relating to nodes, the gist of the updating can be expressed informally as

New weight

= (Old weight) — (Learning rate) x (Partial derivative of the total error with respect
to the old weight),

where partial derivative is a gradient or rate of change of the total error with respect
to the change in the old weight and learning rate is a hyperparameter that affects
the magnitude of adjustments. When learning is completed, all the network weights
have assigned values; these are the parameters of the network.

The structure of a network in which all the features are interconnected with
non-linear activation functions allows neural networks to uncover and approximate
complex non-linear relationships among features. Broadly speaking, when more nodes
and more hidden layers are specified, a neural network’s ability to handle complexity
tends to increase (but so does the risk of overfitting).

Asset pricing is a noisy, stochastic process with potentially unstable relationships
that challenge modeling processes, so researchers are asking if machine learning can
improve our understanding of how markets work. Research comparing statistical and
machine learning methods’ abilities to explain and predict equity prices so far indicates
that simple neural networks produce models of equity returns at the individual stock
and portfolio level that are superior to models built using traditional statistical methods
due to their ability to capture dynamic and interacting variables. This suggests that
ML-based models, such as neural networks, may simply be better able to cope with
the non-linear relationships inherent in security prices. However, the trade-offs in
using neural networks are their lack of interpretability (i.e., black box nature) and the
large amounts of data and high computation intensity needed to train such models;
thus, neural networks may not be a good choice in many investment applications.
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DEEP NEURAL NETWORKS

The previous discussion of neural networks was limited to types of neural networks
referred to as “shallow neural networks”—exhibiting just one hidden layer. Neural
networks with many hidden layers—at least 2 but potentially more than 20—are known
as deep neural networks (DNNs). DNNs are the foundation of deep learning and
have proven to be successful across a wide range of artificial intelligence applications.
Advances in DNNs have driven developments in many complex activities, such as
image, pattern, and speech recognition. To state the operation of DNNs succinctly,
they take a set of inputs x from a feature set (the input layer), which are then passed
to a layer of non-linear mathematical functions (neurons) with weights Wi (for neuron
i and input j), each of which usually produces a scaled number in the range (0, 1) or
(-1, 1). These numbers are then passed to another layer of functions and into another
and so on until the final layer produces a set of probabilities of the observation being
in any of the target categories (each represented by a node in the output layer). The
DNN assigns the category based on the category with the highest probability. The
DNN is trained on large datasets; during training, the weights, w;, are determined to
minimize a specified loss function.

In practice, while the number of nodes in the input and the output layers are typ-
ically determined by the characteristics of the features and predicted output, many
model hyperparameters still must be decided, particularly the number of hidden layers,
the number of nodes per hidden layer, and their connectivity and activation architec-
ture. The objective is to choose them to achieve the best out-of-sample performance,
but it is still a challenge with no simple solution. As such, a good starting point is
a “reasonable” guess for hyperparameters based on experience and literature. The
researcher can then observe the result and adjust the hyperparameters incrementally
until the model performance goal is reached. In practice, DNNs require substantial
time to train, and systematically varying the hyperparameters may not be feasible. So,
for many problems with relatively small datasets, one can start with just two or three
hidden layers and a few hundred nodes before tuning the parameters until a model
with acceptable predictive power is achieved.

DNNs have been shown to be useful in general for pattern recognition problems
(e.g., character and image recognition), credit card fraud detection, vision and con-
trol problems in autonomous cars, natural language processing (such as machine
translation), and other applications. DNNs have become hugely successful because
of a confluence of three developments: (1) the availability of large quantities of
machine-readable data to train models, (2) advances in analytical methods for fitting
these models, and (3) fast computers, especially new chips in the graphics processing
unit (GPU) class, tailored for the type of calculations done on DNN.

Several financial firms are experimenting with DNNs for trading as well as auto-
mating their internal processes. Culkin and Das (2017) described how they trained
DNN:s to price options, mimicking the Black—Scholes—Merton model. Their research
used the same six input parameters for the model as input layer features—spot price,
strike, time to maturity, dividend yield, risk-free interest rate, and volatility—with four
hidden layers of 100 neurons each and one output layer. The predicted option prices
out-of-sample were very close to the actual option prices: A regression of predicted
option prices on actual prices had an R? of 99.8%.

Reinforcement Learning

Reinforcement learning (RL) made headlines in 2017 when DeepMind’s AlphaGo pro-
gram beat the reigning world champion at the ancient game of Go. The RL framework
involves an agent that is designed to perform actions that will maximize its rewards
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over time, taking into consideration the constraints of its environment. In the case of
AlphaGo, a virtual gamer (the agent) uses his or her console commands (the actions)
with the information on the screen (the environment) to maximize his or her score
(the reward). Unlike supervised learning, reinforcement learning has neither direct
labeled data for each observation nor instantaneous feedback. With RL, the algorithm
needs to observe its environment, learn by testing new actions (some of which may
not be immediately optimal), and reuse its previous experiences. The learning sub-
sequently occurs through millions of trials and errors. Academics and practitioners
are applying RL in a similar way in investment strategies where the agent could be a
virtual trader who follows certain trading rules (the actions) in a specific market (the
environment) to maximize its profits (its reward). The success of RL in dealing with
the complexities of financial markets is still an open question.

EXAMPLE 8

Deep Neural Networks

Glen Mitsui is the chief investment officer for a large Australian state’s Public
Employees’ Pension Fund (PEPF), which currently has assets under management
(AUM) of A$20 billion. The fund manages one-quarter of its assets internally,
with A$5 billion mostly in domestic government and corporate fixed-income
instruments and domestic equities. The remaining three-quarters of AUM, or
A$15 billion, is managed by nearly 100 mostly active external asset managers and
is invested in a wide range of asset classes, including foreign fixed income and
equities, domestic and foreign hedge funds, REITs, commodities, and derivatives.

PEPF has a small staff of four investment professionals tasked with selecting
and monitoring these external managers to whom it pays more than A$400
million in fees annually. Performance (compared to appropriate benchmarks)
of many of PEPF’s external managers has been lagging over the past several
years. After studying the situation, Mitsui concludes that style drift may be an
important factor in explaining such underperformance, for which PEPF is not
happy to pay. Mitsui believes that machine learning may help and consults with
Frank Monroe, professor of data analysis at Epsilon University.

Monroe suggests using a deep neural network model that collects and
analyzes the real-time trading data of PEPF’s external managers and compares
them to well-known investment styles (e.g., high dividend, minimum volatility,
momentum, growth, value) to detect potential style drift. Mitsui arranges for
Monroe to meet with PEPF’s investment committee (IC) to discuss the matter.
As a junior data analyst working with Monroe, you must help him satisfy the
following requests from the IC:

1. Define a deep neural network.

Solution:

A deep neural network is a neural network (NN) with many hidden layers
(at least 2 but often more than 20). NNs and DNNs have been successfully
applied to a wide variety of complex tasks characterized by non-linearities
and interactions among features, particularly pattern recognition problems.
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2. Evaluate Monroe’s opinion on the applicability of deep neural networks to
Mitsui’s problem.

Solution:

Mitsui wants to detect patterns of potential style drift in the daily trading of
nearly 100 external asset managers in many markets. This task will involve
the processing of huge amounts of complicated data. Monroe is correct that
a DNN is well suited to PEPF’s needs.

3. Describe the functions of the three groups of layers of a deep neural
network.

Solution:

The input layer, the hidden layers, and the output layer constitute the three
groups of layers of DNNs. The input layer receives the inputs (i.e., features)
and has as many nodes as there are dimensions of the feature set. The hid-
den layers consist of nodes, each comprising a summation operator and an
activation function that are connected by links. These hidden layers are, in
effect, where the model is learned. The final layer, the output layer, produc-
es a set of probabilities of an observation being in any of the target style
categories (each represented by a node in the output layer). For example, if
there are three target style categories, then three nodes in the output layer
are activated to produce outputs that sum to one. So, output (Style Category
I, 0.7; Style Category II, 0.2; Style Category III, 0.1) would indicate that the
model assigns the greatest probability to an observation being in Style Cat-
egory [ and the least probability to Style Category III. The DNN assigns the
observation to the style category with the highest probability.

CASE STUDY: DEEP NEURAL NETWORK-BASED
EQUITY FACTOR MODEL

The following case study was developed and written by Matthew Dixon, PhD, FRM.
An investment manager wants to select stocks based on their predicted performance
using a fundamental equity factor model. She seeks to capture superior performance
from stocks with the largest excess return using a non-linear factor model and so
chooses a deep neural network to predict the stock returns. The goal of this mini-case
study is to demonstrate the application of deep neural networks to fundamental equity
factor modeling. We shall focus on using feed-forward (i.e., forward propagation)
network regression in place of ordinary least squares linear regression. Since neural
networks are prone to over-fitting, we shall use LASSO penalization, the same penalty
score—based approach used previously with regression, to mitigate this issue.

Introduction

Cross-sectional fundamental factor models are used extensively by investment manag-
ers to capture the effects of company-specific factors on individual securities. A fixed
universe of N assets is first chosen, together with a set of K fundamental factors. Each
asset’s sensitivity (i.e., exposure or loading) to a fundamental factor is represented by
beta, B, and the factors are represented by factor returns (f;). There are two standard
approaches to estimating a factor model: (i) adopt time-series regression (TSR) to
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recover loadings if factors are known or (ii) use cross-sectional regression (CSR)
to recover factor returns from known loadings. We shall follow the CSR approach;
the factor exposures are used to predict a stock’s return (r,) by estimating the factor
returns using multivariate linear regression (where ¢, is the model error at time ¢):

r, = Bf,te.

However, this CSR model is too simplistic to capture non-linear relationships between
stock returns and fundamental factors. So, instead we use a deep neural network to
learn the non-linear relationships between the betas (B) and asset returns (r; ) at each
time ¢. The goal of deep learning is to find the network weights which minimize the
out-of-sample mean squared error (MSE) between the predicted stock returns, 7, and
the observed stock returns, r. We shall see that simply increasing the number of neurons
in the network will increase predictive performance using the in-sample data but to
the detriment of out-of-sample performance; this phenomenon is the bias—variance
trade-off. To mitigate this effect, we add a LASSO penalty term to the loss function
to automatically shrink the number of non-zero weights in the network. In doing so,
we shall see that this leads to better out-of-sample predictive performance.

Note that each weight corresponds to a link between a node in the previous and
current layer. Reducing the number of weights generally means that the number of
connections—not the number of nodes—is reduced. The exception is when all weights
from the neurons in the previous layer are set to zero—in which case the number of
nodes in the current layer would be reduced. In the special case when the previous
layer is the input layer, the number of features is also reduced.

We shall illustrate the data preparation and the neural network fitting using six
fundamental equity factors. This choice of number and type of fundamental factor
is arbitrary, and an investment manager may use many more factors in her or his
model, often representing industry sectors and sub-sectors using dummy variables.

Data Description

A description of the stock price and fundamental equity factor data used for training
and evaluating the neural network is shown in Exhibit 31.

Exhibit 31: Dataset of S&P 500 Stocks and Fundamental Factors

Description:

A subset of S&P 500 Index stocks, historical monthly adjusted closing
prices, and corresponding monthly fundamental factor loadings.

Time period: June 2010 to November 2018
Number of periods: 101

Number of stocks (N): 218 stocks

Number of features (K): 6

Features: Fundamental equity factors:

1. Current enterprise value (i.e., market values of equity + preferred
stock + debt — cash — short-term investments)

2. Current enterprise value to trailing 12-month EBITDA
Price-to-sales ratio

4. Price-to-earnings ratio
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5. Price-to-book ratio

6. Log of stock’s market capitalization (i.e., share price x number of
shares outstanding)

Output: Monthly return for each stock over the following month.

We define the universe as the top 250 stocks from the S&P 500, ranked by market
capitalization as of June 2010. All stock prices and factor loadings are sourced from
Bloomberg. An illustrative extract of the data is given in Exhibit 32. Note that after
removing stocks with missing factor loadings, we are left with 218 stocks.

Exhibit 32: Extract of Six Factor Loadings and Return for Three Selected Stocks

CURR_EV ($ CURR_EV_TO_ PX_TO_ PX_TO_ PX_TO_ LOG_CAP
TICKER Mil.) T12M_EBITDA (X)  SALES (X) EARN (X) BOOK (X) ($ Mil.) RETURN (%)
SWK 10,775.676 30.328 1.138 16.985 1.346 9.082970 -0.132996
STZ 7,433.553 15.653 1.052 10.324 1.480 8.142253 -0.133333
SRE 19,587.124 10.497 1.286 10.597 1.223 9.314892 -0.109589

Experimental Design

The method used to train the deep neural network is time-series cross-validation
(i.e., walk-forward optimization), as depicted in Exhibit 33. At each time period, the
investment manager fits a new model; each factor (f] to f;) is a feature in the network,
and the loadings of the factors for each stock is a feature vector observation (i.e., the
set of observations for each stock for each period), leading to N = 218 observations of
pairs of feature vectors and output (monthly return, r,) in the training set per period.
The network is initially trained at period ¢, and then it is tested over the next period,
t +1, which also has N = 218 observations of pairs of feature vectors and output. In
the next iteration, the ¢ + 1 data become the new training set and the revised model
is tested on the ¢ + 2 data. The walk-forward optimization of the neural network
continues until the last iteration: model training with ¢ + 99 data (from Period 100)
and testing with ¢ + 100 data (from the last period, 101).



© CFA Institute. For candidate use only. Not for distribution.
Case Study: Deep Neural Network—Based Equity Factor Model

Exhibit 33: Time-Series Cross-Validation on Asset Returns (Walk-Forward

Optimization)—The First Three Iterations
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We use a feed-forward neural network with six input nodes (i.e., neurons), two hidden
layers, and one output neuron. There are 50 neurons in each hidden layer to inten-
tionally over-specify the number of parameters needed in the model, meaning bias
(variance) is substantially lower (higher) than optimal. LASSO penalization is then
used to automatically shrink the parameter set. Additionally, it is important for the
number of nodes in each hidden layer not to exceed the number of observations in the
training set (50 nodes per layer versus 218 observations). The model training in period
t involves finding the optimal bias-versus-variance trade-off. Once fitted, we record
the in-sample MSE and the out-of-sample MSE in addition to the optimal regulariza-
tion parameter. This procedure is then repeated sequentially over the horizon of 100
remaining periods, tuning the hyperparameters at each stage using cross-validation.
The end result of this procedure is a fitted model, trained monthly on the current
cross-sectional data and for which hyperparameters have been tuned at each step.

Results

Exhibit 34 presents the results from model evaluation; it compares the in-sample and
out-of-sample MSEs of the deep neural network over all 101 months. Note that the
out-of-sample error (dotted line) is typically significantly larger than the in-sample
error (solid line). However, as the time periods pass and the model is repeatedly
trained and tested, the difference between the out-of-sample and in-sample MSEs
narrows dramatically.
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Exhibit 34: In-Sample and Out-of-Sample MSE for Each Training and Testing

Period
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Exhibit 35 shows the effect of LASSO regularization on the in-sample MSE (lower
panel, B) and the out-of-sample MSE (upper panel, A) for the first iteration of the
time-series cross-validation (training with data from period ¢ and testing with data from
period ¢ +1). The degree of LASSO regularization needed is found by cross-validation
using 50 neurons in each hidden layer. Increasing the LASSO regularization, which
reduces the number of non-zero weights in the model, introduces more bias and
hence increases the in-sample error. Conversely, increasing the LASSO regularization
reduces the model’s variance and thereby reduces the out-of-sample error. Overall,
the amount of LASSO regularization needed is significant, at 0.10; typically the reg-
ularization hyperparameter is between 0.001 and 1.0. Also, the out-of-sample and
in-sample MSEs have not yet converged. There is still a substantial gap, of roughly
0.0051 (= 0.01025 — 0.0052), and the slope of the curves in each plot suggests the
optimal value of the regularization hyperparameter is significantly more than 0.10.
Note that the value of the regularization hyperparameter is not interpretable and
does not correspond to the number of weights eliminated. Suffice it to say, the larger
the value of the regularization hyperparameter, the more the loss is being penalized.
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Exhibit 35: LASSO Regularization for Optimizing Bias-Variance Trade-Off

(First Iteration)
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It is important to recognize that although the out-of-sample MSE of this deep learn-
ing neural network is key to characterizing its predictive performance, it does not
necessarily follow that a stock selection strategy based on the neural network will be
successful. This is because the neural network predicts the next month’s expected
(i.e., mean) asset returns and not the full distribution of returns. Hence a simple stock
selection strategy—measured by information ratios (recall the information ratio, or
IR, is alpha divided by nonsystematic risk, so it measures the abnormal return per
unit of risk for a well-diversified portfolio) of the portfolio returns—that selects stocks
ranked by predicted returns will not necessarily lead to positive information ratios.
Exhibit 36 presents the information ratios found by back-testing a simple stock
selection strategy that picks the top performing stocks determined by the neural net-
work’s forecasted returns realized in month ¢ +1 using features observed in month ¢.
Note these IRs do not account for transaction costs, interest rates, or any other fees.
The upper panel (A) shows the best-case scenario; the neural network in-sample
prediction is used to select the n (where # is 10, 15, 20, or 25) top performing stocks.
The IRs are shown for each of the different-sized portfolios; they range from 0.697
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to 0.623. Note that as a rule of thumb, IRs in the range of 0.40—0.60 are considered
quite good. The lower panel (B) shows the IRs from back-test results for the same
strategy applied to the out-of-sample data. The out-of-sample IRs range from 0.260
to 0.315 and so are substantially smaller than in-sample IRs.

Exhibit 36: Information Ratios from Back-Testing a Stock Selection Strategy

Using Top Performers from the Neural Network
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Importantly, the out-of-sample performance provides the most realistic assessment
of the likely future investment performance from applying this deep learning neural
network to stock selection. It is a baseline for further model refinements, including
adding more fundamental and macroeconomic factors. With such refinements, it can
be expected that the out-of-sample IRs should improve substantially.
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EXAMPLE 9

Deep Learning-Based Fundamental Factor Model

A research analyst, Jane Hinton, has been tasked with further developing the deep
learning—based fundamental factor model. She decides to refine the model by
adding four more fundamental factors (such as debt leverage and R&D intensity)
given by firm characteristics and by including dummy variables for 11 industrial
sectors. Moreover, she additionally expands the universe of stocks to 420 from
218 by using a supplementary data source.

1. Describe how Jane would modify the inputs of the neural network architec-
ture for this new dataset.

Solution:

Jane adds four more fundamental factors and 11 dummy variables, to repre-
sent each industrial sector, for a total of 21 (= 4 + 11 + 6) features. Therefore,
the refined neural network will have 21 input neurons. The output layer will
remain the same. Note that concerns of collinearity of the features through
the dummy variables or high correlation, which are problematic for linear
regression, are not an issue for a deep learning—based model.

2. Describe the size of the new training and test datasets.

Solution:

There are now data on 420 stocks, for each of the 101 time periods, consist-
ing of factor loadings for the 21 features and the monthly return for each
stock. Per the time-series cross-validation method, the test dataset in the
current iteration will become the training dataset in the next iteration.

3. Describe any additional changes to the architecture and hyperparameters
of the neural network that Jane would likely need to make to ensure good
performance of the network.

Solution:

Jane should find the new optimal LASSO regularization hyperparameter
using time-series cross-validation. Alternatively, she may find the optimal
bias—variance trade-off by first increasing the number of neurons in the
hidden layers and then performing the cross-validation.

4. Explain how Jane should evaluate whether the new model leads to improved
portfolio performance.

Solution:

Once Jane has found the optimal LASSO hyperparameter and network
architecture, she will use the model to forecast the out-of-sample monthly
asset returns (i.e., the model forecasts from factor loadings which are not in
the training set). She will then rank and select the top predicted perform-
ers and finally measure the realized monthly portfolio return. She will then
repeat the experiment by moving forward one month in the dataset and re-
peating the out-of-sample forecast of the asset returns, until she has gener-
ated forecasts for all time periods. Finally, Jane will calculate the information
ratios from the mean and standard deviation of the monthly portfolio excess
returns.
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EXAMPLE 10

Summing Up the Major Types of Machine Learning

1. As used in supervised machine learning, classification problems involve the
following except:
A. binary target variables.
B. continuous target variables.

(. categorical target variables.

Solution:

B is correct. A and C are incorrect because when the target variable is bina-
ry or categorical (not continuous), the problem is a classification problem.

2. Which of the following best describes penalized regression? Penalized
regression:
A. is unrelated to multiple linear regression.
B. involves a penalty term that is added to the predicted target variable.
(. is a category of general linear models used when the number of fea-
tures and overfitting are concerns.
Solution:

C is correct. A is incorrect because penalized regression is related to mul-
tiple linear regression. B is incorrect because penalized regression involves
adding a penalty term to the sum of the squared regression residuals.

3. CART is best described as:

A. an unsupervised ML algorithm.
B. a clustering algorithm based on decision trees.
(. asupervised ML algorithm that accounts for non-linear relationships
among the features.
Solution:

C is correct. A is incorrect because CART is a supervised ML algorithm. B
is incorrect because CART is a classification and regression algorithm, not a
clustering algorithm.

4. A neural network is best described as a technique for machine learning that
is:
A. exactly modeled on the human nervous system.
B. based on layers of nodes connected by links when the relationships
among the features are usually non-linear.

(. based on a tree structure of nodes when the relationships among the
features are linear.

Solution:

B is correct. A is incorrect because neural networks are not exactly modeled
on the human nervous system. C is incorrect because neural networks are
not based on a tree structure of nodes when the relationships among the
features are linear.
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5. Hierarchical clustering is best described as a technique in which:

A. the grouping of observations is unsupervised.
B. features are grouped into a pre-specified number, , of clusters.

C. observations are classified according to predetermined labels.

Solution:

A is correct. B is incorrect because it refers to k-means clustering. C is
incorrect because it refers to classification, which involves supervised
learning.

6. Dimension reduction techniques are best described as a means to reduce a
set of features to a manageable size:
A. without regard for the variation in the data.
B. while increasing the variation in the data.

C. while retaining as much of the variation in the data as possible.

Solution:

C is correct because dimension reduction techniques, such as PCA, are
aimed at reducing the feature set to a manageable size while retaining as
much of the variation in the data as possible.

CHOOSING AN APPROPRIATE ML ALGORITHM

Exhibit 37 presents a simplified decision flowchart for choosing among the machine
learning algorithms which have been discussed. The dark-shaded ovals contain the
supervised ML algorithms, the light-shaded ovals contain the unsupervised ML
algorithms, and the key questions to consider are shown in the unshaded rounded
rectangles.
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Exhibit 37: Stylized Decision Flowchart for Choosing ML Algorithms
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First, start by asking, Are the data complex, having many features that are highly
correlated? If yes, then dimension reduction using principal components analysis is
appropriate.

Next, is the problem one of classification or numerical prediction? If numerical
prediction, then depending on whether the data have non-linear characteristics, the
choice of ML algorithms is from a set of regression algorithms—either penalized
regression/LASSO for linear data or CART, random forest, or neural networks for
non-linear data.

If the problem is one of classification, then depending on whether the data are
labeled, the choice is either from a set of classification algorithms using labeled data
or from a set of clustering algorithms using unlabeled data.

If the data are labeled, then depending on whether the data have non-linear char-
acteristics, the choice of classification algorithm would be K-nearest neighbor and
support vector machine for linear data or CART, random forest, or neural networks
(or deep neural networks) for non-linear data.

Finally, if the data are unlabeled, the choice of clustering algorithm depends on
whether the data have non-linear characteristics. The choice of clustering algorithm
would be neural networks (or deep neural networks) for non-linear data or for linear
data, K-means with a known number of categories and hierarchical clustering with
an unknown number of categories.
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SUMMARY

Machine learning methods are gaining usage at many stages in the investment man-
agement value chain. Among the major points made are the following:

Machine learning aims at extracting knowledge from large amounts of data
by learning from known examples to determine an underlying structure in
the data. The emphasis is on generating structure or predictions without
human intervention. An elementary way to think of ML algorithms is to
“find the pattern, apply the pattern”

Supervised learning depends on having labeled training data as well as
matched sets of observed inputs (X’s, or features) and the associated out-
put (Y, or target). Supervised learning can be divided into two categories:
regression and classification. If the target variable to be predicted is continu-
ous, then the task is one of regression. If the target variable is categorical or
ordinal (e.g., determining a firm’s rating), then it is a classification problem.

With unsupervised learning, algorithms are trained with no labeled data,

so they must infer relations between features, summarize them, or present
underlying structure in their distributions that has not been explicitly pro-
vided. Two important types of problems well suited to unsupervised ML are
dimension reduction and clustering.

In deep learning, sophisticated algorithms address complex tasks (e.g.,
image classification, natural language processing). Deep learning is based
on neural networks, highly flexible ML algorithms for solving a variety

of supervised and unsupervised tasks characterized by large datasets,
non-linearities, and interactions among features. In reinforcement learning,
a computer learns from interacting with itself or data generated by the same
algorithm.

Generalization describes the degree to which an ML model retains its
explanatory power when predicting out-of-sample. Overfitting, a primary
reason for lack of generalization, is the tendency of ML algorithms to tailor
models to the training data at the expense of generalization to new data
points.

Bias error is the degree to which a model fits the training data. Variance
error describes how much a model’s results change in response to new data
from validation and test samples. Base error is due to randomness in the
data. Out-of-sample error equals bias error plus variance error plus base
error.

K-fold cross-validation is a technique for mitigating the holdout sample
problem (excessive reduction of the training set size). The data (excluding
test sample and fresh data) are shuffled randomly and then divided into k
equal sub-samples, with k — 1 samples used as training samples and one
sample, the kth, used as a validation sample.

Regularization describes methods that reduce statistical variability in
high-dimensional data estimation or prediction problems via reducing
model complexity.

LASSO (least absolute shrinkage and selection operator) is a popular type of
penalized regression where the penalty term involves summing the absolute
values of the regression coefficients. The greater the number of included
features, the larger the penalty. So, a feature must make a sufficient contri-
bution to model fit to offset the penalty from including it.
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Support vector machine (SVM) is a classifier that aims to seek the optimal
hyperplane—the one that separates the two sets of data points by the maxi-
mum margin (and thus is typically used for classification).

K-nearest neighbor (KNN) is a supervised learning technique most often
used for classification. The idea is to classify a new observation by finding
similarities (“nearness”) between it and its k-nearest neighbors in the exist-
ing dataset.

Classification and regression tree (CART) can be applied to predict either a
categorical target variable, producing a classification tree, or a continuous
target variable, producing a regression tree.

A binary CART is a combination of an initial root node, decision nodes, and
terminal nodes. The root node and each decision node represent a single
feature (f) and a cutoff value (c) for that feature. The CART algorithm iter-
atively partitions the data into sub-groups until terminal nodes are formed
that contain the predicted label.

Ensemble learning is a technique of combining the predictions from a
collection of models. It typically produces more accurate and more stable
predictions than any single model.

A random forest classifier is a collection of many different decision trees
generated by a bagging method or by randomly reducing the number of
features available during training.

Principal components analysis (PCA) is an unsupervised ML algorithm

that reduces highly correlated features into fewer uncorrelated composite
variables by transforming the feature covariance matrix. PCA produces
eigenvectors that define the principal components (i.e., the new uncor-
related composite variables) and eigenvalues, which give the proportion of
total variance in the initial data that is explained by each eigenvector and its
associated principal component.

K-means is an unsupervised ML algorithm that partitions observations into
a fixed number (k) of non-overlapping clusters. Each cluster is characterized
by its centroid, and each observation belongs to the cluster with the cen-
troid to which that observation is closest.

Hierarchical clustering is an unsupervised iterative algorithm that is used
to build a hierarchy of clusters. Two main strategies are used to define the
intermediary clusters (i.e., those clusters between the initial dataset and the
final set of clustered data).

Agglomerative (bottom-up) hierarchical clustering begins with each obser-
vation being its own cluster. Then, the algorithm finds the two closest clus-
ters, defined by some measure of distance, and combines them into a new,
larger cluster. This process is repeated until all observations are clumped
into a single cluster.

Divisive (top-down) hierarchical clustering starts with all observations
belonging to a single cluster. The observations are then divided into two
clusters based on some measure of distance. The algorithm then progres-
sively partitions the intermediate clusters into smaller clusters until each
cluster contains only one observation.

Neural networks consist of nodes connected by links. They have three types
of layers: an input layer, hidden layers, and an output layer. Learning takes
place in the hidden layer nodes, each of which consists of a summation
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operator and an activation function. Neural networks have been successfully
applied to a variety of investment tasks characterized by non-linearities and
complex interactions among variables.

= Neural networks with many hidden layers (at least 2 but often more than
20) are known as deep neural networks (DNNs) and are the backbone of the
artificial intelligence revolution.

= Reinforcement learning (RL) involves an agent that should perform actions
that will maximize its rewards over time, taking into consideration the con-
straints of its environment.
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PRACTICE PROBLEMS

The following information relates to questions
1-10

Alef Associates manages a long-only fund specializing in global smallcap equities.
Since its founding a decade ago, Alef maintains a portfolio of 100 stocks (out of
an eligible universe of about 10,000 stocks). Some of these holdings are the result
of screening the universe for attractive stocks based on several ratios that use
readily available market and accounting data; others are the result of investment
ideas generated by Alef’s professional staff of five securities analysts and two
portfolio managers.

Although Alef’s investment performance has been good, its Chief Investment Of-
ficer, Paul Moresanu, is contemplating a change in the investment process aimed
at achieving even better returns. After attending multiple workshops and being
approached by data vendors, Moresanu feels that data science should play a role
in the way Alef selects its investments. He has also noticed that much of Alef’s
past outperformance is due to stocks that became takeover targets. After some
research and reflection, Moresanu writes the following email to the Alef’s CEO.

Subject: Investment Process Reorganization

I have been thinking about modernizing the way we select stock investments.
Given that our past success has put Alef Associates in an excellent financial
position, now seems to be a good time to invest in our future. What I propose
is that we continue managing a portfolio of 100 global small-cap stocks but
restructure our process to benefit from machine learning (ML). Importantly, the
new process will still allow a role for human insight, for example, in providing
domain knowledge. In addition, I think we should make a special effort to iden-
tify companies that are likely to be acquired. Specifically, I suggest following the
four steps which would be repeated every quarter.

Step 1 We apply ML techniques to a model including fundamental and tech-
nical variables (features) to predict next quarter’s return for each of
the 100 stocks currently in our portfolio. Then, the 20 stocks with the
lowest estimated return are identified for replacement.

Step 2 We utilize ML techniques to divide our investable universe of about
10,000 stocks into 20 different groups, based on a wide variety of the
most relevant financial and non-financial characteristics. The idea
is to prevent unintended portfolio concentration by selecting stocks
from each of these distinct groups.

Step 3 For each of the 20 different groups, we use labeled data to train a
model that will predict the five stocks (in any given group) that are
most likely to become acquisition targets in the next one year.
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Step 4 Our five experienced securities analysts are each assigned four of the
groups, and then each analyst selects their one best stock pick from
each of their assigned groups. These 20 “high-conviction” stocks will
be added to our portfolio (in replacement of the 20 relatively under-
performing stocks to be sold in Step 1).

A couple of additional comments related to the above:

Comment 1 The ML algorithms will require large amounts of data. We
would first need to explore using free or inexpensive historical
datasets and then evaluate their usefulness for the ML-based
stock selection processes before deciding on using data that
requires subscription.

Comment 2 As time passes, we expect to find additional ways to apply ML
techniques to refine Alef’s investment processes.
What do you think?

Paul Moresanu

1. The machine learning techniques appropriate for executing Step 1 are most likely
to be based on:

A. regression
B. classification

C. clustering

2. Assuming regularization is utilized in the machine learning technique used for
executing Step 1, which of the following ML models would be least appropriate:

A. Regression tree with pruning.
B. LASSO with lambda () equal to 0.

C. LASSO with lambda (\) between 0.5 and 1.

3. Which of the following machine learning techniques is most appropriate for
executing Step 2:

A. K-Means Clustering
B. Principal Components Analysis (PCA)
C. Classification and Regression Trees (CART)
4. The hyperparameter in the ML model to be used for accomplishing Step 2 is?
A. 100, the number of small-cap stocks in Alef’s portfolio.

B. 10,000, the eligible universe of small-cap stocks in which Alef can poten-
tially invest.

C. 20, the number of different groups (i.e. clusters) into which the eligible uni-
verse of small-cap stocks will be divided.

5. The target variable for the labelled training data to be used in Step 3 is most likely
which one of the following?

A. A continuous target variable.
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B. A categorical target variable.

C. An ordinal target variable.

6. Comparing two ML models that could be used to accomplish Step 3, which state-
ment(s) best describe(s) the advantages of using Classification and Regression
Trees (CART) instead of K-Nearest Neighbor (KNN)?

Statement 1 For CART there is no requirement to specify an initial hyperpa-
rameter (like K).

Statement 2 For CART there is no requirement to specify a similarity (or
distance) measure.

Statement 3 For CART the output provides a visual explanation for the
prediction.

A. Statement 1 only.
B. Statement 3 only.

C. Statements 1, 3 and 3.

7. Assuming a Classification and Regression Tree (CART) model is used to accom-
plish Step 3, which of the following is most likely to result in model overfitting?

A. Using the k-fold cross validation method
B. Including an overfitting penalty (i.e., regularization term).

(. Using a fitting curve to select a model with low bias error and high variance
error.

8. Assuming a Classification and Regression Tree (CART) model is initially used
to accomplish Step 3, as a further step which of the following techniques is most
likely to result in more accurate predictions?

A. Discarding CART and using the predictions of a Support Vector Machine
(SVM) model instead.

B. Discarding CART and using the predictions of a K-Nearest Neighbor (KNN)
model instead.

(. Combining the predictions of the CART model with the predictions of
other models — such as logistic regression, SVM, and KNN - via ensemble
learning.

9. Regarding Comment #2, Moresanu has been thinking about the applications
of neural networks (NNs) and deep learning (DL) to investment manage-
ment. Which statement(s) best describe(s) the tasks for which NNs and DL are
well-suited?

Statement 1 NNs and DL are well-suited for image and speech recognition,
and natural language processing.

Statement 2 NNs and DL are well-suited for developing single variable ordi-
nary least squares regression models.
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Statement 3 NNs and DL are well-suited for modelling non-linearities and
complex interactions among many features.

A. Statement 2 only.
B. Statements 1 and 3.

C. Statements 1, 2 and 3.

10. Regarding neural networks (NNs) that Alef might potentially implement, which
of the following statements is least accurate?

A. NNs must have at least 10 hidden layers to be considered deep learning
nets.

B. The activation function in a node operates like a light dimmer switch since
it decreases or increases the strength of the total net input.

(. The summation operator receives input values, multiplies each by a weight,
sums up the weighted values into the total net input, and passes it to the
activation function.
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SOLUTIONS

1. Ais correct. The target variable (quarterly return) is continuous, hence this calls
for a supervised machine learning based regression model.

B is incorrect, since classification uses categorical or ordinal target variables,
while in Step 1 the target variable (quarterly return) is continuous.

C is incorrect, since clustering involves unsupervised machine learning so does
not have a target variable.

2. Bis correct. It is least appropriate because with LASSO, when A = 0 the penalty

(i.e., regularization) term reduces to zero, so there is no regularization and the
regression is equivalent to an ordinary least squares (OLS) regression.
A is incorrect. With Classification and Regression Trees (CART'), one way that
regularization can be implemented is via pruning which will reduce the size of
the regression tree—sections that provide little explanatory power are pruned
(i.e., removed).

Cis incorrect. With LASSO, when X is between 0.5 and 1 the relatively large pen-
alty (i.e., regularization) term requires that a feature makes a sufficient contribu-
tion to model fit to offset the penalty from including it in the model.

3. Ais correct. K-Means clustering is an unsupervised machine learning al-
gorithm which repeatedly partitions observations into a fixed number, &, of
non-overlapping clusters (i.e., groups).

B is incorrect. Principal Components Analysis is a long-established statistical
method for dimension reduction, not clustering. PCA aims to summarize or
reduce highly correlated features of data into a few main, uncorrelated composite
variables.

Cis incorrect. CART is a supervised machine learning technique that is most
commonly applied to binary classification or regression.

4. Cis correct. Here, 20 is a hyperparameter (in the K-Means algorithm), which is a
parameter whose value must be set by the researcher before learning begins.
A is incorrect, because it is not a hyperparameter. It is just the size (number of
stocks) of Alef’s portfolio.
B is incorrect, because it is not a hyperparameter. It is just the size (number of
stocks) of Alef’s eligible universe.

5. Bis correct. To predict which stocks are likely to become acquisition targets,
the ML model would need to be trained on categorical labelled data having the
following two categories: “0” for “not acquisition target’, and “1” for “acquisition
target”.
A is incorrect, because the target variable is categorical, not continuous.
C is incorrect, because the target variable is categorical, not ordinal (i.e., 1st, 2nd,
3rd, etc.).

6. Cis correct. The advantages of using CART over KNN to classify companies into
two categories (“not acquisition target” and “acquisition target”), include all of
the following: For CART there are no requirements to specify an initial hyper-
parameter (like K) or a similarity (or distance) measure as with KNN, and CART
provides a visual explanation for the prediction (i.e., the feature variables and
their cut-off values at each node).

A is incorrect, because CART provides all of the advantages indicated in State-
ments 1, 2 and 3.
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B is incorrect, because CART provides all of the advantages indicated in State-
ments 1, 2 and 3.

Cis correct. A fitting curve shows the trade-off between bias error and variance
error for various potential models. A model with low bias error and high variance
error is, by definition, overfitted.

A is incorrect, because there are two common methods to reduce overfitting, one
of which is proper data sampling and cross-validation. K-fold cross validation is
such a method for estimating out-of-sample error directly by determining the
errorin validation samples.

B is incorrect, because there are two common methods to reduce overfitting, one
of which is preventing the algorithm from getting too complex during selection
and training, which requires estimating an overfitting penalty.

C is correct. Ensemble learning is the technique of combining the predictions
from a collection of models, and it typically produces more accurate and more
stable predictions than the best single model.

A is incorrect, because a single model will have a certain error rate and will make
noisy predictions. By taking the average result of many predictions from many
models (i.e., ensemble learning) one can expect to achieve a reduction in noise as
the average result converges towards a more accurate prediction.

B is incorrect, because a single model will have a certain error rate and will make
noisy predictions. By taking the average result of many predictions from many
models (i.e., ensemble learning) one can expect to achieve a reduction in noise as
the average result converges towards a more accurate prediction.

B is correct. NNs and DL are well-suited for addressing highly complex machine
learning tasks, such as image classification, face recognition, speech recognition
and natural language processing. These complicated tasks are characterized

by non-linearities and complex interactions between large numbers of feature
inputs.

A is incorrect, because NNs and DL are well-suited for addressing highly com-
plex machine learning tasks, not simple single variable OLS regression models.

Cis incorrect, because NNs and DL are well-suited for addressing highly com-
plex machine learning tasks, not simple single variable OLS regression models.

A is correct. It is the least accurate answer because neural networks with many
hidden layers—at least 3, but often more than 20 hidden layers—are known as
deep learning nets.

B is incorrect, because the node’s activation function operates like a light dimmer
switch which decreases or increases the strength of the (total net) input.

C is incorrect, because the node’s summation operator multiplies each (input)
value by a weight and sums up the weighted values to form the total net input.
The total net input is then passed to the activation function.
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LEARNING OUTCOMES

Mastery | The candidate should be able to:

] identify and explain steps in a data analysis project

describe objectives, steps, and examples of preparing and wrangling
data

evaluate the fit of a machine learning algorithm
describe objectives, methods, and examples of data exploration

describe methods for extracting, selecting and engineering features
from textual data

describe objectives, steps, and techniques in model training

OO0 Oooo

describe preparing, wrangling, and exploring text-based data for
financial forecasting

INTRODUCTION

Big data (also referred to as alternative data) encompasses data generated by financial
markets (e.g., stock and bond prices), businesses (e.g., company financials, production
volumes), governments (e.g., economic and trade data), individuals (e.g., credit card
purchases, social media posts), sensors (e.g., satellite imagery, traffic patterns), and
the Internet of Things, or IoT, (i.e., the network of interrelated digital devices that can
transfer data among themselves without human interaction). A veritable explosion in
big data has occurred over the past decade or so, especially in unstructured data gen-
erated from social media (e.g., posts, tweets, blogs), email and text communications,
web traffic, online news sites, electronic images, and other electronic information
sources. The prospects are for exponential growth in big data to continue.
Investment managers are increasingly using big data in their investment processes
as they strive to discover signals embedded in such data that can provide them with an
information edge. They seek to augment structured data with a plethora of unstruc-
tured data to develop improved forecasts of trends in asset prices, detect anomalies,
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etc. A typical example involves a fund manager using financial text data from 10-K
reports for forecasting stock sentiment (i.e., positive or negative), which can then be
used as an input to a more comprehensive forecasting model that includes corporate
financial data.

Unlike structured data (numbers and values) that can be readily organized into
data tables to be read and analyzed by computers, unstructured data typically require
specific methods of preparation and refinement before being usable by machines (i.e.,
computers) and useful to investment professionals. Given the volume, variety, and
velocity of available big data, it is important for portfolio managers and investment
analysts to have a basic understanding of how unstructured data can be transformed
into structured data suitable as inputs to machine learning (ML) methods (in fact, for
any type of modeling methods) that can potentially improve their financial forecasts.

This reading describes the steps in using big data, both structured and unstruc-
tured, in financial forecasting. The concepts and methods are then demonstrated in a
case study of an actual big data project. The project uses text-based data derived from
financial documents to train an ML model to classify text into positive or negative
sentiment classes for the respective stocks and then to predict sentiment.

Section 2 of the reading covers a description of the key characteristics of big data.
Section 3 provides an overview of the steps in executing a financial forecasting project
using big data. We then describe in Sections 4—6 key aspects of data preparation and
wrangling, data exploration, and model training using structured data and unstructured
(textual) data. In Section 7, we bring these pieces together by covering the execution
of an actual big data project. A summary in Section 8 concludes the reading.

Big Data in Investment Management

Big data differs from traditional data sources based on the presence of a set of char-
acteristics commonly referred to as the 3Vs: volume, variety, and velocity.

Volume refers to the quantity of data. The US Library of Congress, which is tasked
with archiving both digital and physical information artifacts in the United States, has
collected hundreds of terabytes of data (one terabyte equals 1,024 gigabytes, which
are equal to 1,048,576 megabytes). Several years ago, one of the authors managed an
archival project for the Library of Congress in which many terabytes of online content
were collected—a copious amount of data at the time. However, in most US industry
sectors today, the average company collects more data than the Library of Congress!
In big data conversations, terabytes have been replaced with petabytes and exabytes
(one exabyte equals 1,024 petabytes, which are equal to 1,048,576 terabytes). The
classic grains of sand analogy puts these volumes into perspective: If a megabyte is a
tablespoon of sand, then a petabyte is a 1.6-kilometer-long beach and an exabyte is a
beach extending about 1,600 kilometers.

Variety pertains to the array of available data sources. Organizations are now deal-
ing with structured, semi-structured, and unstructured data from within and outside
the enterprise. Variety includes traditional transactional data; user-generated text,
images, and videos; social media; sensor-based data; web and mobile clickstreams; and
spatial-temporal data. Effectively leveraging the variety of available data presents both
opportunities and challenges, including such legal and ethical issues as data privacy.

Velocity is the speed at which data are created. Many large organizations collect
several petabytes of data every hour. With respect to unstructured data, more than
one billion new tweets (i.e., a message of 280 characters or less posted on the social
media website Twitter) are generated every three days; five billion search queries occur
daily. Such information has important implications for real-time predictive analytics
in various financial applications. Analyzing such “data-in-motion” poses challenges
since relevant patterns and insights might be moving targets relative to situations of
“data-at-rest”
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When using big data for inference or prediction, there is a “fourth V”: Veracity
relates to the credibility and reliability of different data sources. Determining the credi-
bility and reliability of data sources is an important part of any empirical investigation.
The issue of veracity becomes critically important for big data, however, because of
the varied sources of these large datasets. Big data amplifies the age-old challenge of
disentangling quality from quantity. Social media, including blogs, forums, and social
networking sites, are plagued with spam; by some estimates, as much as 10%—-15%
of such content is completely fake. Similarly, according to our research, web spam
accounts for more than 20% of all content on the worldwide web. Clickstreams from
website and mobile traffic are equally susceptible to noise. Furthermore, deriving
deep semantic knowledge from text remains challenging in certain instances despite
significant advances in natural language processing (NLP).

These Vs have numerous implications for financial technology (commonly referred
to as “fintech”) pertaining to investment management. Machine learning assessments
of creditworthiness, which have traditionally relied on structured financial metrics, are
being enhanced by incorporating text derived from financial statements, news articles,
and call transcripts. Customers in the financial industry are being segmented based
not only on their transactional data but also on their views and preferences expressed
on social media (to the degree permissible under applicable privacy agreements). Big
data also affords opportunities for enhanced fraud detection and risk management.

EXECUTING A DATA ANALYSIS PROJECT

] identify and explain steps in a data analysis project

In the era of big data, firms treat data like they do important assets. However, effec-
tive big data analytics are critical to allow appropriate data monetization. Let us take
financial forecasting as an application area. Numerous forecasting tasks in this domain
can benefit from predictive analytics models built using machine learning methods.
One common example is predicting whether stock prices (for an individual stock or a
portfolio) will go up or down in value at some specific point in the future. Traditionally,
financial forecasting relied on various financial and accounting numbers, ratios, and
metrics coupled with statistical or mathematical models. More recently, machine
learning models have been commonly utilized. However, with the proliferation of
textual big data (e.g., online news articles, internet financial forums, social networking
platforms), such unstructured data have been shown to offer insights faster (as they
are real-time) and have enhanced predictive power.

Textual big data provides several valuable types of information, including topics
and sentiment. Topics are what people are talking about (e.g., a firm, an industry, a
particular event). Sentiment is how people feel about what they are discussing. For
instance, they might express positive, negative, or neutral views (i.e., sentiments)
toward a topic of discussion. One study conducted in the United States found that
positive sentiment on Twitter could predict the trend for the Dow Jones Industrial
Average up to three days later with nearly 87% accuracy.
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Deriving such insights requires supplementing traditional data with textual big
data. As depicted in Exhibit 1, the inclusion of big data has immediate implications for
building the machine learning model as well as downstream implications for financial
forecasting and analysis. We begin with the top half of Exhibit 1, which shows the
traditional (i.e., with structured data) ML Model Building Steps:

1. Conceptualization of the modeling task. This crucial first step entails deter-
mining what the output of the model should be (e.g., whether the price of
a stock will go up/down one week from now), how this model will be used
and by whom, and how it will be embedded in existing or new business
processes.

2. Data collection. The data traditionally used for financial forecasting tasks are
mostly numeric data derived from internal and external sources. Such data
are typically already in a structured tabular format, with columns of fea-
tures, rows of instances, and each cell representing a particular value.

3. Data preparation and wrangling. This step involves cleansing and prepro-
cessing of the raw data. Cleansing may entail resolving missing values, out-
of-range values, and the like. Preprocessing may involve extracting, aggre-
gating, filtering, and selecting relevant data columns.

4. Data exploration. This step encompasses exploratory data analysis, feature
selection, and feature engineering.

5. Model training. This step involves selecting the appropriate ML method
(or methods), evaluating performance of the trained model, and tuning the
model accordingly.

Note that these steps are iterative because model building is an iterative process.
The insights gained from one iteration may inform the next iteration, beginning with
reconceptualization. In contrast with structured data sources, textual big data orig-
inating in online news articles, social media, internal/external documents (such as
public financial statements), and other openly available data sources are unstructured.

The TextML Model Building Steps used for the unstructured data sources of big
data are shown in the bottom half of Exhibit 1. They differ from those used for tra-
ditional data sources and are typically intended to create output information that is
structured. The differences in steps between the text model and traditional model
account for the characteristics of big data: volume, velocity, variety, and veracity. In
this reading, we mostly focus on the variety and veracity dimensions of big data as
they manifest themselves in text. The major differences in the Text ML Model Building
Steps are in the first four steps:

1. Text problem formulation. Analysts begin by determining how to formulate
the text classification problem, identifying the exact inputs and outputs for
the model. Perhaps we are interested in computing sentiment scores (struc-
tured output) from text (unstructured input). Analysts must also decide how
the text ML model’s classification output will be utilized.

2. Data (text) curation. This step involves gathering relevant external text
data via web services or web spidering (scraping or crawling) programs
that extract raw content from a source, typically web pages. Annotation of
the text data with high-quality, reliable target (dependent) variable labels
might also be necessary for supervised learning and performance evaluation
purposes. For instance, experts might need to label whether a given expert
assessment of a stock is bearish or bullish.
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3. Text preparation and wrangling. This step involves critical cleansing and
preprocessing tasks necessary to convert streams of unstructured data into a
format that is usable by traditional modeling methods designed for struc-
tured inputs.

4. Text exploration. This step encompasses text visualization through tech-
niques, such as word clouds, and text feature selection and engineering.

The resulting output (e.g., sentiment prediction scores) can either be combined
with other structured variables or used directly for forecasting and/or analysis.

Next, we describe two key steps from the ML Model Building Steps depicted in
Exhibit 1 that typically differ for structured data versus textual big data: data/text
preparation and wrangling and data/text exploration. We then discuss model training.
Finally, we focus on applying these steps to a case study related to classifying and
predicting stock sentiment from financial texts.

Exhibit 1: Model Building for Financial Forecasting Using Big Data:

Structured (Traditional) vs. Unstructured (Text)

ML Model Building Steps
Structured C ]l?ata_
Structured Data Input ollection
@ @ Conceptualization ]Z‘)/?[ta Pr?p &\l Structured
> rangling Data
Internal External Classifier
Sources Sources Model Data Output
Training Exploration . .
Financial
Unstructured T Text Classifier Output Foreca;ting
Input (Structured) A ari .
o
Curation Text
News Articles Social Media Classifier
»| | Text Problem Text Prep & Output
Formulation Wrangling
Other Open Data Model Text
Documents Training Exploraﬁon

Unstructured (Text) Data
Text ML Model Building Steps

EXAMPLE 1

Steps in ML Model Building

LendALot Corporation is a B2C (business-to-consumer) lender that has tradi-
tionally outsourced potential customers’ creditworthiness scoring to a third-
party firm. Given the recent advances in machine learning (ML)-based “fintech”
that goes beyond traditional “repayment history” and “ability to repay” assess-
ments derived from structured data, LendALot would like to develop in-house,
ML-based credit scoring capabilities to enhance borrower risk assessment and
differentiate itself in the B2C lending market. LendALot would like to follow a
phased approach beginning with traditional (structured) data sources and then
eventually incorporating textual (unstructured) big data sources. Paul Wang has
been asked to lead a new analytics team at LendALot tasked with developing the
ML-based creditworthiness scoring model. In the context of machine learning
using structured data sources, address the following questions.
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In a later phase of the project, LendALot attempts to improve its credit
scoring processes by incorporating textual data in credit scoring. Wang tells his
team, “Enhance the creditworthiness scoring model by incorporating insights
from text provided by the prospective borrowers in the loan application free
response fields”

1. State and explain one decision Wang will need to make related to:

A. conceptualizing the modeling task.

data collection.

B
(. data preparation and wrangling.
D. data exploration.

E

model training.

Solution:

A. In the conceptualization step, Wang will need to decide how the out-
put of the ML model will be specified (e.g., a binary classification of
creditworthiness), how the model will be used and by whom, and how
it will be embedded in LendALot’s business processes.

B. In the data collection phase, Wang must decide on what data—inter-
nal, external, or both—to use for credit scoring.

(. In the data preparation and wrangling step, Wang will need to decide
on data cleansing and preprocessing needs. Cleansing may entail
resolving missing values, extreme values, etc. Preprocessing may
involve extracting, aggregating, filtering, and selecting relevant data
columns.

D. In the data exploration phase, Wang will need to decide which explor-
atory data analysis methods are appropriate, which features to use in
building a credit scoring model, and which features may need to be
engineered.

E. In the model training step, Wang must decide which ML algorithm(s)
to use. Assuming labeled training data are available, the choice will
be among supervised learning algorithms. Decisions will need to be
made on how model fit is measured and how the model is validated
and tuned.

2. Identify the process step that Wang’s statement addresses.

Solution:

Wang'’s statement relates to the initial step of text problem formulation.

3. State two potential needs of the LendAlot team in relation to text curation.

Solution:

Related to text curation, the team will be using internal data (from loan
applications). They will need to ensure that the text comment fields on the
loan applications have been correctly implemented and enabled. If these
fields are not required, they need to ensure there is a sufficient response rate
to analyze.
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4. State two potential needs of the LendAlot team in relation to text prepara-
tion and wrangling.

Solution:

Related to text preparation and wrangling, the team will need to carry out
the critical tasks of text cleansing and text preprocessing. These two tasks
are necessary to convert an unstructured stream of data into structured
values for use by traditional modeling methods.

DATA PREPARATION AND WRANGLING

] describe objectives, steps, and examples of preparing and wrangling
data
] evaluate the fit of a machine learning algorithm

Data preparation and wrangling involve cleansing and organizing raw data into a
consolidated format. The resulting dataset is suitable to use for further analyses and
training a machine learning (ML) model. This is a critical stage, the foundation, in
big data projects. Most of the project time is spent on this step, and the quality of the
data affects the training of the selected ML model. Domain knowledge—that is, the
involvement of specialists in the particular field in which the data are obtained and
used—is beneficial and often necessary to successfully execute this step. Data prepa-
ration is preceded by data collection, so we discuss the data collection process first.

Before the data collection process even begins, it is important to state the prob-
lem, define objectives, identify useful data points, and conceptualize the model.
Conceptualization is like a blueprint on a drawing board, a modifiable plan that is
necessary to initiate the model building process. A project overview is established
by determining the ML model type—supervised or unsupervised—and data sources/
collection plans with respect to the needs of the project.

Data collection involves searching for and downloading the raw data from one or
multiple sources. Data can be stored in different formats, sources, and locations. As
databases are the most common primary sources, building necessary queries with the
help of database administrators is critical. Database schemas are built with certain
assumptions and exceptions, and it is safest to clarify the database architecture with
an administrator or database architect before downloading the necessary data. Data
also exist in the form of spreadsheets, comma-separated values (csv) files, text files,
and other formats. Care must be taken before using such data, and documentation
(often referred to as “Readme” files) must be referred to, if available. Readme files
are text files provided with the raw data that contain information related to a data file.
They are useful for understanding the data and how they can be interpreted correctly.

Alternatively, third-party data vendors can be sources of clean data. External data
usually can be accessed through an application programming interface (API)—a set
of well-defined methods of communication between various software components—or
the vendors can deliver the required data in the form of csv files or other formats (as
previously mentioned). Using external data can save time and resources that would
otherwise go into data preparation and wrangling; however, vendor contracts come
with a price. Depending on the big data project constraints, a decision must be made
regarding the use of internal or external data based on the trade-offs between time,
financial costs, and accuracy. For projects using internal user data, external data
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might not be suitable. For example, to understand user traffic on a company website,
internally recorded site visits and click frequency may be captured and stored in the
internal databases. External data are advantageous when a project requires generic data,
such as demographics of a geographic area or traffic data of a public service. Another
consideration in using external vendor provided data is that during the cleansing
process, underlying trends in the data that are important for particular end-uses may
be masked or even lost. This is where “alpha” is often found; so by simply buying a
dataset from a vendor, you may lose your information edge. Of course, application of
the data (e.g., merging and combining, putting through different types of models) will
be different for everyone who uses it; there are always different ways to extract value.

Once the data are collected, the data preparation and wrangling stage begins. This
stage involves two important tasks: cleansing and preprocessing, respectively. Exhibit
2 outlines data preparation and wrangling and defines the two component tasks. These
tasks are explained in detail under the structured and unstructured sub-sections
because the steps vary by the nature of data.

Exhibit 2: Data Preparation and Wrangling Stage

Data Preparation and Wrangling

Data
Collection/ Data Data Data Model
Curation Cleansing Preprocessing | | [Exploration[ ] Training [ Results

Data Preparation (Cleansing): This is the initial and most common task in data
preparation that is performed on raw data. Data cleansing is the process of exam-
ining, identifying, and mitigating errors in raw data. Normally, the raw data are
neither sufficiently complete nor sufficiently clean to directly train the ML model.
Manually entered data can have incomplete, duplicated, erroneous, or inaccurate
values. Automated data (recorded by systems) can have similar problems due to server
failures and software bugs.

Data Wrangling (Preprocessing): This task performs transformations and critical
processing steps on the cleansed data to make the data ready for ML model training.
Raw data most commonly are not present in the appropriate format for model con-
sumption. After the cleansing step, data need to be processed by dealing with outliers,
extracting useful variables from existing data points, and scaling the data.

Structured Data

Data Preparation (Cleansing)

Structured data are organized in a systematic format that is readily searchable and
readable by computer operations for processing and analyzing. In structured data, data
errors can be in the form of incomplete, invalid, inaccurate, inconsistent, non-uniform,
and duplicate data observations. The data cleansing process mainly deals with identify-
ing and mitigating all such errors. Exhibit 3 shows a raw dataset before cleansing. The
data have been collected from different sources and are organized in a data matrix (or
data table) format. Each row contains observations of each customer of a US-based
bank. Each column represents a variable (or feature) corresponding to each customer.
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Exhibit 3: Raw Data Before Cleansing

Other
1 ID Name Gender Date of Birth Salary Income State Credit Card
2 1 Mr ABC M 12/5/1970 $50,200 $5,000 VA Y
3 2 Ms. XYZ M 15 Jan, 1975 $60,500 $0 NY Y
4 3 EFG 1/13/1979 $65,000 $1,000 CA N
5 4 Ms. MNO F 1/1/1900 — — FL Don’t Know
6 5 Ms. XYZ F 15/1/1975 $60,500 $0 Y
7 6 Mr. GHI M 9/10/1942 NA $55,000 X N
8 7 Mr. TUV M 2/27/1956 $300,000 $50,000 CT Y
9 8 Ms. DEF F 4/4/1980 $55,000 $0 British N

Columbia

The possible errors in a raw dataset include the following:

1. Incompleteness error is where the data are not present, resulting in missing
data. This can be corrected by investigating alternate data sources. Missing
values and NAs (not applicable or not available values) must be either omit-
ted or replaced with “NA” for deletion or substitution with imputed values
during the data exploration stage. The most common imputations are mean,
median, or mode of the variable or simply assuming zero. In Exhibit 3,
rows 4 (ID 3), 5 (ID 4), 6 (ID 5), and 7 (ID 6) are incomplete due to missing
values in either Gender, Salary, Other Income, Name (Salutation), and State
columns.

2. Invalidity error is where the data are outside of a meaningful range, result-
ing in invalid data. This can be corrected by verifying other administrative
data records. In Exhibit 3, row 5 likely contains invalid data as the date of
birth is out of the range of the expected human life span.

3. Inaccuracy error is where the data are not a measure of true value. This can
be rectified with the help of business records and administrators. In Exhibit
3, row 5 is inaccurate (it shows “Don’t Know”); in reality, every person either
has a credit card or does not.

4. Inconsistency error is where the data conflict with the corresponding data
points or reality. This contradiction should be eliminated by clarifying with
another source. In Exhibit 3, row 3 (ID 2) is likely to be inconsistent as the
Name column contains a female title and the Gender column contains male.

5. Non-uniformity error is where the data are not present in an identical
format. This can be resolved by converting the data points into a preferable
standard format. In Exhibit 3, the data under the Date of Birth column is
present in various formats. The data under the Salary column may also be
non-uniform as the monetary units are ambiguous; the dollar symbol can
represent US dollar, Canadian dollar, or others.

6. Duplication error is where duplicate observations are present. This can be
corrected by removing the duplicate entries. In Exhibit 3, row 6 is a dupli-
cate as the data under Name and Date of Birth columns are identical to the
ones in row 3, referring to the same customer.

Exhibit 4 shows the dataset after completion of the cleansing process.
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Exhibit 4: Data After Cleansing

Other

1 ID Name Gender Date of Birth Salary Income State Credit Card
2 1 Mr ABC M 12/5/1970 USD 50200 USD 5000 VA Y

3 2 Ms. XYZ F 1/15/1975 USD 60500 uUSD 0 NY

4 3 Mr EFG M 1/13/1979 USD 65000 USD 1000 CA N

5 6 Mr. GHI M 9/10/1942 uUSD 0 USD 55000 TX N

6 7  Mr. TUV M 2/27/1956 USD 300000 USD 50000 CT Y

7 8 Ms. DEF F 4/4/1980 CAD 55000 CADO British N

Columbia

Data cleansing can be expensive and cumbersome because it involves the use of
automated, rule-based, and pattern recognition tools coupled with manual human
inspection to sequentially check for the aforementioned types of errors row by row
and column by column. The process involves a detailed data analysis as an initial
step in identifying various errors that are present in the data. In addition to a manual
inspection and verification of the data, analysis software, such as SPSS, can be used
to understand metadata (data that describes and gives information about other data)
about the data properties to use as a starting point to investigate any errors in the data.
The business value of the project determines the necessary quality of data cleansing
and subsequently the amount of resources used in the cleansing process. In case the
errors cannot be resolved due to lack of available resources, the data points with errors
can simply be omitted depending on the size of the dataset. For instance, if a dataset is
large with more than 10,000 rows, removing a few rows (approximately 100) may not
have a significant impact on the project. If a dataset is small with less than 1,000 rows,
every row might be important and deleting many rows thus harmful to the project.

Data Wrangling (Preprocessing)

To make structured data ready for analyses, the data should be preprocessed. Data
preprocessing primarily includes transformations and scaling of the data. These
processes are exercised on the cleansed dataset. The following transformations are
common in practice:

1. Extraction: A new variable can be extracted from the current variable for
ease of analyzing and using for training the ML model. In Exhibit 4, the
Date of Birth column consists of dates that are not directly suitable for anal-
yses. Thus, an additional variable called “Age” can be extracted by calculat-
ing the number of years between the present day and date of birth.

2. Aggregation: Two or more variables can be aggregated into one variable
to consolidate similar variables. In Exhibit 4, the two forms of income,
Salary and Other Income, can be summed into a single variable called Total
Income.

3. Filtration: The data rows that are not needed for the project must be identi-
fied and filtered. In Exhibit 4, row 7 (ID 8) has a non-US state; however, this
dataset is for the US-based bank customers where it is required to have a US
address.

4. Selection: The data columns that are intuitively not needed for the project
can be removed. This should not be confused with feature selection, which
is explained later. In Exhibit 4, Name and Date of Birth columns are not
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required for training the ML model. The ID column is sufficient to identify
the observations, and the new extracted variable Age replaces the Date of
Birth column.

5. Conversion: The variables can be of different types: nominal, ordinal, con-
tinuous, and categorical. The variables in the dataset must be converted
into appropriate types to further process and analyze them correctly. This is
critical for ML model training. Before converting, values must be stripped
out with prefixes and suffixes, such as currency symbols. In Exhibit 4, Name
is nominal, Salary and Income are continuous, Gender and Credit Card
are categorical with 2 classes, and State is nominal. In case row 7 is not
excluded, the Salary in row 7 must be converted into US dollars. Also, the
conversion task applies to adjusting time value of money, time zones, and
others when present.

Outliers may be present in the data, and domain knowledge is needed to deal
with them. Any outliers that are present must first be identified. The outliers then
should be examined and a decision made to either remove or replace them with values
imputed using statistical techniques. In Exhibit 4, row 6 (ID 7) is an outlier because
the Salary value is far above the upper quartile. Row 5 (ID 6) is also an outlier because
the Salary value is far below the lower quartile. However, after the aggregation and
formation of a new variable Total Income, as shown in Exhibit 5, row 5 (ID 6), it is
no longer an outlier.

In practice, several techniques can be used to detect outliers in the data. Standard
deviation can be used to identify outliers in normally distributed data. In general, a
data value that is outside of 3 standard deviations from the mean may be considered
an outlier. The interquartile range (IQR) can be used to identify outliers in data with
any form of distribution. IQR is the difference between the 75th and the 25th percentile
values of the data. In general, data values outside of the following are considered as
outliers: +1.5 x IQR + 3'4 Quartile Upper Bound; and -1.5 x IQR + 24 Quartile Lower
Bound. Using a multiple of 3.0 (instead of 1.5) times IQR would indicate extreme values.

There are several practical methods for handling outliers. When extreme values
and outliers are simply removed from the dataset, it is known as trimming (also called
truncation). For example, a 5% trimmed dataset is one for which the 5% highest and the
5% lowest values have been removed. When extreme values and outliers are replaced
with the maximum (for large value outliers) and minimum (for small value outliers)
values of data points that are not outliers, the process is known as winsorization.

Exhibit 5: Data After Applying Transformations

1 ID Gender Age Total Income State Credit Card
2 1 M 48 55200 VA Y
3 2 F 43 60500 NY Y
4 3 M 39 66000 CA N
5 6 M 76 55000 X N

Scaling is a process of adjusting the range of a feature by shifting and changing the scale
of data. Variables, such as age and income, can have a diversity of ranges that result
in a heterogeneous training dataset. For better ML model training when using such
methods as support vector machines (SVMs) and artificial neural networks (ANNs),
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all variables should have values in the same range to make the dataset homogeneous.
It is important to remove outliers before scaling is performed. Here are two of the
most common ways of scaling:

1. Normalization is the process of rescaling numeric variables in the range
of [0, 1]. To normalize variable X, the minimum value (X;,) is subtracted
from each observation (X;), and then this value is divided by the difference

between the maximum and minimum values of X (X ., — X;ni) as follows:

Xi — Xinin
X; (normalized) — Xonax — Xnin )
2. Standardization is the process of both centering and scaling the variables.
Centering involves subtracting the mean (p) of the variable from each obser-
vation (X;) so the new mean is 0. Scaling adjusts the range of the data by
dividing the centered values (X; - p) by the standard deviation (o) of feature
X. The resultant standardized variable will have an arithmetic mean of 0 and

standard deviation of 1.

Xi—n
X; (standardized) ~ ~ 0 )
Normalization is sensitive to outliers, so treatment of outliers is necessary before
normalization is performed. Normalization can be used when the distribution of the
data is not known. Standardization is relatively less sensitive to outliers as it depends
on the mean and standard deviation of the data. However, the data must be normally
distributed to use standardization.

EXAMPLE 2

Preparing and Wrangling Structured Data

Paul Wang’s analytics team at LendALot Corporation is working to develop its
first ML model for classifying prospective borrowers’ creditworthiness. Wang has
asked one of his data scientists, Lynn Lee, to perform a preliminary assessment
of the data cleansing and preprocessing tasks the team will need to perform.
As part of this assessment, Lee pulled the following sample of data for manual
examination, which she brings to Wang to discuss.

Name

Loan Amount Credit
Loan Outcome Income (USD) (USD) Score Loan Type

coO N N Ul W

A O U W N

Mr. Alpha
Ms. Beta
Mr. Gamma
Ms. Delta
Mr. Epsilon
Mr. Zeta
Mr. Zeta

No Default 34,000 10,000 685 Mortgage
No Default -63,050 49,000 770 Student Loan
Defaulted 20,565 35,000 730

No Default 50,021 unknown 664 Mortgage
Defaulted 100,350 129,000 705 Car Loan
No Default 800,000 300,000 800 Boat Loan
No Default 800,000 300,000 800 Boat Loan

After sharing a concern that the data should be thoroughly cleansed, Wang
makes the following statements:

Statement 1 “Let’s keep the ID column and remove the column for Name
from the dataset”
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Statement 2 “Let’s create a new feature, “Loan Amount as a Percent of
Income,” to use as an additional feature.”

1. The data shown for Ms. Beta contain what is best described as an:

A. invalidity error.

B. inaccuracy error.

(. incompleteness error.
Solution:

A is correct. This is an invalidity error because the data are outside of a
meaningful range. Income cannot be negative.

2. The data shown for Mr. Gamma contain what is best described as an:

A. invalidity error.

B. duplication error.

(. incompleteness error.
Solution:

C is correct. This is an incompleteness error as the loan type is missing.

3. The data shown for Ms. Delta contain what is best described as an:

A. invalidity error.
B. inaccuracy error.

C. duplication error.
Solution:

B is correct. This is an inaccuracy error because LendALot must know how
much they have lent to that particular borrower (who eventually repaid the
loan as indicated by the loan outcome of no default).

4. The data shown for Mr. Zeta contain what is best described as an:

A. invalidity error.

B. inaccuracy error.

C. duplication error.
Solution:

C is correct. Row 8 duplicates row 7: This is a duplication error.

5. The process mentioned in Wang’s first statement is best described as:
A. data selection.
B. data extraction.
(. data engineering

Solution:

A is correct. The process mentioned involves selecting the data to use.
The proposal makes sense; with “ID,” “Name” is not needed to identify an
observation.
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6. Wang’s second statement is best described as:

A. data selection.
B. data extraction.

(. data engineering.
Solution:

B is correct. The proposed feature is a ratio of two existing data. Data
extraction is the process of creating (i.e., extracting) new variables from
existing ones in the data.

UNSTRUCTURED (TEXT) DATA

[

describe objectives, steps, and examples of preparing and wrangling
data

Unstructured data are not organized into any systematic format that can be processed
by computers directly. They are available in formats meant for human usage rather
than computer processing. Unstructured data constitute approximately 80% of the
total data available today. They can be in the form of text, images, videos, and audio
files. Unlike in structured data, preparing and wrangling unstructured data are both
more challenging. For analysis and use to train the ML model, the unstructured data
must be transformed into structured data. In this section, text data will be used to
demonstrate unstructured data preparation and wrangling. The cleansing and prepro-
cessing of text data is called text processing. Text processing is essentially cleansing
and transforming the unstructured text data into a structured format. Text processing
can be divided into two tasks: cleansing and preprocessing. The following content is
related to text data in the English language.

Text Preparation (Cleansing)

Raw text data are a sequence of characters and contain other non-useful elements,
including html tags, punctuations, and white spaces (including tabs, line breaks,
and new lines). It is important to clean the text data before preprocessing. Exhibit 6
shows a sample text from the home page for the hypothetical company Robots Are Us
website. The text appears to be clean visually and is designed for human readability.

Exhibit 6: Sample Text from Robots Are Us Home Page

Robots Are Us

= Every home and
business should
have a robot.
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However, the source text that can be downloaded is not as clean. The raw text con-
tains html tags and formatting elements along with the actual text. Exhibit 7 shows
the raw text from the source.

Exhibit 7: Raw Text from the Source

<h1 class="text-left mb-3">Robots Are Us</h1>
<h2> Every home and business should have arobot  </h2>

The initial step in text processing is cleansing, which involves basic operations to
clean the text by removing unnecessary elements from the raw text. Text operations
often use regular expressions. A regular expression (regex) is a series that contains
characters in a particular order. Regex is used to search for patterns of interest in a
given text. For example, a regex “<.*?>” can be used to find all the html tags that are
present in the form of <...> in text.! GREP (global regular expression print) is a com-
monly available utility in programming languages for searching patterns using regex.
Once a pattern is found, it can be removed or replaced. Additionally, advanced html
parsers and packages are available in the popular programming languages, such as R
and Python, to deal with this task.
The following steps describe the basic operations in the text cleansing process.

1. Remove html tags: Most of the text data are acquired from web pages, and
the text inherits html markup tags with the actual content. The initial task
is to remove (or strip) the html tags that are not part of the actual text using
programming functions or using regular expressions. In Exhibit 7, </h2> is
an html tag that can be identified by a regex and be removed. Note that it is
not uncommon to keep some generic html tags to maintain certain format-
ting meaning in the text.

2. Remove Punctuations: Most punctuations are not necessary for text analysis
and should be removed. However, some punctuations, such as percentage
signs, currency symbols, and question marks, may be useful for ML model
training. These punctuations should be substituted with such annotations as
/percentSign/, /dollarSign/, and /questionMark/ to preserve their grammat-
ical meaning in the text. Such annotations preserve the semantic meaning
of important characters in the text for further text processing and analysis
stages. It is important to note that periods (dots) in the text need to be pro-
cessed carefully. There are different circumstances for periods to be present
in text—characteristically used for abbreviations, sentence boundaries, and
decimal points. The periods and the context in which they are used need
to be identified and must be appropriately replaced or removed. In general,
periods after abbreviations can be removed, but the periods separating sen-
tences should be replaced by the annotation /endSentence/. Some punctua-
tions, such as hyphens and underscores, can be kept in the text to keep the
consecutive words intact as a single term (e.g., e-mail). Regex are often used
to remove or replace punctuations.

3. Remove Numbers: When numbers (or digits) are present in the text, they
should be removed or substituted with an annotation /number/. This helps
inform the computer that a number is present, but the actual value of
the number itself is not helpful for categorizing/analyzing the text. Such

1 A regex of the form “<.*?>” will identify all html tags with anything (*) of any length (?) between the
brackets (< >).
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operations are critical for ML model training. Otherwise, the computers will
treat each number as a separate word, which may complicate the analyses

or add noise. Regex are often used to remove or replace numbers. However,
the number and any decimals must be retained where the outputs of interest
are the actual values of the number. One such text application is informa-
tion extraction (IE), where the goal is to extract relevant information from

a given text. An IE task could be extracting monetary values from financial
reports, where the actual number values are critical.

4. Remove white spaces: It is possible to have extra white spaces, tab spaces,
and leading and ending spaces in the text. The extra white spaces may be
introduced after executing the previously mentioned operations. These
should be identified and removed to keep the text intact and clean. Certain
functions in programming languages can be used to remove unnecessary
white spaces from the text. For example, the text mining package in R offers
a stripwhitespace function.

Exhibit 8 uses a sample financial text to show the transformations occurring after
applying each operation of the text cleansing process. The four steps are applied on
a mock financial text after scraping from a source. As noted previously, scraping
(or web scraping) is a technique to extract raw content from a source, typically web
pages. It is important to note that the sequence and choice of cleansing operations
does matter. For instance, after removing punctuation, the “1.2 million” becomes “12
million” This is acceptable here since a subsequent operation replaces all numbers
with a “/number/” tag. However, if numbers were not replaced with such tags, the
punctuation removal operation could affect the data.
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Exhibit 8: Text Cleansing Process Example

Original text from a financial statement as shown on a webpage

CapEx on the normal operations remained stable on historicallylow levels, $800,000 compared to
$1.2 million last year.

Quarter 3, so far, is 5% sales growth quarter-to-date, and year-to-date, we have a 4% local
currency sales development.

Raw text after scraping from the source

<p><font size = “4”> CapEx on the normal operations remained stable on historically low levels,
$800,000 compared to $1.2 million last year. <b/><b/> Quarter 3, so far, is 5% sales growth
quarter-to-date, and year-to-date, we have a 4% local currency sales development.</font></p>

Text after removing html tags

CapEx on the normal operations remained stable on historically low levels, $800,000 compared to
$1.2 million last year.

Quarter 3, so far, is 5% sales growth quarter-to-date, and year-to-date, we have a 4% local
currency sales development.

Text after removing and replacing punctuations

CapEx on the normal operations remained stable on historically low levels /dollarSign/800000
compared to /dollarSign/12 million last year /endSentence/ Quarter 3 so far is 5 /percentSign/
sales growth quarter-to-date and year-to-date we have a 4 /percentSign/ local currency sales
development /endSentence/

Text after replacing numbers

CapEx on the normal operations remained stable on historically low levels /dollarSign//number
/ compared to/dollarSign/ /number/ million last year /endSentence/ Quarter/number/ so far
is /number/ /percentSign/sales growth quarter-to-date and year-to-date we have a /number/ /
percentSign/ local currency sales development /endSentence/

Text after removing extra white spaces

CapEx on the normal operations remained stable on historically low levels/dollarSign//number
/compared to/dollarSign//number/million last year/endSentence/ Quarter /number/so far is
/number/ /percentSign/sales growth quarter-to-date and year-to-date we have a/number//
percentSign/local currency sales development/endSentence/

Text Wrangling (Preprocessing)

To further understand text processing, tokens and tokenization need to be defined. A
token is equivalent to a word, and tokenization is the process of splitting a given text
into separate tokens. In other words, a text is considered to be a collection of tokens.
Tokenization can be performed at word or character level, but it is most commonly
performed at word level. Exhibit 9 shows a sample dataset of four cleansed texts and
their word tokens.

Exhibit 9: Tokenization of Four Texts

Cleaned Texts Tokens
Text 1 ‘ The man went to the market today ‘ The  man went to the market today
Text 2 ‘ Market values are increasing ‘ Market values are increasing
Text 3 ‘ Increased marketing is needed ‘ Increased marketing is needed

Text 4 ‘ There is no market for the product ‘ There is no market for the product
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Similar to structured data, text data also require normalization. The normalization
process in text processing involves the following:

1. Lowercasing the alphabet removes distinctions among the same words due
to upper and lower cases. This action helps the computers to process the
same words appropriately (e.g., “The” and “the”).

” s n

2. Stop words are such commonly used words as “the;” “is,” and “a” Stop words
do not carry a semantic meaning for the purpose of text analyses and ML
training. However, depending on the end-use of text processing, for advance
text applications it may be critical to keep the stop words in the text in order
to understand the context of adjacent words. For ML training purposes, stop
words typically are removed to reduce the number of tokens involved in
the training set. A predefined list of stop words is available in programming
languages to help with this task. In some cases, additional stop words can be
added to the list based on the content. For example, the word “exhibit” may
occur often in financial filings, which in general is not a stop word but in the
context of the filings can be treated as a stop word.

3. Stemming is the process of converting inflected forms of a word into its
base word (known as stem). Stemming is a rule-based approach, and the
results need not necessarily be linguistically sensible. Stems may not be
the same as the morphological root of the word. Porter’s algorithm is the
most popular method for stemming. For example, the stem of the words
“analyzed” and “analyzing” is “analyz.” Similarly, the British English variant
“analysing” would become “analys” Stemming is available in R and Python.
The text mining package in R provides a stemDocument function that uses
this algorithm.

4. Lemmatization is the process of converting inflected forms of a word into
its morphological root (known as lemma). Lemmatization is an algorithmic
approach and depends on the knowledge of the word and language struc-
ture. For example, the lemma of the words “analyzed” and “analyzing” is
“analyze” Lemmatization is computationally more expensive and advanced.

Stemming or lemmatization will reduce the repetition of words occurring in var-
ious forms and maintain the semantic structure of the text data. Stemming is more
common than lemmatization in the English language since it is simpler to perform.
In text data, data sparseness refers to words that appear very infrequently, resulting
in data consisting of many unique, low frequency tokens. Both techniques decrease
data sparseness by aggregating many sparsely occurring words in relatively less sparse
stems or lemmas, thereby aiding in training less complex ML models.

After the cleansed text is normalized, a bag-of-words is created. Bag-of-words
(BOW) representation is a basic procedure used to analyze text. It is essentially a col-
lection of a distinct set of tokens from all the texts in a sample dataset. BOW is simply
a set of words and does not capture the position or sequence of words present in the
text. However, it is memory efficient and easy to handle for text analyses.

Exhibit 10 shows the BOW and transformations occurring in each step of normal-
ization on the cleansed texts from Exhibit 9. Note that the number of words decreases
as the normalizing steps are applied, making the resulting BOW smaller and simpler.
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Exhibit 10: Bag-of-Words Representation of Four Texts Before and After

Normalization Process

BOW before normalizing
“The” “man” “vent” o “the” “market”
“today” “Market” “values” “are” “increasing”  “Increased”
“marketing” “is” “needed” “There” “no” “for”
“product”

BOW after removing uppercase letters
“the” “man” “went” “to” “market” “today”
“values” “are” “increasing” “increased” “marketing”  “is”
“needed” “there” “no” “for” “product”
BOW after removing stop words
“man” “went” “market” “today” “values” “increasing”
“increased” “marketing” “needed” “product”
BOW after stemming
“man” “went” “market” “today” “valu” “increas” “need” “product”

The last step of text preprocessing is using the final BOW after normalizing to build
a document term matrix (DTM). DTM is a matrix that is similar to a data table for
structured data and is widely used for text data. Each row of the matrix belongs to a
document (or text file), and each column represents a token (or term). The number of
rows of DTM is equal to the number of documents (or text files) in a sample dataset.
The number of columns is equal to the number of tokens from the BOW that is built
using all the documents in a sample dataset. The cells can contain the counts of the
number of times a token is present in each document. The matrix cells can be filled
with other values that will be explained in the financial forecasting project section of
this reading; a large dataset is helpful in understanding the concepts. At this point,
the unstructured text data are converted to structured data that can be processed
further and used to train the ML model. Exhibit 11 shows a DTM constructed from
the resultant BOW of the four texts from Exhibit 10.

Exhibit 11: DTM of Four Texts and Using Normalized BOW Filled with Counts

of Occurrence

man  went market today valu increas  need product
Text 1 1 1 1 1 0 0 0 0
Text 2 0 0 1 0 1 1 0 0
Text 3 0 0 1 0 0 1 1 0
Text 4 0 0 1 0 0 0 0 1

As seen in Exhibit 10, BOW does not represent the word sequences or positions,
which limits its use for some advanced ML training applications. In the example, the
word “no” is treated as a single token and has been removed during the normalization
because it is a stop word. Consequently, this fails to signify the negative meaning (“no
market”) of the text (i.e., Text 4). To overcome such problems, a technique called
n-grams can be employed. N-grams is a representation of word sequences. The
length of a sequence can vary from 1 to n. When one word is used, it is a unigram;
a two-word sequence is a bigram; and a 3-word sequence is a trigram; and so on.
Exhibit 10, for example, shows a unigram (n = 1) BOW. The advantage of n-grams
is that they can be used in the same way as unigrams to build a BOW. In practice,
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different n-grams can be combined to form a BOW and eventually be used to build
a DTM. Exhibit 12 shows unigrams, bigrams, and trigrams. Exhibit 12 also shows a
combined unigram-to-trigram BOW for the particular text. Stemming can be applied
on the cleansed text before building n-grams and BOW (not shown in Exhibit 12).

Exhibit 12: N-Grams and N-Grams BOW

Clean text

| The man went to the market today

Unigrams
|“The” “man” “went” “to” “the” “market” “today”
Bigrams
| “The_man” “man_went” “went_to” “to_the” “the_market” “market_today” |
Trigrams
| “The_man_went” “man_went_to” “went_to_the” “to_the_market” “the_market_today” |
BOW before normalizing

“The” “man” P “to “the” “market” “today”
“The_man” “man_went” “went_to” “to_the” “the_market” “market_today” “The_man_went”
“man_went_to”  “went_to_the” “to_the_market” “the_market_today”

BOW after removing upper case letters

”

“the” “man “went” “to” “market” “today” “the_man”
“man_went” “went_to” “to_the” “the_market” “market_today” “the_man_went” “man_went_to”
“went_to_the”  “to_the_market” “the_market_today”

BOW after removing stop words

“man” “went” “market” “today” “the_man” “man_went” “went_to”
“to_the” “the_market” “market_today” “the_man_went” “man_went_to” “went_to_the” “to_the market”
“the_market_today”

The n-grams implementation will vary the impact of normalization on the BOW.
Even after removing isolated stop words, stop words tend to persist when they are
attached to their adjacent words. For instance, “to_the” (Exhibit 12) is a single bigram
token consisting of stop words and will not be removed by the predetermined list of
stop words.

EXAMPLE 3

Unstructured Data Preparation and Wrangling

1. The output produced by preparing and wrangling textual data is best de-
scribed as a:

A. data table.
B. confusion matrix.

C. document term matrix.
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Solution:

C is correct. The objective of data preparation and wrangling of textual data
is to transform the unstructured data into structured data. The output of
these processes is a document term matrix that can be read by computers.
The document term matrix is similar to a data table for structured data.

2. In text cleansing, situations in which one may need to add an annotation
include the removal of:
A. html tags.
B. white spaces.
(. punctuations.
Solution:

C is correct. Some punctuations, such as percentage signs, currency sym-
bols, and question marks, may be useful for ML model training, so when
such punctuations are removed annotations should be added.

3. A column of a document term matrix is best described as representing:
A. a token.
B. aregularization term.
(. an instance.

Solution:

A is correct. Each column of a document term matrix represents a token
from the bag-of-words that is built using all the documents in a sample
dataset.

4. A cell of a document term matrix is best described as containing:

A. atoken.

B. a count of tokens.

C. a count of instances.
Solution:

B is correct. A cell in a document term matrix contains a count of the num-
ber of tokens of the kind indicated in the column heading.

5. Points to cover in normalizing textual data include:

A. removing numbers.

B. removing white spaces.

(. lowercasing the alphabet.
Solution:

Cis correct. The other choices are related to text cleansing.

6. When some words appear very infrequently in a textual dataset, techniques
that may address the risk of training highly complex models include:
A. stemming.
B. scaling.

C. data cleansing.
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Solution:

A is correct. Stemming, the process of converting inflected word forms
into a base word (or stem), is one technique that can address the problem
described.

7. Which of the following statements concerning tokenization is most
accurate?
A. Tokenization is part of the text cleansing process.
B. Tokenization is most commonly performed at the character level.

(. Tokenization is the process of splitting a given text into separate
tokens.

Solution:

C is correct, by definition. The other choices are not true.

DATA EXPLORATION OBJECTIVES AND METHODS

] describe objectives, methods, and examples of data exploration

Data exploration is a crucial part of big data projects. The prepared data are explored
to investigate and comprehend data distributions and relationships. The knowledge
that is gained about the data in this stage is used throughout the project. The outcome
and quality of exploration strongly affects ML model training results. Domain knowl-
edge plays a vital role in exploratory analysis as this stage should involve cooperation
between analysts, model designers, and experts in the particular data domain. Data
exploration without domain knowledge can result in ascertaining spurious relationships
among the variables in the data that can mislead the analyses. The data exploration
stage follows the data preparation stage and leads to the model training stage.

Data exploration involves three important tasks: exploratory data analysis, feature
selection, and feature engineering. These three tasks are outlined in Exhibit 13 and are
defined and further explained under the structured and unstructured data subsections.

Exhibit 13: Data Exploration Stage

Data Exploration

Data Data
Collection/| , [Preparation| | [Explorato Model
Curation || and P Data "1, Feature |»| Feature Tttt Ly Results

Wrangling Analysis Selection | | Engineering

Exploratory data analysis (EDA) is the preliminary step in data exploration. Exploratory
graphs, charts, and other visualizations, such as heat maps and word clouds, are
designed to summarize and observe data. In practice, many exploratory graphs are
made for investigation and can be made swiftly using statistical programming and
generic spreadsheet software tools. Data can also be summarized and examined using
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quantitative methods, such as descriptive statistics and central tendency measures. An
important objective of EDA is to serve as a communication medium among project
stakeholders, including business users, domain experts, and analysts. Relatively quick
and easy exploratory visualizations help stakeholders connect and ensure the prepared
data are sensible. Other objectives of EDA include:

= understanding data properties,

= finding patterns and relationships in data,

= inspecting basic questions and hypotheses,

= documenting data distributions and other characteristics, and

= planning modeling strategies for the next steps.

Feature selection is a process whereby only pertinent features from the dataset
are selected for ML model training. Selecting fewer features decreases ML model
complexity and training time. Feature engineering is a process of creating new
features by changing or transforming existing features. Model performance heavily
depends on feature selection and engineering.

Structured Data

Exploratory Data Analysis

For structured data, each data table row contains an observation and each column
contains a feature. EDA can be performed on a single feature (one-dimension) or on
multiple features (multi-dimension). For high-dimension data with many features,
EDA can be facilitated by using a dimension reduction technique, such as principal
components analysis (PCA). Based on the number of dimensions, the exploratory
techniques will vary.

For one-dimensional data, summary statistics, such as mean, median, quartiles,
ranges, standard deviations, skewness, and kurtosis, of a feature can be computed.
One-dimension visualization summarizes each feature in the dataset. The basic
one-dimension exploratory visualizations are as follows:

= Histograms

= Bar charts

= Box plots

= Density plots

Histograms represent equal bins of data and their respective frequencies. They can
be used to understand the high-level distribution of the data. Bar charts summarize
the frequencies of categorical variables. Box plots show the distribution of continuous
data by highlighting the median, quartiles, and outliers of a feature that is normally
distributed. Density plots are another effective way to understand the distribution
of continuous data. Density plots are smoothed histograms and are commonly laid
on top of histograms, as shown in Exhibit 14. This histogram shows a hypothetical
annual salary distribution (in £) of entry-level analyst positions at UK banks. The data
represent a normal distribution with an approximate mean of £68,500.
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Exhibit 14: Histogram with Superimposed Density Plot

Frequency

64 66 68 70 72
Annual Salary (£, thousands)

For data with two or more dimensions, summary statistics of relationships, such as a
correlation matrix, can be calculated. Two- or more-dimensional visualization explores
interactions between different features in the dataset. Common methods include scat-
terplots and line graphs. In multi-dimensional visualization, one-dimensional plots
are overlaid to summarize each feature, thus enabling comparison between features.
Additionally, attributes (e.g., color, shape, and size) and legends can be used creatively
to pack more information about the data into fewer graphs.

For multivariate data, commonly utilized exploratory visualization designs include
stacked bar and line charts, multiple box plots, and scatterplots showing multivariate
data that use different colors or shapes for each feature. Multiple box plots can be
arranged in a single chart, where each individual box plot represents a feature. Such
a multi-box plot chart assesses the relationship between each feature (x-axis) in the
dataset and the target variable of interest (y-axis). The multi-box plot chart in Exhibit
15 represents units of shares purchased versus stock price for a hypothetical stock.
The x-axis shows the stock price in increments of $0.125, and the y-axis shows units
of shares purchased. The individual box plots indicate the distribution of shares pur-
chased at the different stock prices. When the stock price is $0.25, the median number
of shares purchased is the highest; when the stock price is $0.625, the median number
of shares purchased is the lowest. However, visually it appears that the number of
shares purchased at different stock prices is not significantly different.
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Exhibit 15: Multiple Box Plots in One Chart

Units of Shares Purchased
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Two-dimensional charts can summarize and approximately measure relationships
between two or more features. An example scatterplot in Exhibit 16 shows the inter-
action of two hypothetical features: age (x-axis) and annual salary (y-axis). The feature
on the y-axis tends to increase as the feature on the x-axis increases. This pattern
appears true visually; however, it may not be a statistically significant relationship.
A scatterplot provides a starting point where relationships can be examined visually.
These potential relationships should be tested further using statistical tests. Common
parametric statistical tests include ANOVA, ¢-test, and Pearson correlation. Common
non-parametric statistical tests include chi-square and the Spearman rank-order
correlation.
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Exhibit 16: Scatterplot Showing a Linear Relationship Between Two

Features
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In addition to visualization, descriptive statistics are a good means to summarize data.
Central tendency measures as well as minimum and maximum values for continuous
data are useful. Counts and frequencies for categorical data are commonly employed
to gain insight regarding the distribution of possible values.

EDA is not only useful for revealing possible relationships among features or general
trends in the data; it is also beneficial during the feature selection and engineering
stages. These possible relationships and trends in the data may be used to suggest new
features that, when incorporated into a model, may improve model training.

Feature Selection

Structured data consist of features, represented by different columns of data in a table
or matrix. After using EDA to discover relevant patterns in the data, it is essential to
identify and remove unneeded, irrelevant, and redundant features. Basic diagnostic
testing should also be performed on features to identify redundancy, heteroscedas-
ticity, and multi-collinearity. The objective of the feature selection process is to assist
in identifying significant features that when used in a model retain the important
patterns and complexities of the larger dataset while requiring fewer data overall.
This last point is important since computing power is not free (i.e., explicit costs and
processing time).

Typically, structured data even after the data preparation step can contain features
that do not contribute to the accuracy of an ML model or that negatively affect the
quality of ML training. The most desirable outcome is a parsimonious model with
fewer features that provides the maximum predictive power out-of-sample.

Feature selection must not be confused with the data preprocessing steps during
data preparation. Good feature selection requires an understanding of the data and
statistics, and comprehensive EDA must be performed to assist with this step. Data
preprocessing needs clarification only from data administrators and basic intuition
(e.g., salary vs. income) during data preparation.
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Feature selection on structured data is a methodical and iterative process. Statistical
measures can be used to assign a score gauging the importance of each feature. The
features can then be ranked using this score and either retained or eliminated from
the dataset. The statistical methods utilized for this task are usually univariate and
consider each feature independently or with regard to the target variable. Methods
include chi-square test, correlation coefficients, and information-gain measures (i.e.,
R-squared values from regression analysis). All of these statistical methods can be
combined in a manner that uses each method individually on each feature, automatically
performing backward and forward passes over features to improve feature selection.
Prebuilt feature selection functions are available in popular programming languages
used to build and train ML models.

Dimensionality reduction assists in identifying the features in the data that account
for the greatest variance between observations and allows for the processing of a
reduced volume of data. Dimensionality reduction may be implemented to reduce
a large number of features, which helps reduce the memory needed and speed up
learning algorithms. Feature selection is different from dimensionality reduction, but
both methods seek to reduce the number of features in the dataset. The dimension-
ality reduction method creates new combinations of features that are uncorrelated,
whereas feature selection includes and excludes features present in the data without
altering them.

Feature Engineering

After the appropriate features are selected, feature engineering helps further optimize
and improve the features. The success of ML model training depends on how well the
data are presented to the model. The feature engineering process attempts to pro-
duce good features that describe the structures inherent in the dataset. This process
depends on the context of the project, domain of the data, and nature of the problem.
Structured data are likely to contain quantities, which can be engineered to better
present relevant patterns in the dataset. This action involves engineering an existing
feature into a new feature or decomposing it into multiple features.

For continuous data, a new feature may be created—for example, by taking the
logarithm of the product of two or more features. As another example, when con-
sidering a salary or income feature, it may be important to recognize that different
salary brackets impose a different taxation rate. Domain knowledge can be used to
decompose an income feature into different tax brackets, resulting in a new feature:
“income_above_100k,” with possible values 0 and 1. The value 1 under the new feature
captures the fact that a subject has an annual salary of more than $100,000. By group-
ing subjects into income categories, assumptions about income tax can be made and
utilized in a model that uses the income tax implications of higher and lower salaries
to make financial predictions.

For categorical data, for example, a new feature can be a combination (e.g., sum
or product) of two features or a decomposition of one feature into many. If a single
categorical feature represents education level with five possible values—high school,
associates, bachelor’s, master’s, and doctorate—then these values can be decomposed
into five new features, one for each possible value (e.g., is_highSchool, is_doctorate)
filled with Os (for false) and 1s (for true). The process in which categorical variables are
converted into binary form (0 or 1) for machine reading is called one hot encoding.
It is one of the most common methods for handling categorical features in text data.
When date-time is present in the data, such features as “second of the hour,” “hour
of the day,” and “day of the date” can be engineered to capture critical information
about temporal data attributes—which are important, for example, in modeling
trading algorithms.
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Feature engineering techniques systemically alter, decompose, or combine existing
features to produce more meaningful features. More meaningful features allow an
ML model to train more swiftly and easily. Different feature engineering strategies
can lead to the generation of dramatically different results from the same ML model.
The impact of feature selection and engineering on ML training is discussed further
in the next section.

UNSTRUCTURED DATA: TEXT EXPLORATION

] describe objectives, methods, and examples of data exploration

] describe methods for extracting, selecting and engineering features
from textual data

Exploratory Data Analysis

Just like with structured data, it is important to gain insight into existing patterns in
the unstructured data for further analysis. In this section, text data will be discussed.
Text analytics has various applications. The most common applications are text clas-
sification, topic modeling, fraud detection, and sentiment analysis. Text classification
uses supervised ML approaches to classify texts into different classes. Topic modeling
uses unsupervised ML approaches to group the texts in the dataset into topic clusters.
Sentiment analysis predicts sentiment (negative, neutral, or positive) of the texts in a
dataset using both supervised and unsupervised approaches.

Various statistics are used to explore, summarize, and analyze text data. Text data
include a collection of texts (also known as a corpus) that are sequences of tokens.
It is useful to perform EDA of text data by computing on the tokens such basic text
statistics as term frequency (TF), the ratio of the number of times a given token
occurs in all the texts in the dataset to the total number of tokens in the dataset (e.g.,
word associations, average word and sentence length, and word and syllable counts).

Text statistics reveal patterns in the co-occurrence of words. There are many appli-
cations of text analytics, and necessary text statistics vary according to the context of
the application. Topic modeling is a text data application in which the words that are
most informative are identified by calculating the TF of each word. For example, the
word “soccer” can be informative for the topic “sports” The words with high TF values
are eliminated as they are likely to be stop words or other common vocabulary words,
making the resulting BOW compact and more likely to be relevant to topics within
the texts. In sentiment analysis and text classification applications, the chi-square
measure of word association can be useful for understanding the significant word
appearances in negative and positive sentences in the text or in different documents.
The chi-square measure is further explained under feature selection. Such EDA plays
a vital role in executing the feature selection step.

Text statistics can be visually comprehended by using the same methods as
explained in the structured data section. For example, bar charts can be used to show
word counts or frequency. Words clouds are common visualizations when working
with text data as they can be made to visualize the most informative words and their
TF values. The most commonly occurring words in the dataset can be shown by
varying font size, and color is used to add more dimensions, such as frequency and
length of words. Exhibit 17 shows a word cloud constructed from a sample dataset
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of generic financial news wires after text processing. Word cloud building functions
and packages are available in several popular programming languages. A detailed
demonstration of text data EDA will be presented in Section 7, where we work with
actual text data in a financial forecasting project.

Exhibit 17: Word Cloud of Generic Financial Newsfeed Data Sample

financial

energy

=

e il n =
dollarsign

announced ret
¥ quarter § senor

agreament

Feature Selection

For text data, feature selection involves selecting a subset of the terms or tokens
occurring in the dataset. The tokens serve as features for ML model training. Feature
selection in text data effectively decreases the size of the vocabulary or BOW. This
helps the ML model be more efficient and less complex. Another benefit is to eliminate
noisy features from the dataset. Noisy features are tokens that do not contribute to
ML model training and actually might detract from the ML model accuracy.

Noisy features are both the most frequent and most sparse (or rare) tokens in
the dataset. On one end, noisy features can be stop words that are typically present
frequently in all the texts across the dataset. On the other end, noisy features can
be sparse terms that are present in only a few text cases. Text classification involves
dividing text documents into assigned classes (a class is a category; examples include
“relevant” and “irrelevant” text documents or “bearish” and “bullish” sentences). The
frequent tokens strain the ML model to choose a decision boundary among the texts
as the terms are present across all the texts, an example of model underfitting. The
rare tokens mislead the ML model into classifying texts containing the rare terms
into a specific class, an example of model overfitting. Identifying and removing noise
features is very critical for text classification applications. The general feature selection
methods in text data are as follows:

1. Frequency measures can be used for vocabulary pruning to remove noise
features by filtering the tokens with very high and low TF values across all
the texts. Document frequency (DF) is another frequency measure that
helps to discard the noise features that carry no specific information about
the text class and are present across all texts. The DF of a token is defined
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as the number of documents (texts) that contain the respective token
divided by the total number of documents. It is the simplest feature selec-
tion method and often performs well when many thousands of tokens are
present.

Chi-square test can be useful for feature selection in text data. The chi-
square test is applied to test the independence of two events: occurrence

of the token and occurrence of the class. The test ranks the tokens by their
usefulness to each class in text classification problems. Tokens with the
highest chi-square test statistic values occur more frequently in texts associ-
ated with a particular class and therefore can be selected for use as features
for ML model training due to higher discriminatory potential.

Mutual information (MI) measures how much information is contributed
by a token to a class of texts. The mutual information value will be equal

to O if the token’s distribution in all text classes is the same. The MI value
approaches 1 as the token in any one class tends to occur more often in only
that particular class of text. Exhibit 18 shows a simple depiction of some
tokens with high MI scores for their corresponding text classes. Note how
the tokens (or features) with the highest MI values narrowly relate to their
corresponding text class name.

Exhibit 18: Tokens with Mutual Information (Ml) Values for

Two Given Text Classes

Text Classes: Sports or Politics

Sports Politics
Token Ml Value Token Ml Value
soccer 0.0781 election 0.0612
cup 0.0525 president 0.0511
match 0.0456 polls 0.0341
play 0.0387 vote 0.0288
game 0.0299 party 0.0202
team 0.0265 candidate 0.0201
win 0.0189 campaign 0.0201

Feature Engineering

As with structured data, feature engineering can greatly improve ML model training
and remains a combination of art and science. The following are some techniques for
feature engineering, which may overlap with text processing techniques.

1.

Numbers: In text processing, numbers are converted into a token, such as
“/number/” However, numbers can be of different lengths of digits repre-
senting different kinds of numbers, so it may be useful to convert different
numbers into different tokens. For example, numbers with four digits may
indicate years, and numbers with many digits could be an identification
number. Four-digit numbers can be replaced with “/number4/;” 10-digit
numbers with “/number10/,” and so forth.
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2. N-grams: Multi-word patterns that are particularly discriminative can be
identified and their connection kept intact. For example, “market” is a
common word that can be indicative of many subjects or classes; the words
“stock market” are used in a particular context and may be helpful to distin-
guish general texts from finance-related texts. Here, a bigram would be use-
ful as it treats the two adjacent words as a single token (e.g., stock_market).

3. Name entity recognition (NER): NER is an extensive procedure available as
a library or package in many programming languages. The name entity
recognition algorithm analyzes the individual tokens and their surrounding
semantics while referring to its dictionary to tag an object class to the token.
Exhibit 19 shows the NER tags of the text “CFA Iustitute was formed in 1947
and is headquartered in Virginia” Additional object classes are, for example,
MONEY, TIME, and PERCENT, which are not present in the example text.
The NER tags, when applicable, can be used as features for ML model train-
ing for better model performance. NER tags can also help identify critical
tokens on which such operations as lowercasing and stemming then can be
avoided (e.g., Institute here refers to an organization rather than a verb).
Such techniques make the features more discriminative.

Exhibit 19: Name Entity Recognition and Parts of Speech (POS) on Example

Text
Token NER Tag POSTag POS Description
CFA ORGANIZATION NNP Proper noun
Institute ORGANIZATION NNP Proper noun
was VBD Verb, past tense
formed VBN Verb, past participle
in IN Preposition
1947 DATE CD Cardinal number
and CcC Coordinating conjunction
is VBZ Verb, 3rd person singular present
headquartered VBN Verb, past participle
in IN Preposition
Virginia LOCATION NNP Proper noun

4. Parts of speech (POS): Similar to NER, parts of speech uses language
structure and dictionaries to tag every token in the text with a correspond-
ing part of speech. Some common POS tags are noun, verb, adjective, and
proper noun. Exhibit 19 shows the POS tags and descriptions of tags for
the example text. POS tags can be used as features for ML model training
and to identify the number of tokens that belong to each POS tag. If a given
text contains many proper nouns, it means that it may be related to people
and organizations and may be a business topic. POS tags can be useful for
separating verbs and nouns for text analytics. For example, the word “mar-
ket” can be a verb when used as “to market ...” or noun when used as “in the
market”” Differentiating such tokens can help further clarify the meaning of
the text. The use of “market” as a verb could indicate that the text relates
to the topic of marketing and might discuss marketing a product or service.
The use of “market” as a noun could suggest that the text relates to a phys-
ical or stock market and might discuss stock trading. Also for POS tagging,
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such compound nouns as “CFA Institute” can be treated as a single token.
POS tagging can be performed using libraries or packages in programming
languages.

In addition, many more creative techniques convey text information in a struc-

tured way to the ML training process. The goal of feature engineering is to maintain
the semantic essence of the text while simplifying and converting it into structured
data for ML.

EXAMPLE 4

Data Exploration

Paul Wang’s analytics team at LendALot Corporation has completed its initial
data preparation and wrangling related to their creditworthiness classification
ML model building efforts. As a next step, Wang has asked one of the team
members, Eric Kim, to examine the available structured data sources to see what
types of exploratory data analysis might make sense. Kim has been tasked with
reporting to the team on high-level patterns and trends in the data and which
variables seem interesting. Greater situational awareness about the data can
inform the team’s decisions regarding model training and whether (and how) to
incorporate textual big data in conjunction with the structured data inputs. Use
the following sample of columns and rows Kim pulled for manual examination
to answer the next questions.

1 ID

Loan
Outcome

Income
(USD)

Loan

Amount  Credit Free Responses to “Explain Credit Score”

(USD) Score LoanType (excerpts from full text)

No Default

No Default

Defaulted

No Default

Defaulted

No Default

34,000

63,050

20,565

50,021

100,350

800,000

10,000 685 Mortgage Iam embarrassed that my score is below 700, but it
was due to mitigating circumstances. I have developed
a plan to improve my score.

49,000 770 Student I have a good credit score and am constantly looking to
Loan further improve it...

35,000 730 Student I think I have great credit. I don’t think there are any
Loan issues. Having to provide a written response to these
questions is kind of annoying...

10,000 664 Mortgage Ihave a decent credit score. I regret not being as
responsible in the past but feel I have worked hard to
improve my score recently...

129,000 705 Car Loan  Honestly, my score probably would have been higher if
I had worked harder. But it is probably good enough...

300,000 800 Boat Loan I have worked hard to maintain a good credit rating.
I am very responsible. I maintain a payment schedule
and always stick to the payment plan...

1. Evaluate whether data visualization techniques, such as histograms, box
plots, and scatterplots, could be relevant to exploratory data analysis.

Solution:

The data provided include structured features (ID, Loan Outcome, Income,
Loan Amount, Credit Score) and unstructured data. Histograms, box plots,
and scatterplots are relevant visualization methods for structured data fea-
tures. Histograms and box plots could be used by Kim to see how income,
loan amount, and credit score are distributed. Moreover, these visualizations
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can be performed across all historical borrowing instances in the dataset
as well as within the sets of defaulted loans versus non-defaulted loans.
Scatterplots of income versus loan amount, income versus credit score,
and loan amount versus credit score, both overall and within defaulted and
non-defaulted datasets, can shed light on relationships between potentially
important continuous variables.

2. State one visualization technique that could be used in relation to the free
responses.

Solution:

For the text in the free response field, word clouds offer an appropriate start-
ing point for exploratory analysis. A word cloud can enable a quick glimpse
into the most frequently occurring words (i.e., term frequency). While some
obvious words (e.g., “credit” and “score”) may be valuable, other frequently
occurring words (e.g., “worked,” “hard,” “probably;” “embarrassed,” “regret,’
“good,” “decent,” and “great”) might have potential use for creditworthiness

prediction.

3. Describe how ranking methods can be used to select potentially interesting
features to report back to the team.

Solution:

Kim can use feature selection methods to rank all features. Since the target
variable of interest (loan outcome) is discrete in this case, such techniques
as chi-square and information gain would be well suited. These are univar-
iate techniques that can score feature variables individually. In addition to
the structured features, these univariate ranking methods can also be ap-
plied to word count-related features, such as term frequency and document
frequency, that are derived from the text using frequently occurring words.
Such frequently occurring words (e.g., “worked” and “hard”) can be identi-
fied from the word cloud.

4. State an example of a bigram from the free response texts that could be used
to discriminate among loan outcomes.
Solution:

The bigrams “credit_score” and “worked_hard” from the text in the free
response section may have potential to discriminate among loan outcomes.

EXAMPLE 5

Textual Feature Representations for ML Model Building

Having completed their exploration of the data, Paul Wang’s analytics team at
LendALot Corporation recognizes the importance of incorporating features
derived from text data in their ML models for classifying creditworthiness.
Wang has asked his colleagues, Lynn Lee and Eric Kim, to propose textual
feature representations that might be well suited to constructing features for
their task. As a starting point, Lee and Kim review the following sample of data:
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Loan
Loan Income Amount Credit Free Responses to “Explain Credit Score”

1 ID Outcome (USD) (USD) Score  Loan Type (excerpts from full text)

2 1 No Default 34,000 10,000 685 Mortgage Iam embarrassed that my score is below 700, but it
was due to mitigating circumstances. I have devel-
oped a plan to improve my score.

3 2 No Default 63,050 49,000 770 Student I have a good credit score and am constantly look-

Loan ing to further improve it...
4 3 Defaulted 20,565 35,000 730 Student I think I have great credit. I don’t think there are
Loan any issues. Having to provide a written response to
these questions is kind of annoying...

5 4 No Default 50,021 10,000 664 Mortgage I have a decent credit score. I regret not being as
responsible in the past but feel I have worked hard
to improve my score recently...

6 5 Defaulted 100,350 129,000 705 Car Loan  Honestly, my score probably would have been
higher if I had worked harder. But it is probably
good enough...

7 6 No Default 800,000 300,000 800 Boat Loan I have worked hard to maintain a good credit

rating. I am very responsible. I maintain a payment
schedule and always stick to the payment plan...

Based on the information given, address the following questions.

1. Describe three textual feature representations that Lee and Kim should

consider for their text data.

Solution:

Lee and Kim should consider bag-of-words (BOW), n-grams, and parts-
of-speech (POS) as key textual feature representations for their text data.
Conversely, name entity recognition (NER) might not be as applicable in
this context because the data on prospective borrowers does not include any
explicit references to people, locations, dates, or organizations.

2. Describe a rationale for adopting each of the three textual feature represen-

tations identified in Question 1.

Solution:

All three textual feature representations have the potential to add value.

Bag-of-words (BOW) is typically applicable in most contexts involving

text features derived from languages where token boundaries are explicitly
present (e.g., English) or can be inferred through processing (e.g., a differ-
ent language, such as Spanish). BOW is generally the best starting point for
most projects exploring text feature representations.

N-grams, representations of word or token sequences, are also applicable.
N-grams can offer invaluable contextual information that can complement
and enrich a BOW. In this specific credit-worthiness context, we examine
the BOW token “worked” It appears three times (rows 5—7), twice in no-de-
fault loan texts and once in a defaulted loan text. This finding suggests that
“worked” is being used to refer to the borrower’s work ethic and may be a
good predictor of credit worthiness. Digging deeper and looking at several
trigrams (i.e., three-token sequences) involving “worked,” we see that “have_
worked_hard” appears in the two no-default loan related texts (referring to
borrower accomplishments and plans) and “had_worked_harder” appears in
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the defaulted loan text (referring to what could have been done). This exam-
ple illustrates how n-grams can provide richer contextualization capabilities
for the creditworthiness prediction ML models.

Parts-of-speech tags can add value because they identify the composition of
the texts. For example, POS provides information on whether the prospec-
tive borrowers are including many action words (verbs) or descriptors (ad-
jectives) and whether this is being done differently in instances of no-default
versus instances of defaulted loans.

MODEL TRAINING, STRUCTURED VS. UNSTRUCTURED
DATA, AND METHOD SELECTION

] describe objectives, steps, and techniques in model training

Machine learning model training is a systematic, iterative, and recursive process. The
number of iterations required to reach optimum results depends on:

= the nature of the problem and input data and

= the level of model performance needed for practical application.

Machine learning models combine multiple principles and operations to provide
predictions. As seen in the last two sections, typical ML model building requires
data preparation and wrangling (cleansing and preprocessing) and data exploration
(exploratory data analysis as well as feature selection and engineering). In addition,
domain knowledge related to the nature of the data is required for good model build-
ing and training. For instance, knowledge of investment management and securities
trading is important when using financial data to train a model for predicting costs
of trading stocks. It is crucial for ML engineers and domain experts to work together
in building and training robust ML models.

The three tasks of ML model training are method selection, performance evaluation,
and tuning. Exhibit 20 outlines model training and its three component tasks. Method
selection is the art and science of deciding which ML method(s) to incorporate and
is guided by such considerations as the classification task, type of data, and size of
data. Performance evaluation entails using an array of complementary techniques and
measures to quantify and understand a model’s performance. Tuning is the process of
undertaking decisions and actions to improve model performance. These steps may be
repeated multiple times until the desired level of ML model performance is attained.
Although no standard rulebook for training an ML model exists, having a fundamental
understanding of domain-specific training data and ML algorithm principles plays a
vital role in good model training.

3M
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Exhibit 20: Model Training Stage

D. Data Model Training
ata
i Preparation
Cgliiz’ggfr:/ ™ and [P|Ex ]?c;t:ﬁon Method [ »{Performance | » Tni e ly{ Results
Wrangling . Selection Evaluation unin

Before training a model, it is important to state the problem, define objectives, identify
useful data points, and conceptualize the model. Conceptualization is like a blueprint
on a drawing board, a modifiable plan that is necessary to initiate the model training
process. Because modeling is an iterative process, many changes and refinements will
be made to the model plan as the process evolves.

Structured and Unstructured Data

The ML model training process for structured and unstructured data is typically the
same. Most ML models are intended to train on structured data, so unstructured data
in the data preparation stage are processed and organized into a structured format.
The systematic processing of unstructured text data so that they can be structured
in the form of a data matrix has been previously covered. Similarly, other forms of
unstructured data can also be prepared and formed into data matrixes or tables for
ML training.

The fundamental idea of ML model training is fitting a system of rules on a training
dataset to reveal a pattern in the data. In other words, fitting describes the degree to
which (or how well) an ML model can be generalized to new data. A good model fit
results in good model performance and can be validated using new data outside of
the training dataset (i.e., out-of-sample). Exhibit 21 shows model decision boundar-
ies in three possible model fitting scenarios for a classification task comprising two
different classes of data (i.e., circles and triangles). The model on the left is underfit;
it does not fit the training data well enough since it results in four misclassification
errors (three circles and one triangle). Although the center model that generates the
“S”-shaped line has the best accuracy (no errors) on the training data, it is overfit
(i-e., fits the training data too well) and thus unlikely to perform well on future test
cases. The model on the right (with one classification error, a circle) is a model with
good fit (i.e., it fits the training data well but not so well that it cannot be generalized
to out-of-sample data).

Exhibit 21: Model Fitting Scenarios: Underfit, Overfit, and Good Fit

Underfit X Overfit X Good Fit X
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Model fitting errors are caused by several factors—the main ones being dataset size
and number of features in the dataset.

Dataset Size: Small datasets can lead to underfitting of the model since small
datasets often are not sufficient to expose patterns in the data. Restricted by
a small dataset, an ML model may not recognize important patterns.

Number of Features: A dataset with a small number of features can lead to
underfitting, and a dataset with a large number of features can lead to over-
fitting. As with small dataset size, a small number of features may not carry
all the characteristics that explain relationships between the target variable
and the features. Conversely, a large number of features can complicate the
model and potentially distort patterns in the data due to low degrees of free-
dom, causing overfitting. Therefore, appropriate feature selection using the
types of techniques described earlier (e.g., chi-square, mutual information)
is a key factor in minimizing such model overfitting.

Feature engineering tends to prevent underfitting in the training of the model.
New features, when engineered properly, can elevate the underlying data points that
better explain the interactions of features. Thus, feature engineering can be critical to
overcome underfitting. Method-related factors that affect model fitting are explained
shortly under tuning.

Method Selection

ML model training is a craft (part art and part science); it has no strict guidelines.
Selecting and applying a method or an algorithm is the first step of the training pro-
cess. Method selection is governed by the following factors:

1. Supervised or unsupervised learning. The data for training and testing super-

vised ML models contain ground truth, the known outcome (i.e., target
variable) of each observation in these datasets. Unsupervised ML modeling
is relatively challenging because of the absence of ground truth (i.e., no
target variable). Supervised models bring a structure that may or may not
be supported by the data. Unsupervised models bring no structure beyond
that which arises from the given data. For supervised learning (with labeled
training data), typical methods of choice are regression, ensemble trees,
support vector machines (SVMs), and neural networks (NNs). Supervised
learning would be used, for example, for default prediction based on high-
yield corporate bond issuer data. For unsupervised learning, common
methods are dimensionality reduction, clustering, and anomaly detection.
Unsupervised learning, for example, would be used for clustering financial
institutions into different groups based on their financial attributes.

Type of data. For numerical data (e.g., predicting stock prices using histori-
cal stock market values), classification and regression tree (CART) methods
may be suitable. For text data (for example, predicting the topic of a finan-
cial news article by reading the headline of the article), such methods as
generalized linear models (GLMs) and SVMs are commonly used. For image
data (e.g., identifying objects in a satellite image, such as tanker ships mov-
ing in and out of port), NNs and deep learning methods tend to perform
better than others. For speech data (e.g., predicting financial sentiment from
quarterly earnings’ conference call recordings), deep learning methods can
offer promising results.

3. Size of data. A typical dataset has two basic characteristics: number of

instances (i.e., observations) and number of features. The combination
of these two characteristics can govern which method is most suitable
for model training. For instance, SVMs have been found to work well on
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“wider” datasets with 10,000 to 100,000 features and with fewer instances.
Conversely, NNs often work better on “longer” datasets, where the number
of instances is much larger than the number of features.

Once a method is selected, certain method-related decisions (e.g., on hyperpa-
rameters) need to be made. These decisions include the number of hidden layers in a
neural network and the number of trees in ensemble methods (discussed later in the
sub-section on tuning). In practice, datasets can be a combination of numerical and
text data. To deal with mixed data, the results from more than one method can be
combined. Sometimes, the predictions from one method can be used as predictors
(features) by another. For example, unstructured financial text data can be used with
logistic regression to classify stock sentiment as either positive or negative. Then, this
sentiment classification cam be used as a predictor in a larger model, say CART, that
also uses structured financial data as predictors for the purpose of stock selection.
Finally, more than one method can be used and the results combined with quantitative
or subjective weighing to exploit the advantages of each method.

Before model training begins, in the case of supervised learning the master data-
set is split into three subsets used for model training and testing purposes. The first
subset, a training set used to train the model, should constitute approximately 60% of
the master dataset. The second subset, a cross-validation set (or validation set) used
to tune and validate the model, should constitute approximately 20% of the master
dataset. The third subset is a test set for testing the model and uses the remaining data.
The data are split using a random sampling technique, such as the k-fold method. A
commonly recommended split ratio is 60:20:20, as detailed above; however, the split
percentages can vary. For unsupervised learning, no splitting is needed due to the
absence of labeled training data.

Class imbalance, where the number of instances for a particular class is signifi-
cantly larger than for other classes, may be a problem for data used in supervised
learning because the ML classification method’s objective is to train a high-accuracy
model. In a high-yield bond default prediction example, say for corporate issuers in
the BB+/Bal to B+/B1 credit quality range, issuers who defaulted (positive or “1” class)
would be very few compared to issuers who did not default (negative or “0” class).
Hence, on such training data, a naive model that simply assumes no corporate issuer
will default may achieve good accuracy—albeit with all default cases misclassified.
Balancing the training data can help alleviate such problems. In cases of unbalanced
data, the “0” class (majority class) can be randomly undersampled or the “1” class
(minority class) randomly oversampled. The random sampling can be done with or
without replacement because they both work the same in general probability theory.
Exhibit 22 depicts the idea of undersampling of the majority class and oversampling
of the minority class. In practice, the choice of whether to undersample or oversample
depends on the specific problem context. Advanced techniques can also reproduce
synthetic observations from the existing data, and the new observations can be added
to the dataset to balance the minority class.
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Exhibit 22: Undersampling and Oversampling

Undersampling Majority Class (“0” class)

\

“1” Class “0” Class “0” Class “1” Class
Original Dataset Final Dataset

Oversampling Minority Class ("1” class)

3
»

“0” Class “1” Class “1” Class “0” Class
Original Dataset Final Dataset

PERFORMANCE EVALUATION

] describe objectives, steps, and techniques in model training

It is important to measure the model training performance or goodness of fit for vali-
dation of the model. We shall cover several techniques to measure model performance
that are well suited specifically for binary classification models.

1. Error analysis. For classification problems, error analysis involves comput-
ing four basic evaluation metrics: true positive (TP), false positive (FP), true
negative (TN), and false negative (FN) metrics. FP is also called a Type I
error, and FN is also called a Type II error. Exhibit 23 shows a confusion
matrix, a grid that is used to summarize values of these four metrics.
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Exhibit 23: Confusion Matrix for Error Analysis

Actual Training Labels
Class “1” Class “0”

Class “1” True Positives (TP) False Positives (FP)
Type I Error

Predicted Results

Class “0” | False Negatives (FN) | True Negatives (TN)
Type II Error

Additional metrics, such as precision and recall, can be computed. Assume
in the following explanation that Class “0” is “not defective” and Class “1”
is “defective”” Precision is the ratio of correctly predicted positive classes to
all predicted positive classes. Precision is useful in situations where the cost
of FP, or Type I error, is high—or example, when an expensive product fails
quality inspection (predicted Class “1”) and is scrapped, but it is actually
perfectly good (actual Class “0”). Recall (also known as sewusitivity) is the
ratio of correctly predicted positive classes to all actual positive classes.
Recall is useful in situations where the cost of EN or Type II error is high—
for example, when an expensive product passes quality inspection (pre-
dicted Class “0”) and is sent to the valued customer, but it is actually quite
defective (actual Class “1”). The formulas for precision and recall are:

Precision (P) = TP/(TP + FP). 3)
Recall (R) = TP/(TP + FN). “)

Trading off precision and recall is subject to business decisions and model
application. Therefore, additional evaluation metrics that provide the overall
performance of the model are generally used. The two overall performance
metrics are accuracy and F1 score. Accuracy is the percentage of correctly
predicted classes out of total predictions. F1 score is the harmonic mean

of precision and recall. F1 score is more appropriate (than accuracy) when
unequal class distribution is in the dataset and it is necessary to measure
the equilibrium of precision and recall. High scores on both of these metrics
suggest good model performance. The formulas for accuracy and F1 score
are as follows:

Accuracy = (TP + TN)/(TP + FP + TN + FN). ®)
F1 score = (2 * P * R)/(P + R). ©)

Exhibit 24 illustrates computations of model evaluation metrics and perfor-
mance scores on a sample dataset.



© CFA Institute. For candidate use only. Not for distribution.

Performance Evaluation

Exhibit 24: Performance Metrics and Scores Computation

Sample Dataset with Classification Results

oo |o|O|r ||~ |O |-
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Confusion Matrix

Class “1” Class “0”
Class “1” 3 (TP) 1 (FP)
Class “0” 2 (FN) 4 (TN)

Performance Metrics

TP=3,FP=1,FN=2,TN =4
P=3/(3+1)=0.75
R=3/(3+2)=0.60

F1 Score = (2 x 0.75 x 0.60) / (0.75 + 0.60) = 0.67
Accuracy =(3+4) / (3+1+4+2)=0.70

2.

In Exhibit 24, if all “1” classes were predicted correctly (no FPs), the preci-
sion would have been equal to 1. If all “0” classes were predicted correctly
(no FNs), the recall would have been equal to 1. Thus, the resulting F1 score
would have been equal to 1. The precision of 0.75 and recall of 0.60 indicate
that the model is better at minimizing FPs than FNs. To find the equilibrium
between precision and recall, F1 score is calculated, which is equal to 0.67.
The F1 score is closer to the smaller value among both precision and recall,
giving the model a more appropriate score rather than just an arithmetic
mean. Accuracy, the percentage of correct predictions (for both classes)
made by the model, is equal to 0.70. Accuracy would be equal to 1 if all pre-
dictions were correct. As the number of “1” and “0” classes is equal in the
dataset (i.e., a balanced dataset), accuracy can be considered an appropriate
performance measure in this case. If the number of classes in a dataset is
unequal; however, then F1 score should be used as the overall performance
measure for the model.

Receiver Operating Characteristic (ROC). This technique for assessing model
performance involves the plot of a curve showing the trade-off between the
false positive rate (x-axis) and true positive rate (y-axis) for various cutoff
points—for example, for the predicted probability (p) in a logistic regres-
sion. The formulas for false positive rate and true positive rate (note that
true positive rate is the same as recall) are:

False positive rate (FPR) = FP/(TN + FP) and @)
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True positive rate (TPR) = TP/(TP + FN). ®)

If p from a logistic regression model for a given observation is greater than
the cutoff point (or threshold), then the observation is classified as class = 1.
Otherwise, the observation will be classified as class = 0.

The shape of the ROC curve provides insight into the model’s performance.
A more convex curve indicates better model performance. Area under the
curve (AUC) is the metric that measures the area under the ROC curve.
An AUC close to 1.0 indicates near perfect prediction, while an AUC of 0.5
signifies random guessing. Exhibit 25 displays three ROC curves and indi-
cates their respective AUC values. It is clear from observing the shapes of
the ROC curves and their AUCs that Model A—with the most convex ROC
curve with AUC of more than 0.9 (or 90%)—is the best performing among
the three models.

Exhibit 25: ROC Curves and AUCs

True Positive Rate (TPR)
1

False Positive Rate (FPR)

3. Root Mean Squared Error (RMSE). This measure is appropriate for continu-
ous data prediction and is mostly used for regression methods. It is a single
metric that captures all the prediction errors in the data (#). The root mean
squared error is computed by finding the square root of the mean of the
squared differences between the actual values and the model’s predicted val-
ues (error). A small RMSE indicates potentially better model performance.
The formula for RMSE is:

. 2
(Predicted; — Actual;)

RMSE = \/ :fl A . ©)
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TUNING

] describe objectives, steps, and techniques in model training

Once the model is evaluated, certain decisions and actions must be taken based
on the findings to improve the performance of the model. If the prediction error
on the training set is high, the model is underfitting. If the prediction error on the
cross-validation (CV) set is significantly higher than on the training set, the model
is overfitting. Model fitting has two types of error: bias and variance. Bias error is
associated with underfitting, and variance error is associated with overfitting. Bias
error is high when a model is overly simplified and does not sufficiently learn from the
patterns in the training data. Variance error is high when the model is overly compli-
cated and memorizes the training data so much that it will likely perform poorly on
new data. It is not possible to completely eliminate both types of errors. However, both
errors can be minimized so the total aggregate error (bias error + variance error) is
at a minimum. The bias—variance trade-off is critical to finding an optimum balance
where a model neither underfits nor overfits.

1. Parameters are critical for a model and are dependent on the training data.
Parameters are learned from the training data as part of the training process
by an optimization technique. Examples of parameters include coefficients
in regression, weights in NN, and support vectors in SVM.

2. Hyperparameters are used for estimating model parameters and are not
dependent on the training data. Examples of hyperparameters include
the regularization term ()) in supervised models, activation function and
number of hidden layers in NN, number of trees and tree depth in ensemble
methods, k in k-nearest neighbor classification and k-means clustering, and
p-threshold in logistic regression. Hyperparameters are manually set and
tuned.

For example, if a researcher is using a logistic regression model to classify sentences
from financial statements into positive or negative stock sentiment, the initial cutoff
point for the trained model might be a p-threshold of 0.50 (50%). Therefore, any sen-
tence for which the model produces a probability >50% is classified as having positive
sentiment. The researcher can create a confusion matrix from the classification results
(of running the CV dataset) to determine such model performance metrics as accuracy
and F1 score. Next, the researcher can vary the logistic regression’s p-threshold—say
to 0.55 (55%), 0.60 (60%), or even 0.65 (65%)—and then re-run the CV set, create new
confusion matrixes from the new classification results, and compare accuracy and F1
scores. Ultimately, the researcher would select the logistic regression model with a
p-threshold value that produces classification results generating the highest accuracy
and F1 scores. Note that the process just outlined will be demonstrated in Section 7.

There is no general formula to estimate hyperparameters. Thus, tuning heuristics
and such techniques as grid search are used to obtain the optimum values of hyper-
parameters. Grid search is a method of systematically training an ML model by using
various combinations of hyperparameter values, cross validating each model, and
determining which combination of hyperparameter values ensures the best model
performance. The model is trained using different combinations of hyperparameter
values until the optimum set of values are found. Optimum values must result in sim-
ilar performance of the model on training and CV datasets, meaning that the training
error and CV error are close. This ensures that the model can be generalized to test
data or to new data and thus is less likely to overfit. The plot of training errors for
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each value of a hyperparameter (i.e., changing model complexity) is called a fitting
curve. Fitting curves provide visual insight on the model’s performance (for the given
hyperparameter and level of model complexity) on the training and CV datasets and
are visually helpful to tune hyperparameters. Exhibit 26 shows the bias—variance error
trade-off by plotting a generic fitting curve for a regularization hyperparameter ()).

Exhibit 26: Fitting Curve for Regularization Hyperparameter (A)

Large Error ,

High Variance High Bias
l l Error,,
Erroryqin
Error Error., >>Error i,
Overfitting
Underfitting
Optimum Regularization
Small Error >
Slight Regularization Large Regularization

Lambda (A)

Slight regularization lightly penalizes model complexity, thereby allowing most or all
of the features to be included in the model and thus potentially enabling the model to
“memorize” the data. Typically with no or slight regularization, the prediction error on
the training dataset is small while the prediction error on the CV dataset is significantly
larger. This difference in error is variance. High variance error, which typically results
from too many features and model complexity, results in model overfitting. When
high variance error and low bias error exist, the model performs well on the training
dataset but generates many FP and FN errors on the CV dataset; in other words, the
model is overfitted and does not generalize to new data well.

Large regularization excessively penalizes model complexity, thereby allowing too
few of the features to be included in the model and causing the model to learn less
from the data. The model may lack the necessary predictor variables and complexity
needed to discern underlying patterns in the data. Typically with large regularization,
the prediction errors on the training and CV datasets are both large. Large prediction
errors on the training dataset indicate high bias, and high bias error results from model
underfitting. When high bias error exists, the model does not perform well on either
training or CV datasets because it is typically lacking important predictor variables.

Optimum regularization minimizes both variance and bias errors in a balanced
fashion. It penalizes model complexity just enough so that only the most important
features are included in the model. This process prevents the model from memoriz-
ing the data while enabling the model to learn enough from the data to distinguish
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important patterns. This results in prediction errors in both training and CV datasets
that are similar and also minimal. The range of optimum regularization values can be
found heuristically using such techniques as grid search.

If high bias or variance exists after the tuning of hyperparameters, either a larger
number of training examples (instances) may be needed or the number of features
included in the model may need to be decreased (in the case of high variance) or
increased (in the case of high bias). The model then needs to be re-trained and re-tuned
using the new training dataset. In the case of a complex model, where a large model
is comprised of sub-model(s), ceiling analysis can be performed. Ceiling analysis
is a systematic process of evaluating different components in the pipeline of model
building. It helps to understand what part of the pipeline can potentially improve in
performance by further tuning. For example, a stock market prediction model needs
historical data from the stock market and perhaps news articles related to the stocks.
The sub-model will extract relevant information from the news articles or classify the
sentiment of the news articles. The results of the sub-model will feed into the larger
model as features. Thus, the performance of the larger model depends on performance
of the sub-model(s). Ceiling analysis can help determine which sub-model needs to
be tuned to improve the overall accuracy of the larger model.

FINANCIAL FORECASTING PROJECT

] describe preparing, wrangling, and exploring text-based data for
financial forecasting

Robo-readers are automated programs used to analyze large quantities of text, including
news articles and social media. In the financial services space, robo-readers are being
used by investors to examine how views expressed in text relate to future company
performance. One important dimension that robo-readers look to analyze is sentiment
polarity—which means how positive, negative, or neutral a particular phrase or state-
ment is regarding a “target.” For example, in the statement “XYZ Corporation is doing
terrific things with its new product innovation,” positive sentiment (i.e., the polarity)
is being expressed regarding XYZ Corporation (i.e., the target of the sentiment). Such
sentiment can provide invaluable predictive power, both alone and when coupled with
structured financial data, for predicting stock price movements for individual firms
and for portfolios of companies.

To provide a practical application, we use a financial forecasting project to exam-
ine how effectively sentiment—expressed in English news articles on LexisNexis (a
searchable database of news articles) related to all companies listed on the NASDAQ
OMX Helsinki (Finland)—can be classified. To accomplish this task, we followed the
text ML model building steps presented in Sections 3 to 6 of this reading.

Text Curation, Preparation, and Wrangling

Text Curation

The text data used in this financial forecasting project are a collection of English
language sentences from financial and economic news sources. The text data are
acquired from the Financial Phrase Bank located on the website Researchgate.net.?

2 https://www.researchgate.net/publication/251231364_FinancialPhraseBank-v10.
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The compressed folder contains six text files. The first two files are license and readme
files. The other four files contain the text data. The data are presented in a text docu-
ment format (.txt), which can be opened and viewed using any text editor. Note that
this is cross-sectional data (not time series data).

A total of 14,780 sentences are in the four files. The sentiment of each sentence
has already been labeled with one of three sentiment classes: positive, neutral, or neg-
ative. The sentiment classes are provided from an investor’s perspective and may be
useful for predicting whether a sentence may have a corresponding positive, neutral,
or negative influence on the respective company’s stock price.

This project uses sentences from two of the text files (Sentences_AllAgree and
Sentences_75Agree), labeled as either in the positive or negative sentiment class,
for a total of 2,180 sentences. There are 1,457 positive sentiment class sentences and
723 negative sentiment class sentences. A supervised ML model is trained, validated,
and tested using these data. The final ML model can be used to predict the sentiment
classes of sentences present in similar financial news statements. Exhibit 27 shows a
sample of 10 rows of raw text from the Sentences_AllAgree text file. Note the senti-
ment annotations at the end of each sentence with prefix character “@”

Exhibit 27: Ten Sample Sentences and Sentiment from Raw Text File (Sentences_AllAgree.txt)

Profit before taxes amounted to EUR 56.5 mn , down from EUR 232.9 mn a year ago .@negative

Profit before taxes decreased by 9 % to EUR 187.8 mn in the first nine months of 2008 , compared to EUR 207.1 mn a year earlier .@negative

Profit before taxes decreased to EUR 31.6 mn from EUR 50.0 mn the year before .@negative

Profit before taxes was EUR 4.0 mn , down from EUR 4.9 mn .@negative

The company ‘s profit before taxes fell to EUR 21.1 mn in the third quarter of 2008 , compared to EUR 35.8 mn in the corresponding period in 2007 .@negative

In August-October 2010 , the company ’s result before taxes totalled EUR 9.6 mn , up from EUR 0.5 mn in the corresponding period in 2009 .@positive

Finnish Bore that is owned by the Rettig family has grown recently through the acquisition of smaller shipping companies .@positive

The plan is estimated to generate some EUR 5 million ( USD 6.5 m ) in cost savings on an annual basis .@positive

Finnish pharmaceuticals company Orion reports profit before taxes of EUR 70.0 mn in the third quarter of 2010, up from EUR 54.9 mn in the corresponding period in 2009 .@positive
Finnish Sampo Bank , of Danish Danske Bank group , reports profit before taxes of EUR 152.3 mn in 2010 , up from EUR 32.7 mn in 2009 .@positive

Text Preparation (Cleansing)

The raw text data (i.e., sentences) are initially organized into a data table. The data
table contains two columns: The first column (sentence) is for the text, and the second
column (sentiment) is for the corresponding sentiment class. The separator character,
which is “@” in this case, is used to split the data into text and sentiment class columns.
A collection of text data in any form, including list, matrix, or data table forms, is
called a corpus. Exhibit 28 shows a sample of 10 sentences from the data table corpus.

Exhibit 28: Ten Sample Rows of the Data Table (Corpus)

Sentence Sentiment

Profit before taxes amounted to EUR 56.5 mn , down from EUR 232.9 mn a year ago . negative

Profit before taxes decreased by 9 % to EUR 187.8 mn in the first nine months of 2008 , compared to EUR  negative
207.1 mn a year earlier .

Profit before taxes decreased to EUR 31.6 mn from EUR 50.0 mn the year before . negative
Profit before taxes was EUR 4.0 mn , down from EUR 49 mn . negative

The company ’s profit before taxes fell to EUR 21.1 mn in the third quarter of 2008 , compared to EUR 35.8 negative
mn in the corresponding period in 2007 .

In August-October 2010, the company ’s result before taxes totalled EUR 9.6 mn , up from EUR 0.5 mn in  positive
the corresponding period in 2009 .
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Finnish Bore that is owned by the Rettig family has grown recently through the acquisition of smaller positive

shipping companies .
The plan is estimated to generate some EUR 5 million (USD 6.5 m ) in cost savings on an annual basis . positive

Finnish pharmaceuticals company Orion reports profit before taxes of EUR 70.0 mn in the third quarter of positive
2010, up from EUR 54.9 mn in the corresponding period in 2009 .

Finnish Sampo Bank , of Danish Danske Bank group , reports profit before taxes of EUR 152.3 mn in 2010, positive
up from EUR 32.7 mn in 2009 .

The raw text contains punctuations, numbers, and white spaces that may not be
necessary for model training. Text cleansing involves removing, or incorporating
appropriate substitutions for, potentially extraneous information present in the text.
Operations to remove html tags are unnecessary because none are present in the text

Punctuations: Before stripping out punctuations, percentage and dollar symbols are
substituted with word annotations to retain their essence in the financial texts. Such
word annotation substitutions convey that percentage and currency-related tokens were
involved in the text. As the sentences have already been identified within and extracted
from the source text, punctuation helpful for identifying discrete sentences—such as
periods, semi-colons, and commas—are removed. Some special characters, such as
“+” and “©, are also removed. It is a good practice to implement word annotation
substitutions before removing the rest of the punctuations.

Numbers: Numerical values of numbers in the text have no significant utility for
sentiment prediction in this project because sentiment primarily depends on the words
in a sentence. Here is an example sentence: “Ragutis, which is based in Lithuania's
second-largest city, Kaunas, boosted its sales last year 22.3 percent to 36.4 million
litas” The word “boosted” implies that there was growth in sales, so analysis of this
sentiment does not need to rely on interpretation of numerical text data. Sentiment
analysis typically does not involve extracting, interpreting, and calculating relevant
numbers but instead seeks to understand the context in which the numbers are used.
Other commonly occurring numbers are dates and years, which are also not required
to predict sentence sentiment. Thus, all numbers present in the text are removed for
this financial sentiment project. However, prior to removing numbers, abbreviations
representing orders of magnitude, such as million (commonly represented by “m,’
“mln,” or “mn”), billion, or trillion, are replaced with the complete word. Retaining
these orders of magnitude-identifying words in the text preserves the original text
meaning and can be useful in predicting sentence sentiment.

Whitespaces: White spaces are present in the raw text. Additional white spaces
occur after performing the above operations to remove extraneous characters. The
white spaces must be removed to keep the text intact. Exhibit 29 shows the sample
text after cleansing. The cleansed text is free of punctuations and numbers, with
useful substitutions.

Exhibit 29: Ten Sample Rows After Cleansing Process

Sentence Sentiment

Profit before taxes amounted to EUR million down from EUR million a year ago negative

Profit before taxes decreased by percentSign to EUR million in the first nine months of compared to EUR  negative
million a year earlier

Profit before taxes decreased to EUR million from EUR million the year before negative

Profit before taxes was EUR million down from EUR million negative
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Sentence Sentiment
The companys profit before taxes fell to EUR million in the third quarter of compared to EUR million in negative
the corresponding period in

In August October the companys result before taxes totalled EUR million up from EUR million in the positive
corresponding period in

Finnish Bore that is owned by the Rettig family has grown recently through the acquisition of smaller positive
shipping companies

The plan is estimated to generate some EUR million USD million in cost savings on an annual basis positive
Finnish pharmaceuticals company Orion reports profit before taxes of EUR million in the third quarter of  positive

up from EUR million in the corresponding period in

Finnish Sampo Bank of Danish Danske Bank group reports profit before taxes of EUR million in up from positive

EUR million in

Text Wrangling (Preprocessing)

The cleansed text needs to be normalized using the following normalization procedures:

1. Lowercasing of all text to consolidate duplicate words (example, “THE;

“The,” and “the”).

2. Stop words are not removed because some stop words (e.g., not, more, very,
and few) carry significant meaning in the financial texts that is useful for
sentiment prediction. Some stop words, such as articles (a, an, the), may be
removed. Nevertheless, to avoid confusion no words are removed at this
point. This issue will be revisited during the data exploration stage, which
will carefully examine the text using frequency analysis and find custom

stop words (common words) for these particular text data.

3. Stemming, the converting of inflected forms of a word into its base word
(stem), is performed on the text as it is simple to perform and is appropriate

for training an ML model for sentiment prediction.

White spaces are stripped after performing these operations. As part of text nor-
malization, different currency abbreviations, such as EUR and USD, can be converted
into a single token, such as “currencysign” As we are dealing with financial domain
text, the earlier substitution of dollarsign can be replaced with currencysign as well.
This step will remove tokens that are different but redundant in nature while main-
taining their meaning. Through careful examination of the text and use of domain
knowledge, similar substitutions of redundant tokens can be performed. Exhibit 30

shows how the sample text appears after normalization.

Exhibit 30: Ten Sample Rows After Normalization Process

Sentence Sentiment
profit befor tax amount to currencysign million down from currencysign million a year ago negative
profit befor tax decreas by percentsign to currencysign million in the first nine month of compar to cur- negative
rencysign million a year earlier

profit before tax decreas to currencysign million from currencysign million the year befor negative
profit befor tax was currencysign million down from currencysign million negative
the compani profit befor tax fell to currencysign million in the third quarter of compar to currencysign negative

million in the correspond period in
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in august octob the compani result befor tax total currencysign million up from currencysign million in positive

the correspond period in

finnish bore that is own by the rettig famili has grown recent through the acquisit of smaller shipping positive

company

the plan is estim to generat some currencysign million currencysign million in cost save on an annual basi  positive

finnish pharmaceut compani orion report profit befor tax of currencysign million in the third quarter of up positive
from currencysign million in the correspond period in

finnish sampo bank of danish danske bank group report profit befor tax of currencysign million in up from positive
currencysign million in

The normalized text is tokenized, resulting in 2,673 unique tokens. Altogether, these
unique tokens comprise the bag-of-words (BOW) of the text corpus. Exhibit 31 shows
a sample of 100 tokens from the BOW. This preliminary unigram BOW can be used
to construct a document term matrix (DTM) for ML training.

Exhibit 31: One Hundred Sample Tokens from Preliminary Unigram BOW

“for” “foundri” “quarter” “shop” “net” “share” “to”
“currencysign” “nokia” “same” “plan” “year” “sanyo” “it”
“move” “nokian” “tax” “earn” “in” “expect” “by”
“percentsign” “director” “rose” “dividned” “total” “megafon” “talentum”
“report” “as” “chain” “number” “consolid” “accord” “compar”
“prior” “last” “machin” “componenta” “afx” “doubl” “higher”
“led” “from” “announc” “a” “with” “while” “g”
“handset” “pre” “fourth” “loss” “analyst” “increas” “said”
“board” “oper” “propos” “repres” “paid” “finnish” “base”
“user” “retail” “market” “is” “late” “amount” “estim”
“the” “divis” “of” “helsinki” “sale” “close”

“million” “after” “period” “team” “earlier” “manufactur”

“zero” “tyre” “profit” “beat” “third” “dealer”

“and” “will” “correspond” “per” “up” “subscrib”

“cloth” “decemb” “sepp” “custom” “reach” “teliasonera”

The final DTM for ML model training will be prepared after the data exploration
stage. Data exploration may reveal unnecessary tokens or anomalies in the data. Any
unnecessary tokens that are not informative must be removed, which will also impact
the creation of n-grams. Thus, the final DTM must be made after further analyses and
operations, such as exploratory data analysis and feature selection.

DATA EXPLORATION

] describe preparing, wrangling, and exploring text-based data for
financial forecasting
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Exploratory Data Analysis

Exploratory data analysis (EDA) performed on text data provides insights on word
distribution in the text. Word counts from all the sentences are computed. These
word counts can be used to examine outlier tokens—words that are most commonly
and least commonly present in the texts. The most frequent word occurrences in all
sentences from the dataset are shown in Exhibit 32. These common words will be
removed during the feature selection step. Notably, the tokens “million” and “curren-
cysign” occur frequently due to the financial nature of the data.

Exhibit 32: Most Frequently Used Tokens in the Corpus

Tokens

the
million
currencysign
in

to

of
from

a

and
profit
for

it

net
year
oper
sale

percentsign

0 500 1,000 1,500 2,000 2,500
Number of Occurences

The most frequent word occurrences in the sentences in the negative sentiment and
the positive sentiment classes are shown in Exhibit 33. The most commonly occur-
ring words are similar for both sentiment classes, meaning that they are not useful
in discriminating between the two sentiment classes. This finding demonstrates the
utility of removing the most commonly used tokens from the BOW.
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Exhibit 33: Most Frequently Used Tokens in Two Sentiment Classes of the

Corpus

Negative Positive
the [T the |
million [T million |
currencysign [T currencysign |
in in |
to [ to [
of [N of [
from [0 from [
a [ a |
and 0] it [
profit | and |
for [ profit [T
net [0 for |
year [ net [T
oper [ year [
percentsign :| oper :|
0 500 1,000 1,500 0 500 1,000 1,500
Number of Occurences Number of Occurences

Exhibit 34 shows a histogram of sentence length distribution. Sentence length is
defined as the number of characters, including spaces, in a sentence. The longest
sentence has 273 characters; the shortest sentence has 26 characters; and the average
number of characters is about 120 (indicated by the vertical line). Although this dis-
tribution does not have any direct impact on model training, this histogram visually
demonstrates the range of sentence lengths and helps identify any extremely long
or short sentences. This histogram does not appear unusual, so no outlier sentences
need to be removed.

Exhibit 34: Histogram of Sentence Lengths with Mean Sentence Length

Frequency

400 —

300 |

200

100

= ] ]

0 50 100 150 200 250 300

Number of Characters in a Sentence

Word clouds are a convenient method of visualizing the text data because they enable
rapid comprehension of a large number of tokens and their corresponding weights.
Exhibit 35 shows a word cloud for all the sentences in the corpus. The font sizes
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of the words are proportionate to the number of occurrences of each word in the
corpus. Similarly, Exhibit 36 shows the word cloud divided into two halves: one half
representing negative sentiment class sentences (upper half); one half representing
positive sentiment class sentences (lower half). Notably, some highly discriminative
stems and words, such as “decreas” and “down” in the negative half and “increas” and
“rose” in the positive half, are present. The feature selection process will eliminate
common words and highlight useful words for better model training.

Exhibit 35: Word Cloud of Entire Corpus
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Exhibit 36: Word Cloud Divided by Two Sub-Groups of the Corpus
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Feature Selection

Exploratory data analysis revealed the most frequent tokens in the texts that could
potentially add noise to this ML model training process. In addition to common tokens,
many rarely occurring tokens, often proper nouns (i.e., names), are not informative
for understanding the sentiment of the sentence. Further analyses must be conducted
to decide which words to eliminate. Feature selection for text data involves keeping
the useful tokens in the BOW that are informative and help to discriminate different
classes of texts—those with positive sentiment and those with negative sentiment. At
this point, a total of 44,151 non-unique tokens are in the 2,180 sentences.

Frequency analysis on the processed text data helps in filtering unnecessary
tokens (or features) by quantifying how important tokens are in a sentence and in the
corpus as a whole. Term frequency (TF) at the corpus level —also known as collection
frequency (CF)—is the number of times a given word appears in the whole corpus
(i.e., collection of sentences) divided by the total number of words in the corpus.
Term frequency can be calculated and examined to identify outlier words. Exhibit
37 shows the descriptive statistics of term frequency for the words at the collection
level. The statistics of TF range between 0 and 1 because TF values are ratios of total
occurrences of a particular word to total number of words in the collection. A sample
of words with the highest TF and lowest TF values is also shown to gain insight into
what kinds of words occur at these extreme frequencies.

Exhibit 37: Summary Statistics of TF for Words at the Collection Level,

Sample Words with High and Low TF Values, and Histogram of TF Values

Min. 1stQu. Median Mean  3rd Qu. Max.
2.265e-05 2.265e-05 4.530e-05 3.741e-04 1.585e-04 5.429e-02
word TF word TF
<chr> <dbl> <chr> <dbl>
the 0.05429096 yet 2.264954e-05
million 0.04722430 yihn 2.264954e-05
currencysign 0.04627302 young 2.264954e-05
in 0.03870807 zahariev 2.264954e-05
to 0.03476705 zone 2.264954e-05
of 0.03377047 700 2.264954e-05
Frequency
700
600 [
500 |
400
300 b Terms with low TF are mostly
rare terms (like proper nouns), Terms with high TF are mostly
/ ones appearing only once or stop terms, present in most
200 r twice in the data. They do not sentences, and so do not
contribute to differentiating contribute to differentiating
100 n sentiment. sentiment. \
O L L L L L
0 .0002 .0004 .0006 .0008 .0010 .0012

TF
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Calculating highest and lowest TFs at the collection level is a general strategy to
identify noisy terms. The histogram in Exhibit 37 shows a long tail to the right, which
represents common terms that must be removed. The high frequency bars on the
left show that there are also many rare terms (e.g., ones appearing only once or twice
across the data). Such rare terms do not appear enough to be used as meaningful
features and are often removed. The words with the highest TF are mostly stop words
that are not useful because they are present in most of the sentences and thus do not
contribute to differentiating the sentiment embedded in the text. The words with the
lowest TF values are mostly proper nouns or sparse terms that are also not important
to the meaning of the text. In this example, after careful examination of words with
extreme frequencies, the words with high TF values (>99.5th percentile, 14 words)
and low TF values (<30th percentile, 714 words) are removed before forming the final
document term matrix (DTM). Exhibit 38 shows the 14 words with the highest TF
values (>99.5th percentile) that are the custom stop words for this project.

Exhibit 38: Fourteen Custom Stop Words for the Project

“the” “million” “currencysign” “in” “to” “of” “from”
“and” “profit” “for” g “not” “ear” g

To construct a DTM for ML training, different TF measures need to be computed
to fill in the cells of the DTM. Exhibit 39 displays part of a TF measures table that is
computed for the text data before the removal of custom stop words.

Exhibit 39: Sample Output of Term Frequency (TF) Measures Table

SentenceNo
<int>

624

701

1826

1963

128

223

TotalWordsInSentence
<int>

34

39

34

39

30

37

Word TotalWordCount WordCountInSentence SentenceCountWithWord TF DF IDF TFIDF
<chr> <int> <int> <int> <dbl> <dbl> <dbl> <dbl>
a 873 6 687 0.1764706 0.3151376 1.1547459  0.20377868

the 2397 6 1453  0.1538462 0.6665138 0.4056945 0.06241454

a 873 6 687 0.1764706 0.3151376 1.1547459  0.20377868

the 2397 6 1453  0.1538462 0.6665138 0.4056945 0.06241454

of 1491 5 984 0.1666667 0.4513761 0.7954543 0.13257571
the 2397 5 1453  0.1351351 0.6665138 0.4056945 0.05482358

The columns of the term frequency measures table are as follows:

1. SentenceNo: A unique identification number assigned to each sentence in
the order they are present in the original dataset. For example, sentence
number 701 is a sentence in row 701 from the data table: “the airlin estim
that the cancel of it flight due to the closur of european airspac and the
process of recommenc traffic have caus a the compani a loss of currencysign
million includ the cost of strand passeng accommod”

2. TotalWordsinSentence: Count of total number of words present in the sen-
tence. For example, sentence number 701 has a total of 39 words.

3. Word: A word token that is present in the corresponding sentence.

4. TotalWordCount: Total number of occurrences of the word in the entire
corpus or collection. For example, the token “the” occurs 2,397 times in the
whole collection of sentences. The following equation can be used to com-
pute TF at the collection level:
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TF (Collection Level)

TotalWordCount/Total number of words in collection.

(10)

The TF of the word “the” at the collection level is calculated as 2,397/44,151
= 0.05429096. Note that this result was seen previously in Exhibit 37.

5. WordCountInSentence: Number of times the token is present in the corre-
sponding sentence. For example, token “the” is present six times in sentence
number 701.

6. SentenceCountWithWord: Number of sentences in which the word is pres-
ent. For example, the token “the” is present in 1,453 sentences.

1. TF (Term Frequency) at Sentence Level: Number of times a word is present
in a sentence divided by the total number of words in that sentence. The
following equation can be used to compute TF at the sentence level:

TF (Sentence Level)

WordCountInSentence/Total WordsInSentence.

(11)

For example, TF at the sentence level for the word “the” in sentences num-
ber 701 and 223 is calculated as 6/39 = 0.1538462 and 5/37 = 0.1351351,
respectively.

8. DF (Document Frequency): Defined as the number of documents (i.e., sen-
tences) that contain a given word divided by the total number of sentences
(here, 2,180). Document frequency is important since words frequently
occurring across sentences provide no differentiating information in each
sentence. The following equation can be used to compute DF:

DF = SentenceCountWithWord/Total number of sentences. (12)

For example, DF of the word “the” is 1,453/2,180 = 0.6665138; so, 66.7% of
the sentences contain the word “the” A high DF indicates high word fre-
quency in the text.

9. IDF (Inverse Document Frequency): A relative measure of how unique a term
is across the entire corpus. Its meaning is not directly related to the size of
the corpus. The following equation can be used to compute IDF:

IDF = log(1/DF). (13)

For example, IDF of the word “the” is log(1/0.6665138) = 0.4056945. A low
IDF indicates high word frequency in the text.

10. TF-IDF: To get a complete representation of the value of each word, TF
at the sentence level is multiplied by the IDF of a word across the entire
dataset. Higher TF-IDF values indicate words that appear more frequently
within a smaller number of documents. This signifies relatively more unique
terms that are important. Conversely, a low TF-IDF value indicates terms
that appear in many documents. TF-IDF values can be useful in measuring
the key terms across a compilation of documents and can serve as word
feature values for training an ML model. The following equation can be used
to compute TF-IDF:

TF-IDF = TF x IDF. (14)
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For example, TF-IDF of the token “of” is calculated as 0.1666667 x
0.7954543 = 0.13257571.

Similarly, Exhibit 40 shows high TF-IDF words for the text data before the removal
of custom stop words.

Exhibit 40: Sample Output of High TF-IDF Words

SentenceNo TotalWordsInSentence Word  TotalWordCount WordCountInSentence SentenceCountWithWord TF DF IDF TFIDF
<int> <int> <chr> <int> <int> <int> <dbl> <dbl> <dbl> <dbl>

28 7 risen 3 1 3 0.1428571 0.0013761468 6.588468  0.9412097

830 7  diminish 2 1 2 0.1428571 0.0009174312 6.993933  0.9991333

1368 9 great 4 1 4 0.1111111 0.0018348624 6.300786  0.7000873

1848 8 injuri 1 1 1 0.1250000 0.0004587156 7.687080  0.9608850

1912 7 cheaper 1 1 1 0.1428571 0.0004587156 7.687080  1.0981543

1952 6 argument 1 1 1 0.1666667 0.0004587156 7.687080  1.2811800

TF or TF-IDF values are placed at the intersection of sentences (rows) and terms
(columns) of the document term matrix. For this project, TF values are used for the
DTM as the texts are sentences rather than paragraphs or other larger bodies of
text. TE-IDF values vary by the number of documents in the dataset; therefore, the
model performance can vary when applied to a dataset with just a few documents.
In addition to removing custom stop words and sparse terms, single character letters
are also eliminated because they do not add any value to the sentiment significance.

Feature Engineering

N-grams are used as a feature engineering process in this project. Use of n-grams
helps to understand the sentiment of a sentence as a whole. As mentioned previously,
the objective of this project is to predict sentiment class (positive and negative) from
financial texts. Both unigram and bigrams are implemented, and the BOW is created
from them. Bigram tokens are helpful for keeping negations intact in the text, which
is vital for sentiment prediction. For example, the tokens “not” and “good” or “no”
and “longer” can be formed into single tokens, now bigrams, such as “not_good”
and “no_longer” These and similar tokens can be useful during ML model training
and can improve model performance. Exhibit 41 shows a sample of 100 words from
the BOW containing both unigram and bigram tokens after removal of custom stop
words, sparse terms, and single characters. Note that the BOW contains such tokens
as increas, loss, loss_prior, oper_rose, tax_loss, and sale_increas. Such tokens are
informative about the embedded sentiment in the texts and are useful for training
an ML model. The corresponding word frequency measures for the document term
matrix are computed based on this new BOW.
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Exhibit 41: One-Hundred Sample Tokens from Final BOW of Entire Corpus

“last” “last_quarter” “quarter” “quarter_componenta” “componenta”
“componenta_sale” “sale” “sale_doubl” “doubl” “doubl_same”
“same” “same_period” “period” “period_earlier” “earlier”
“earlier_while” “while” “while_move” “move” “move_zero”
“zero” “zero_pre” “pre” “pre_tax” “tax”

“tax_pre” “tax_loss” “loss” “third” “third_quarter”
“quarter_sale” “sale_increas” “increas” “increas_by” “by”
“by_percentsign” “percentsign” “percentsign_oper” “oper” “oper_by”
“oper_rose” “rose” “rose_correspond” “correspond” “correspond_period”
“period_repres” “repres” “repres_percentsign”  “percentsign_sale” “oper_total”
“total” “total_up” “up” “up_repres” “finnish”
“finnish_talentum” “talentum” “talentum_report” “report” “report_oper”
“oper_increas” “increas_sale” “sale_total” “cloth” “cloth_retail”
“retail” “retail_chain” “chain” “chain_sepp” “sepp”
“sepp_ls” “1s” “ls_sale” “consolid” “consolid_sale”
“incres_percentsign” “percentsign_reach” “reach” “reach_while” “while_oper”
“oper_amount” “amount” “amount_compar” “compar” “compar_loss”
“loss_prior” “prior” “prior_period” “foundri” “foundri_divis”
“divis” “divis_report” “report_sale” “percentsign_correspond” “period_sale”
“sale_machin” “machin” “machin_shop” “shop” “shop_divis”

EXAMPLE 6

Calculating and Interpreting Term Frequency Measures

Data scientists Jack and Jill are using financial text data to develop sentiment
indicators for forecasting future stock price movements. They have assembled
a BOW from the corpus of text being examined and have pulled the following
abbreviated term frequency measures tables.

Exhibit 42: Term Frequency Measures Table 1

SentenceNo TotalWordsInSentence Word TotalWordCount WordCountInSentence SentenceCountWithWord
<int> <int> <chr> <int> <int> <int>

624 34 a 873 6 687

701 39 the 2397 6 1453

1826 34 a 873 6 687

1963 39 the 2397 6 1453

128 30 of 1491 5 984

223 37 the 2397 5 1453

Exhibit 43: Term Frequency Measures Table 2

SentenceNo  TotalWordsInSentence Word TotalWordCount WordCountInSentence SentenceCountWithWord
<int> <int> <chr> <int> <int> <int>

28 7 risen 3 1 3

830 7 diminish 2 1 2

1368 9 great 4 1 4

1848 8 injuri 1 1 1

1912 7 cheaper 1 1 1

1952 6 argument 1 1 1

1. Determine and interpret term frequency (TF) at the collection level and
at the sentence level for the word (i.e., token) “a” in sentence 1,826 in term
frequency measures Table 1 and then for the token “great” in sentence 1,368

in term frequency measures Table 2.

Solution:

TF at the collection level is calculated using Equation 10:
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TF (Collection Level) = TotalWordCount/Total number of words in collection.

For token “a” in sentence 1,826 (Table 1), TF (Collection Level) is 873/44,151
= 0.019773 or 1.977%.For token “great” in sentence 1,368 (Table 2), TF
(Collection Level) is 4/44,151 = 0.000091 or 0.009%.TF at the collection
level is an indicator of the frequency, in percentage terms, that a token is
used throughout the whole collection of texts (here, 44,151). It is useful for
identifying outlier words: Tokens with highest TF values are mostly stop
words that do not contribute to differentiating the sentiment embedded in
the text (such as “a”), and tokens with lowest TF values are mostly proper
nouns or sparse terms that are also not important to the meaning of the text.
Conversely, tokens with intermediate TF values potentially carry important
information useful for differentiating the sentiment embedded in the text.TF
at the sentence level is calculated using Equation 11:

TF (Sentence Level) = WordCountInSentence/Total WordsInSentence.

For token “a” in sentence 1,826, TF (Sentence Level) is 6/34 = 0.176471 or
17.647%.

For token “great” in sentence 1,368, TF (Sentence Level) is 1/9 = 0.111111 or
11.111%.

TF at the sentence level is an indicator of the frequency, in percentage
terms, that a token is used in a particular sentence (i.e., instance). Therefore,
it is useful for understanding the importance of the specific token in a given
sentence.

2. Determine and interpret TF—IDF (term frequency—inverse document
frequency) for the word “a” in sentence 1,826 in term frequency measures
Table 1 and then for the token “great” in sentence 1,368 in term frequency
measures Table 2.

Solution:

To calculate TF-IDF, besides TF at the sentence level, document frequency
(DF) and inverse document frequency (IDF) are also required.

DF is the number of documents (i.e., sentences) that contain a given word
divided by the total number of sentences in the corpus (here, 2,180). DF is
calculated using Equation 12:

DF = SentenceCountWithWord/Total number of sentences.

For token “a” in sentence 1,826, DF is 687/2,180 = 0.315138 or 31.514%.

For token “great” in sentence 1,368, DF is 4/2,180 = 0.001835 or 0.184%.
Document frequency is important since tokens occurring frequently across
sentences (such as “a”) provide no differentiating information in each sen-
tence. Tokens occurring less frequently across sentences (such as “great”),
however, may provide useful differentiating information.

IDF is a relative measure of how important a term is across the entire corpus
(i.e., collection of texts/sentences). IDF is calculated using Equation 13:

IDF = log(1/DF).

For token “a” in sentence 1,826, IDF is log(1/0.315138) = 1.154746.
For token “great” in sentence 1,368, IDF is log(1/0.001835) = 6.300786.
Using TF and IDF, TF-IDF can now be calculated using Equation 14:
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TF-IDF = TF x IDF.

For token “a” in sentence 1,826, TF—IDF = 0.176471 x 1.154746 = 0.203779,
or 20.378%.

For token “great” in sentence 1,368, TF-IDF = 0.111111 x 6.300786 =
0.700087, or 70.009%.

As TE-IDF combines TF at the sentence level with IDF across the entire
corpus, it provides a complete representation of the value of each word. A
high TF-IDF value indicates the word appears many times within a small
number of documents, signifying an important yet unique term within a
sentence (such as “great”). A low TF-IDF value indicates tokens that appear
in most of the sentences and are not discriminative (such as “a”). TF—IDF
values are useful in extracting the key terms in a document for use as fea-
tures for training an ML model.

MODEL TRAINING

] describe preparing, wrangling, and exploring text-based data for
financial forecasting

The sentiment class labels (positive and negative) constitute the target variable (y) for
model training. They are relabeled as 1 (for positive) and 0 (for negative) to enable
calculating the performance metrics, such as receiver operating characteristic (ROC)
curve and area under the curve (AUC) from the trained model results. The master
dataset that has been cleansed and preprocessed is partitioned into three separate
sets: 1) training set; 2) cross-validation (CV) set; and 3) test set. These are in the ratio
of 60:20:20, respectively (following common practice). For splitting, simple random
sampling is applied within levels of the target variable to balance the class distribu-
tions within the splits. The final DTM is built using the sentences (rows), which are
the instances, and resulting tokens (columns), which are the feature variables, from
the BOW of the training dataset. The final BOW consists of unigram and bigram
tokens from the sentences in the training corpus only. The DTM is then filled in with
resultant TF values of the tokens from the training corpus.

Similarly, the DTMs for the CV set and the test set are built using tokens from the
final training BOW for tuning, validating, and testing of the model. To be clear, the
final BOW from the training corpus is used for building DTMs across all the splits
because the model has been trained on that final BOW. Thus, the columns (think,
features) of all three DTMs are the same, but the number of rows varies because a
different number of sentences are in each split. The DTMs are filled with resultant
term frequency values calculated using sentences in the corpuses of the respective
splits—sentences from the CV set corpus and sentences from the test set corpus.
Exhibit 44 tabulates the summary of dimensions of the data splits and their uses in
the model training process. As mentioned, the columns of DTMs for the splits are
the same, equal to the number of unique tokens (i.e., features) from the final training
corpus BOW, which is 9,188. Note that this number of unique tokens (9,188) differs
from that in the master corpus (11,501) based on the sentences that are included in
the training corpus after the random sampling.

12
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Exhibit 44: Summary of the Three Data Splits

Number of
Corpus Split % Sentences DTM Dimensions Purpose
Master 100% 2180 2180 x 11501 Used for data exploration
Training 60% 1309 1309 x 9188 Used for ML model training
cv 20% 435 435 x 9188 Used for tuning and validating the trained model
Test 20% 436 436 x 9188 Used for testing the trained, tuned, and validated model

Method Selection

Alternative ML methods, including SVM, decision trees, and logistic regression, were
examined because these techniques are all considered potentially suitable for this
particular task (i.e., supervised learning), type of data (i.e., text), and size of data (i.e.,
wider data with many potential variables). The SVM and logistic regression methods
appeared to offer better performance than decision trees. For brevity, we discuss
logistic regression in the remainder of the chapter. Logistic regression was used to
train the model, using the training corpus DTM containing 1,309 sentences. As a
reminder, in this project texts are the sentences and the classifications are positive
and negative sentiment classes (labeled 1 and 0, respectively). The tokens are feature
variables, and the sentiment class is the target variable. Text data typically contain
thousands of tokens. These result in sparse DTMs because each column represents
a token feature and the values are mostly zeros (i.e., not all the tokens are present
in every text). Logistic regression can deal with such sparse training data because
the regression coefficients will be close to zero for tokens that are not present in a
significant number of sentences. This allows the model to ignore a large number of
minimally useful features. Regularization further helps lower the coefficients when
the features rarely occur and do not contribute to the model training.

Logistic regression is applied on the final training DTM for model training. As
this method uses maximum likelihood estimation, the output of the logistic model is
a probability value ranging from 0 to 1. However, because the target variable is binary,
coefficients from the logistic regression model are not directly used to predict the
value of the target variable. Rather, a mathematical function uses the logistic regression
coefficient (B) to calculate probability (p) of sentences having positive sentiment (y =
1).3 If p for a sentence is 0.90, there is a 90% likelihood that the sentence has positive
sentiment. Theoretically, the sentences with p > 0.50 likely have positive sentiment.
Because this is not always true in practice, however, it is important to find an ideal
threshold value of p. We elaborate on this point in a subsequent example. The thresh-
old value is a cutoff point for p values, and the ideal threshold p value is influenced
by the dataset and model training. When the p values (i.e., probability of sentences
having positive sentiment) of sentences are above this ideal threshold p value, then
the sentences are highly likely to have positive sentiment (y = 1). The ideal threshold
p value is estimated heuristically using performance metrics and ROC curves, as will
be demonstrated shortly.

1

3 This mathematical function is an exponential function of the form: P (y = 1) =

o . . = (BotBrxr+Bysyt-+By)
where the fs are the logistic regression coefficients. Lo+ expmTorAiat '
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Performance Evaluation and Tuning

The trained ML model is used to predict the sentiments of the sentences in the training
and CV DTMs. Exhibit 45 displays the ROC curves for the training (Panel A) and CV
(Panel B) data. Remember that the x-axis is false positive rate, FP/(TN + FP), and the
y-axis is true positive rate, TP/(TP + FN). As the model is trained using the training
DTM, it clearly performs well on the same training data (so there is no concern about
underfitting) but does not perform as well on the CV data. This is apparent as the ROC
curves are significantly different between the training and CV datasets. The AUC is
96.5% on training data and 86.2% on CV data. This finding suggests that the model
performs comparatively poorly (with a higher rate of error or misclassification) on
the CV data when compared to training data. Thus, the implication is that the model
is overfitted.

Exhibit 45: ROC Curves of Model Results for Training and CV Data Before

Regularization

A. ROC Curve for Training Data B. ROC Curve for CV Data

True Positive Rate True Positive Rate
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False Positive Rate False Positive Rate

As the model is overfitted, least absolute shrinkage and selection operator (LASSO)
regularization is applied to the logistic regression. LASSO regularization penalizes
the coefficients of the logistic regression to prevent overfitting of the model. The
penalized regression will select the tokens (features) that have statistically significant
(i.e., non-zero) coefficients and that contribute to the model fit; LASSO does this
while disregarding the other tokens. Exhibit 46 shows the ROC curves for the new
model that uses regularized logistic regression. The ROC curves look similar for model
performance on both datasets, with an AUC of 95.7% on the training dataset (Panel
A) and 94.8% on the CV dataset (Panel B). These findings suggest that the model per-
forms similarly on both training and CV data and thus indicate a good fitting model
(one that is not overfitted).
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Exhibit 46: ROC Curves of Model Results for Training and CV Data After

Regularization

A. ROC Curve for Training Data B. ROC Curve for CV Data

True Positive Rate True Positive Rate
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Regularization along with careful feature selection help to prevent overfitting in logis-
tic regression models. Another model was trained using all token features, including
stop words, sparse terms, and single characters, with no regularization. That model
showed an AUC of 99.1% when applied on the training dataset and an AUC of 89.4%
when applied on the CV dataset, suggesting that the model is overfitting. As the AUC
values in all of the models discussed are not far from 100%, these models are clearly
not underfitting. In sum, the final ML model for this project uses logistic regression
with LASSO regularization.

To further evaluate the model, error analysis is conducted by calculating a confusion
matrix using the ML model results from the cross-validation dataset. The threshold
p value of 0.5 is used as a cutoff point. When target value p > 0.5, the prediction is
assumed to be y = 1 (meaning, positive sentiment). Otherwise, the prediction is assumed
to be y = 0 (negative sentiment). A confusion matrix, with performance metrics and
overall scores for the model results using the CV data, is shown in Exhibit 47.

Exhibit 47: Confusion Matrix of Model Results for CV Data with Threshold p

Value =0.50

Confusion Matrix for CV Data with Threshold = 0.5

Actual Training Labels

Class “1” Class “0”
Predicted | Class “1” 284 (TP) 38 (FP)
Results Class “0” 7 (EN) 106 (TN)

Performance Metrics

TP =284, FP = 38, EN = 7, TN = 106
P =284 / (284+38) = 0.88
R =284 / (284+7) = 0.98
F1 Score = (2 x 0.88 x 0.98) / (0.88 + 0.98) = 0.93
Accuracy = (284 + 106) / (284 + 38 + 106 + 7) = 0.90
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The model accuracy is 90% with a theoretically suggested (default) threshold p value
of 0.5. The CV data are used to tune the threshold value for best model performance.
Various p values from 0.01 to 0.99 are systematically evaluated individually, and con-
fusion matrixes and performance metrics are calculated using each of these p values.
Based on these metrics, the p value resulting in the highest model accuracy is selected
as the ideal threshold p value. However, there are often trade-offs: Minimizing false
positives (FPs) comes at a cost of increasing false negatives (FNs), and vice versa.
Prioritizing various performance statistics (e.g., precision versus recall) depends on
the context and relative consequences of FP and FN on the project applications. In
this project, the values of negative sentiment and positive sentiment sentences are
assumed to be equal, thus the impacts of FP and FN are also equal. It is common
practice to simulate many model results using different threshold p values and to
search for maximized accuracy and F1 statistics that minimize these trade-offs. As
noted earlier, accuracy and F1 scores are overall performance measures that give
equal weight to FP and FN.

Exhibit 48 shows the overall performance measures (i.e., F1 score and accuracy) for
various threshold p values. The threshold p value that results in the highest accuracy
and F1 score can now be identified. From the charts in Exhibit 47, the ideal threshold p
value appears to be around 0.60. To investigate further, a table of performance measures
(i-e., precision, recall, F1 score, and accuracy) is generated for a series of threshold p
values ranging from 0.45 to 0.75. The table in Exhibit 49 demonstrates that threshold
p values between 0.60 and 0.63 result in the highest accuracy and F1 score for the
CV dataset. As a result of this analysis, a final threshold p value of 0.60 is selected.

Exhibit 48: Threshold Values Versus Overall Performance Measures
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Exhibit 49: Performance Measures of the Model for a Series of Threshold
Values

Threshold Precision Recall F1 Accuracy
0.45 0.8750000 0.986254296 0.927302100 0.8965517
0.46 0.8827160 0.982817869 0.930081301 0.9011494
0.47 0.8827160 0.982817869 0.930081301 0.9011494
0.48 0.8819876 0.975945017 0.926590538 0.8965517

0.49 0.8819876 0.975945017 0.926590538 0.8965517
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Threshold Precision Recall F1 Accuracy
0.50 0.8819876 0.975945017 0.926590538 0.8965517
0.51 0.8819876 0.975945017 0.926590538 0.8965517
0.52 0.8819876 0.975945017 0.926590538 0.8965517
0.53 0.8902821 0.975945017 0.931147541 0.9034483
0.54 0.8930818 0.975945017 0.932676519 0.9057471
0.55 0.8930818 0.975945017 0.932676519 0.9057471
0.56 0.8958991 0.975945017 0.934210526 0.9080460
0.57 0.8958991 0.975945017 0.934210526 0.9080460
0.58 0.8958991 9.975945017 0.934210526 0.9080460
0.59 0.9015873 0.975945017 0.937293729 0.9126437
0.60 0.9044586 0.975945017 0.938842975 0.9149425
0.61 0.9044586 0.975945017 0.938842975 0.9149425
0.62 0.9044586 0.975945017 0.938842975 0.9149425
0.63 0.9041534 0.972508591 0.937086093 0.9126437
0.64 0.9041534 0.972508591 0.937086093 0.9126537
0.65 0.9041534 0.972508591 0.937086093 0.9126437
0.66 0.9035370 0.965635739 0.933554817 0.9080460
0.67 0.9035370 0.965635739 0.933554817 0.9080460
0.68 0.9064516 0.965635739 0.935108153 0.9103448
0.69 0.9064516 0.965635739 0.935108153 0.9103448
0.70 0.9061489 0.962199313 0.933333333 0.9080460
0.71 0.9061489 0.962199313 0.933333333 0.9080460
0.72 0.9090909 0.962199313 0.934891486 0.9103448
0.73 0.9090909 0.962199313 0.934891486 0.9103448
0.74 0.9078947 0.948453608 0.927731092 0.9011494
0.75 0.9072848 0.941580756 0.924114671 0.8965517

* The shaded row shows the selected threshold p value (0.60) and the performance metrics for the selected

model.

Finally, the confusion matrix using the ideal threshold p value of 0.60 is constructed
to observe the performance of the final model. When target value p > 0.60, the predic-
tion is assumed to be y = 1 (indicating positive sentiment); otherwise, the prediction
is assumed to be y = 0 (negative sentiment). The confusion matrix for the CV data is
shown in Exhibit 50. It is clear that the model performance metrics have improved
in the final model compared to the earliest case when the threshold p value was 0.50.
Now, accuracy and F1 score have both increased by one percentage point to 91% and
94%, respectively, while precision has increased by two percentage points to 90%.
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Exhibit 50: Confusion Matrix of Model Results for CV Data with Threshold p

Value = 0.60

Confusion Matrix for CV Data with Threshold = 0.6

Actual Training Labels

Class “1” Class “0”
Predicted | Class “1” 284 (TP) 30 (FP)
Results Class “0” | 7 (FN) 114 (TN)

Performance Metrics

TP =284, FP =30, FN =7, TN = 114
P =284 / (284+30) = 0.90
R =284/ (284+7) = 0.98
F1 Score = (2 x 0.90 x 0.98) / (0.90 + 0.98) = 0.94
Accuracy = (284 + 114) / (284 + 30 + 114 + 7) = 0.91

RESULTS AND INTERPRETATION

] describe preparing, wrangling, and exploring text-based data for
financial forecasting

The final ML model with the appropriate threshold p value has been validated and is
now ready for use. The model can be used to predict the sentiment of new sentences
from the test data corpus as well as new sentences from similar financial text data
sources, such as news wires, earnings call transcripts, and quarterly financial reports.
The final model is a collection of penalized regression coefficients for unigram and
bigram tokens from the BOW of the training corpus. To use the model to predict the
sentiment of new sentences, tokenization and identical cleansing and preprocessing
operations must be performed on the new sentences. All the processes performed
on the training data must be performed on the new data to which the model will be
applied (as was done for the test dataset). The model will use the trained penalized
regression coefficients on the term frequency (TF) values of the tokens in the document
term matrix (DTM) of the new sentences and will determine the target value (p). The
columns of the DTM of the new sentences are the same as those of the training DTM,
but the TF values are calculated based on the test corpus. Using the threshold p value
of 0.60, the sentiment class for each sentence in the test corpus will be predicted.

The model is now applied on the test data that contains 436 sentences. Note that
the test data were not used to train or validate/tune the model and are new to the
model. The test data were preprocessed identically to the training and CV data while a
part of the master corpus. The model is then applied to the test DTM, and the results
are obtained. Exhibit 51 displays 30 sample results from the test corpus. The results
table contains cleansed and preprocessed sentences, actual sentiment, target p values
from the model, and predicted sentiment. Note that this sample contains three cases
of misclassification: the 10th sentence (text), where p = 0.46; the 26th text, where p
= 0.77; and the 30th text, where p = 0.71. Therefore, accuracy of this 30-text sample
is 27/30 = 90%.
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Exhibit 51: Thirty Sample Results of Test Data

Predicted
Sentence Sentiment P Sentiment
exclude non recur item pre tax surg percentsign 1 0.81 1
adp news feb finnish retail kesko oyj hel kesbv said today total sale exclud 0 0.12 0
valu ad tax vat stood at januari down percentsign on yea
india trade with russia current stand at four billion dollar grow per cent 1 0.83 1
fiscal
refin margin was bbl combar bbl prior 1 0.81 1
scania morgan Stanley lift share target on swedish heavi duti truck bus 1 0.83 1
maker scania ab crown euro crown euro
deal is like bring save 1 0.83 1
will also strengthen ruukki offshore busi 1 0.83 1
last week finnish metl technolog group announc plan sell more than 1 0.83 1
percent technolog unit further compani strategy goal becom world largest
stainless steel maker
nest oil board propos dividend full compar with ago 1 0.81 1
pre tax loss total compar loss first quarter 1 0.46 0
pretax total compar loss fourth quarter 1 0.74 1
re use back into pet bottle has also steadili increas rate use strap tape has 1 0.95 1
pick up again after dip pector said previous
satama sale would be higher than befor 1 0.83 1
octob finnish wood product technolog supplier raut oyj hel rutav said 1 0.79 1
today swung first nine month versus loss same period earlier
ebit total compar loss correspond period 1 0.74 1
finnish consum packag manufactur huhtamaki oyj said swung euro first 1 0.77 1
nine month loss euro same period
finnish dental care group oral hammaslaakarit oyj post total euro first 1 0.79 1
nine month versus loss euro same period
finnish silicon water manufactur okmet oyj said swung euro first nine 1 0.77 1
month loss euro earlier
adp news feb finnish print circuit board pcb maker aspocomp group oyj 1 0.79 1
hel acg said today swung versus loss
mn pretax third quarter 1 0.83 1
oper total compar correspond period 1 0.81 1
raut post euro third quarter compar loss euro correspond period 1 0.74 1
russian export duti will active harvest finland sale russia will increas also 1 0.91 1
compani expect sale signific increas 1 0.91 1
compani amount ee which was percentsign more than 1 0.81 1
third quarter fiscal efor swung 